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Abstract

Preventing child abuse is a unifying goal. Making decisions that affect the lives of children is

an unenviable task assigned to social services in countries around the world. The conse-

quences of incorrectly labelling children as being at risk of abuse or missing signs that chil-

dren are unsafe are well-documented. Evidence-based decision-making tools are

increasingly common in social services provision but few, if any, have used social network

data. We analyse a child protection services dataset that includes a network of approxi-

mately 5 million social relationships collected by social workers between 1996 and 2016 in

New Zealand. We test the potential of information about family networks to improve accu-

racy of models used to predict the risk of child maltreatment. We simulate integration of the

dataset with birth records to construct more complete family network information by includ-

ing information that would be available earlier if these databases were integrated. Including

family network data can improve the performance of models relative to using individual

demographic data alone. The best models are those that contain the integrated birth records

rather than just the recorded data. Having access to this information at the time a child’s

case is first notified to child protection services leads to a particularly marked improvement.

Our results quantify the importance of a child’s family network and show that a better under-

standing of risk can be achieved by linking other commonly available datasets with child pro-

tection records to provide the most up-to-date information possible.

Introduction

Predictive risk models are increasingly used in child protection services to assess the risk of

maltreatment[1–3]. Internationally, such models have been operationalized in a number of

administrative jurisdictions including in Allegheny County, Pennsylvania [4,5] and in Florida

[6]. This mirrors an increase in the use of predictive risk models in other social service areas,

such as health[7–9], justice[10–12] and social security[13]. Predictive risk models have been

criticised as “individualising social problems, reifying risk and abuse and narrowly prescribing
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service provision” [14]. Other potential drawbacks include using data for a different purpose

than originally planned, missing or incorrect data, and the tendency of predictive risk models

to reinforce existing social biases and inequalities[15–17].

On the other hand, the large number of calls received by child protection services and the

increasing volume and scope of data collected by government agencies mean that it is difficult

for social workers to make systematic and consistent use of all of the available information

relating to a given case [5,18]. Whilst social workers’ experience and expertise are indispens-

able, human judgements in complex situations can suffer from cognitive biases, heuristic rea-

soning, or influence by extraneous factors not relevant to a child’s welfare [5,19,20]. Predictive

tools can help overcome some of these limitations. Statistical models can efficiently assimilate

data from a large number of variables and over a long period of time, whereas social workers

can take account of crucial presenting information that is typically not available to statistical

models [5]. Combining predictive models with social worker expertise therefore has the poten-

tial to improve decision-making [21,22] but only with much thought and care can their use be

ethically sound and socially beneficial[19,23–25].

Disparities among racial or ethnic groups in rates of involvement with child protection ser-

vices and subsequent outcomes have been documented in multiple countries[5,26–28]. This

includes New Zealand, where Māori represent 57% of children within the child protection sys-

tem by the age of five, despite making up only 30% of the birth rate [29]. There are numerous

potential causes of such disparities, including: correlation between ethnicity and socioeco-

nomic variables [1,27]; implicit or explicit discrimination by child welfare professionals [5];

mismatch between a Western model for child welfare and the needs of Indigenous Peoples

[29]. There is a danger that statistical models and machine learning approaches can entrench

or amplify biases in the data and in child welfare professionals’ risk evaluations. To mitigate

this danger and to increase transparency, it is important to test for algorithmic fairness of a

risk model across groups [30,31] [32]. This is only one factor in ensuring equity in outcomes

and services for vulnerable children. In New Zealand, there is an urgent need for culturally

appropriate provision of services and resources for Māori that empowers whānau (family),

hapū (extended family) and iwi (tribes) to meet the needs of their tamariki (children) and puts

them at the centre of the decision-making process [29]. This need is enshrined in recent legis-

lation [33] but yet to be realised.

Predictive models in child protection typically use a range of environmental and demo-

graphic information about a family, for example household income, whether the identity of

the father is known, the age and beneficiary status of the mother[34–36]. Using data from

child protection services in New Zealand, we show that information about a child’s family net-

work (see for example Fig 1) can improve the performance of predictive risk models used by

social workers to make an initial decision about whether to refer a case for further investiga-

tion. We show how such networks can be constructed using relationship data commonly con-

tained in birth registries or, as in this case, collected by child protection services.

The analysis is predictive rather than causal, i.e. we seek to identify sources of information

with predictive power, rather than to identify causal mechanisms. Our model framework com-

plements social workers’ efforts to understand a child’s family situation, which is at the heart

of social work practice but is often hard to measure[37]. Social workers routinely use informa-

tion about family relationships, but potentially in a patchy and inconsistent way depending on

how readily available the data are for a given case and how an individual social worker weights

those data relative to other factors[30]. Our model framework formalizes and quantifies the

relation between information about family networks and likely outcomes for the child con-

cerned. The aim is to present social workers with information in a systematic way that facili-

tates better decision making at the point of first contact (i.e. when a report is received
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concerning a child’s welfare) about whether to refer the case for further investigation. This

should be seen as part of a public health objective of targeting limited resources and services to

the families in highest need [15], rather than a punitive approach or an automated decision-

making system.

Our model differs from other published models [1,4,38] because our analysis uses a rela-

tively small number of predictor variables and is intended as proof-of-concept of the value of

family network data, rather than as a deployable risk evaluation tool. The results will be useful

in refining more complex risk models used by child protection services. Nevertheless, one

advantage of working with relatively simple models is that they are more readily and transpar-

ently integrated with social worker expertise than are larger “black box” type algorithms

[39,40]. We show that the availability of up-to-date and accurate relationship information

about family networks can considerably improve model performance. This is intended to com-

plement rather than to replace social workers’ wealth of knowledge and experience.

Methods

Data

We analysed a database collected by New Zealand’s Ministry of Social Development between

1995 and 2016, and containing 826,309 individuals. Analysis took place during 2017 and 2018.

The database is different from most others used in child protection services in that it docu-

ments a total of 4,975,810 relationships recorded by social workers during family visits or

investigations. Each relationship connects a pair of individuals in the database and is catego-

rised into one of 134 relationship types, for example A is the mother of C, B is the stepfather of

C, C is the sibling of D, C was physically abused by B. (See sec 1.1 of S1 Text for details and

Fig 1. A child’s family network growing over time. Panels (a)-(c) show networks constructed using recorded relationships and panels (d)-(f) show networks

constructed using whole-life-relationships. The networks are shown at: (a,d) the time of the child’s first notification; (b,e) the time of the child’s second notification; (c,f)

the end of the data collection period. Individuals who are part of the child’s family network at each time point are shown in dark colours; individuals who exist but are

not part of the network are shown in light colours; individuals who are not yet born are not shown. The values of the network predictor variables (see Table 1 for

definitions) are provided in each case. This is an illustration only and does not correspond to a real child.

https://doi.org/10.1371/journal.pone.0224554.g001
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Tables B-E in S1 Text a complete list of the 134 relationships types.) Relationships are time-

stamped with the date of their addition to the database rather than the date the relationship

began, which may have been much earlier. The database also contains 7,891,732 events, such

as notifications, referrals, interventions and substantiated findings of maltreatment, each

linked to one of the individuals in the database. Only events that occurred between 2006 and

2013, and where the child was under 16 years old at the time of the event, were included in the

sample. This reason for this is twofold: data collection before 2005 was often incomplete; the

definition of “estimated concern” used in the model (see below) relies on a two-year follow-up

period after the event which, at the time of our analysis, was not yet complete for events occur-

ring after 2013. This gave a sample of 1,113,858 events for 271,593 unique children.

Unit of analysis

The unit of our analysis was a “notification”, which is a report to child protection services

about a particular child. The report may come from a family member, a member of the public,

or another agency such as police. When a notification is received, a social worker typically has

to decide whether to file the information as a contact record or to refer the case to the local

child protection services office for further action.

Response variable

For each notification in the dataset, the child is classified as having either high or low estimated

concern (EC), using an established system based on events in the two years subsequent to the

notification[40] (see sec 1.2 of S1 Text for more details). Estimated concern is defined to be

high (EC = 1) if any of the following occurred during the two years subsequent to the notifica-

tion: (i) a substantiated finding of maltreatment; (ii) a family group conference or family/

whānau agreement; (iii) a decision at a subsequent notification to refer the child’s case for fur-

ther investigation. Otherwise EC is defined to be low (EC = 0). This is a coarse classification

system that is intended to identify which notifications should have been referred for further

investigation (high estimated concern) and which should not (low estimated concern). The

system has limitations[40] but provides a method for evaluating the accuracy (sensitivity and

specificity) of decisions made at the time of a notification. Some previous models[38] consid-

ered only substantiated findings of maltreatment as constituting high estimated concern. We

use a broader definition of estimated concern which includes subsequent referrals and inter-

ventions, and is intended to capture actions taken by child protection services aimed at pre-

venting maltreatment[40].

Predictor variables

We constructed statistical models for estimated concern using predictor variables defined in

terms of a child’s events and relationships that were recorded prior to a given notification.

Four event-based variables were defined in terms of the number of previous notifications and

the number of previous interventions or findings of maltreatment (see Table 1). Note that

these event-based variables do not use the relationship data and only relate to the individual

who is the subject of notification. We did not include the number of previous notifications

that had been referred for further investigation as a predictor variable, to reduce the potential

for the model to lead to a self-reinforcing cycle of decisions about the same child or family.

We defined the child’s family network, at the time of a given notification T, as the individu-

als with whom the child had a relationship recorded prior to time T. We defined four net-

work-based predictor variables: (1) the total number of individuals in the child’s family

network at time T; (2) the number of individuals in the network with at least one notification
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prior to time T; (3) the number of individuals in the network with at least one intervention or

finding of maltreatment prior to time T; (4) the number of individuals in the network who are

recorded as having instigated at least one abusive relationship (with the child or with any other

individual) prior to time T (see Fig 1A–1C). Note that variables (2) and (3) only include other

children, variables (1) and (4) include adults and children. These network-based predictor var-

iables use a combination of the relationship data (to determine which other individuals are in

the focal child’s network) and the events data (for those individuals).

At the time of a notification, especially the crucial first notification received about a given

child, relationship data were often absent because they were not recorded by child protection

services until after a serious event, such as a referral or intervention. Nonetheless, some of

these relationships may be available from other data sources, for example birth records. Ideally,

these different record types would be integrated in a national database, such as New Zealand’s

integrated data infrastructure [41], but this has not yet been done for the current dataset.

Instead, we used a simple but novel approach to model the information that would be available

from such an integrated database. We classified some of the relationship types in the database

(parent/child, sibling and half-sibling) as “whole-life relationships”. We backdated these rela-

tionships to simulate child protection services having access to a national database containing

birth records. We then constructed each child’s network at the time of a given notification T
using these backdated whole-life relationships, and calculated predictor variables (2)-(5)

described above using this network (see Fig 1D–1F for an example). Note that the total num-

ber of individuals in the whole-life network, predictor variable (1), does not necessarily reflect

the actual size of a family network because it only includes individuals who are in the child

protection services database (see sec 1.4 of S1 Text for more details). This induces a significant

potential for data collection bias and hence this predictor variable was excluded. The other net-

work-based variables (2)-(5) do not suffer as much from this potential bias as they accurately

reflect the intended factor, which is the prior history with child protection services of individu-

als in the network. Whole-life relationships were backdated to the date of birth of the younger

of the two individuals in the relationship, meaning that if, for example, a child has a sibling

Table 1. Summary of predictor variables used in the statistical classification models. Event variables are the numbers of various types of event that occurred for the

focal child prior to the notification. Recorded relationship variables are based on relationships recorded prior to the notification (see Fig 1A–1C); whole-life relationship

variables are based on close family relationships, whether they were recorded before or after the notification (see Fig 1D–1F). A target event is defined to be a serious inter-

vention by child protection services or a substantiated finding of maltreatment. Abbreviations are included for reference for Table 2 and Figs 1 and 2.

Variable type Predictor variables Abbreviation Details

Age Age at time of notification Age

Event-based # prior notifications nNotes Not included in the first notifications model

# prior target events nTargets

# notifications in the last 2 years nNotesRecent

# target events in the last 2 years nTargetsRecent

Recorded

network

# individuals in network nNeighsR Network constructed using relationships recorded prior to the notification

# individuals in network with a

prior notification

nWithNotesR

# individuals in network with a

prior target event

nWithTargetR

# known abusers in network nAbusersR

Whole-life

network

# individuals in network with a

prior notification

nWithNotesW Network constructed using whole-life relationships (parent, child, sibling, half-sibling

relationships only, backdated to the DOB of the younger of the two individuals in the relationship

# individuals in network with a

prior target event

nWithTargetW

# known abusers in network nAbusersW

https://doi.org/10.1371/journal.pone.0224554.t001
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who was born after the notification, they would not be included in the network (e.g. individual

7 is not part of the network in Fig 1D). Furthermore, events were never backdated so that if

family member was involved in a finding of maltreatment that occurred after time T, this

would not be included in the network predictor variables for a notification at time T (e.g. indi-

vidual 7 is in the network in Fig 1E but is not counted in any of the network variables as their

first involvement with child protection services did not occur until the time of Fig 1F).

In summary, we used two different methods for calculating predictor variables from a

child’s family network: recorded relationships and whole-life relationships. Altogether, this

gave 12 predictor variables (see Table 1): age; four events-based variables (which use only the

events data for the child who is the subject of the notification); four recorded network variables

and three whole-life network variables (which use a combination of relationship data and

events for other individuals in the family network). Gender and ethnicity were not used as pre-

dictor variables, because of ethical concerns around gender and racial stereotyping, and

because it is recognised that, once relevant socioeconomic factors are controlled for, the effect

of ethnicity is small or non-existent [1,40,42]. Instead, we checked for predictive bias [43] by

testing the model for statistical calibration and comparing the error rates across gender and

ethnicity groups (see sec. 1.3 of S1 Text).

Statistical methods

Two statistical methods were used to analyse the data. The first method was a multivariate

logistic regression model with estimated concern as the response variable:

logit ECi;j ¼ /0 þ
Xm

k¼1

/kxk;i;j

where ECi,j is the estimated concern for individual i at the time of their jth notification and xk,i,j

is the value of the kth predictor variable (see Table 1) for individual i at their jth notification.

We used K-fold cross-validation to fit models with K = 10. Because individual children may

have multiple notifications, it is possible for the same child to be simultaneously in the training

and testing data in the cross-validation procedure. This can lead to overestimation of model

accuracy, as occurred in the Allegheny Family Screening Tool [5]. However, as the notifica-

tions in our dataset always corresponded to a unique child, our analysis does not suffer from

the problem of children from the same notification appearing in the both the training and test

data, which was the primary cause of over-optimism in the Allegheny model [5].

For each fitted model, the receiver operating characteristic (ROC) curve was calculated

(relationship between true positive rate and false positive rate across a range of threshold set-

tings) [44]. The accuracy of a particular model was evaluated by the area under the ROC curve,

termed the ROC score, which accounts for the tradeoff between specificity and sensitivity. A

model with a ROC score of 1 has perfect accuracy; a model with ROC score of 0.5 is equivalent

to a coin toss. In addition, the Akaike information criterion (AIC) was calculated for each fit-

ted model. This measures the quality of the model fit (based on out-of-sample error rates) but

penalises by the number of predictor variables used [45]. A low AIC indicates a parsimonious

model that gives a reasonably good fit without using an excessive number of predictors. Results

are shown for regression models without interaction terms. Adding quadratic interaction

terms to the model improved accuracy only slightly, increasing the ROC score by between

0.001 and 0.005, and did not qualitatively change the results.

This logistic regression method was applied to the complete sample of notifications (all i
and j) and to two subsamples: (i) the first notification for each child (only j = 1); (ii) subsequent

notifications for each child (only j>1). We fitted a full model using all available predictor
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variables and smaller models with up to four predictor variables. The smaller models included

age and a combination of three other predictor variables to obtain the best model fit. The

events-based variables were not included in the models for the first notifications (j = 1) sub-

sample because, in almost all cases, no events for the subject of the notification were recorded

prior to the first notification, so these variables were all equal to zero. Events may have been

recorded for other individuals in the family network, and these were included in the network-

based predictor variables (see Methods).

The second method, which we applied to the first notifications (j = 1) subsample, was to fit

single-split classification trees (i.e. tree depth = 1) using estimated concern as the response var-

iable and a single predictor variable. Fitting such a tree is equivalent to finding a threshold

value for a single predictor variable, with observations above the threshold (referred to as the

high-risk group) predicted to have high estimated concern, and those below threshold

(referred to as the low-risk group), as low estimated concern. We used K-fold cross-validation

to fit classification trees. Because of the large sample size and minimal tree depth, all K = 10

trees always produced identical thresholds. For each predictor variable, we calculated the pro-

portion of children with high estimated concern in the high-risk group (the positive predictive

value) and in the low-risk group (the false omission rate), in each age bracket. This analysis

allowed us to investigate the statistical influence of individual predictor variables. All analysis

was carried out using Matlab (2017a) using the fitglm, fitctree and crossval routines.

Ethics

This project was given ethics approval by the Ministry of Social Development (MSD), New

Zealand. All data were fully anonymized before being accessed by the authors by removing

names, randomly adjusting dates of birth by up to 7 days and removing any findings of suicide

or self-harm. During the model development and analysis stage of the project, regular meet-

ings were held between the authors, social workers and leadership personnel at the MSD and

Oranga Tamariki, the Ministry for Children. The project was guided throughout by an inde-

pendent ethics advisory group representing social workers and the Indigenous Māori commu-

nity. This group consisted of Dr Lindsey Te Ata o Tu MacDonald (Senior Lecturer in Political

Science at the University of Canterbury, Indigenous studies researcher, past Chair of the Uni-

versity of Canterbury Human Ethics Committee, and Chair of the pro bono New Zealand Eth-

ics Committee), Dr Dan Hikuroa (Senior Lecturer in Māori and Pacific Studies at the

University of Auckland, Mātauranga Māori researcher, and past director of Ngā Pae o te Māra-

matanga), and Dr Mary Nash (life member of the Aotearoa New Zealand Association of Social

Workers, and co-editor of Social Work Theories in Action, Jessica Kingsley publishers 2005).

The scope of the ethics advisory group was to provide feedback on data storage and handling,

study design, interim project reports and any other aspects of the project. All comments and

recommendations were acted on immediately by the researchers. The final version of the man-

uscript was reviewed and approved by the Chief Analytics Officer at MSD (Matthew Spencer)

and the General Manager of Oranga Tamariki, the Ministry for Children (Vasantha

Krishnan).

Results

For all three samples (all notifications, first notifications, subsequent notifications), the best fit-

ting model used all available predictor variables, but there was always a four-variable model

that gave an almost equally good fit (see Table 2). When used individually in conjunction with

age, the event and network variables were positively correlated with estimated concern,

whereas age was negatively correlated (see S1–S3 Tables). For the complete dataset of all
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notifications and for the subsequent notifications subsample, including network-based predic-

tor variables using recorded relationships improved the ROC score only slightly, by 0.011 and

0.008 respectively, relative to using events-based predictor variables only. (Recall that it is not

possible to use only events-based predictor variables for the first notifications subsample.) For

all three samples, additionally including predictor variables using whole-life relationships

improved the ROC score by a larger amount, by between 0.0017 and 0.042. Using AIC instead

of the ROC score to evaluate model performance shows a similar pattern (see S1–S3 Tables).

This shows that including family network information using the data available to child protec-

tion services at the time of a notification only marginally improves model accuracy. However,

if close family relationships can be obtained or inferred from birth records and combined with

child protection services data, this information has much higher predictive power. The model

was statistically well calibrated and had very similar error rates across the main gender and

ethnicity groups (see Fig B in S1 Text and S1–S3 Tables).

The best four-variable model for the full sample (all notifications) had a ROC score of

0.672. In comparison, the model of Rea and Erasmus [40] used the same definition of esti-

mated concern as is used here and had a ROC score of 0.75 using 17 predictor variables

(selected out of many more tested predictor variables). The Allegheny County model of [4]

had a ROC score of 0.77 using 112 predictor variables (selected out of a total of more than 800

tested predictor variables). This model used a similar response variable to the one used here,

Table 2. Models using whole-life relationships are always better than those without whole-life relationships. Results for selected logistic regression models for esti-

mated concern. Columns show the dataset used, the predictor variables included (see Table 1 for definitions), the number of predictor variables and the ROC score. For

each dataset, results are shown for the best overall model (i.e. highest ROC score), the best four-variable model, and the best model that does not have any whole-life net-

work predictor variables. Note that the model using events-based predictor variables only was not applied to the first notifications subsample as these predictor variables

are all equal to zero (see Methods).

Sample Predictor variables

(excl. age)

Number of

predictors

ROC

score

Comments

All notifications

(N = 1,113,858, 271,593 unique

children)

All 12 0.675 Best model

nWithContactW

nNotes

nTargetsRecent

4 0.672 Best four variable model

nWithNoteR

nNotes

nTargetsRecent

4 0.650 Best four variable model using events and recorded relationship

predictors only

nTargets

nNotess

nNotesRecent

4 0.639 Best four variable model using events predictors only

First notifications

(N = 200,770, 200,770 unique

children)

All 8 0.636 Best model

nWithNoteW

nNeighsR

NWithNoteR

4 0.635 Best four variable model

nNeighsR

nAbusersR

nWithNoteR

4 0.593 Best four variable model using recorded relationship predictors only

Subsequent notifications

(N = 913,088, 196,854 unique

children)

All 12 0.657 Best model

nWithTargetW

nWithNoteR

nTargetsRecent

4 0.653 Best four variable model

nWithTargetR

nNotess

nTargetsRecent

4 0.636 Best four variable model using events and recorded relationship

predictors only

nTargets

nTargetsRecent

nNotes

4 0.628 Best four variable model using events predictors only

https://doi.org/10.1371/journal.pone.0224554.t002
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based on the occurrence of certain events (re-referral or placement in foster care) within a

two-year window following an initial referral. The model of Vaithianathan et al. [1] had a

ROC score of 0.76 using 132 predictor variables (selected out of a total of 224 tested predictor

variables). This model used a stricter definition of high estimated concern that required a sub-

stantiated finding of maltreatment. Most of the predictor variables used in these models were

not available in the current dataset. Our aim was, therefore, not to produce a model with oper-

ational levels of accuracy, but to test whether the inclusion of family network information

could improve model performance.

For each predictor variable and each age group, we compared the incidence rate of high

estimated concern among individuals with a high value (above threshold) of the predictor vari-

able, with the incidence rate among individuals with a low value of the variable (Fig 2). Regard-

less of which network variable was selected, using a predictor variable from the whole-life

network always identified high-risk groups more effectively (higher positive predictive value

and lower false omission rate) than using the equivalent predictor variable from the recorded

network. In addition, the high-risk groups were larger when using whole-life relationships,

which means they are more likely to be useful for identifying risk factors in practice (higher

true positive rate). As an example, children who had a recorded relationship with an individual

with at least one prior intervention or finding of maltreatment constituted 10% of the sample

and had a risk of high estimated concern that was 5–10 percentage points above the baseline

for the sample as a whole (Fig 2B, blue solid). In comparison, using whole-life relationships

instead of recorded relationships gave 20% of the sample, and a risk that was 10–15 percentage

points above baseline (Fig 2B, red solid).

Discussion

We have investigated the effect of including information about a child’s immediate family net-

work on the effectiveness of predictive risk models used by child protection services. Most

existing models in the child protection area use variables relating to specific family members,

Fig 2. Whole-life relationships are consistently better than recorded relationships for identifying high-risk groups. Each panel shows the incidence rate of

high estimated concern when children are split into two groups according to a threshold value (determined by a single-split classification tree) of a single

network-based predictor variable at the time of their first notification. Above each graph is shown the predictor variable being used (see Table 1 for

definitions), the threshold value used to group the children, and the proportion of children in the above-threshold (high-risk) group. The difference in the

incidence rate between the high-risk and low-risk groups is always greater using whole-life relationships (red) than using recorded relationships (blue).

https://doi.org/10.1371/journal.pone.0224554.g002
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for example demographic data and previous history of the mother, father, or other individuals

named in the notification. For example, the Allegheny Family Screening Tool [4] included pre-

dictor variables such as the age of the parents and the number of previous referrals involving

them. A key advantage of our approach is that it uses novel relationship data to construct each

individual child’s unique family network, rather than identifying specific individuals as being

influential a priori. This allows the model to take into account potentially influential individu-

als in the child’s immediate or extended network that do not fit into a pre-defined role such as

mother, father or parent. Our results show that including information about a child’s family

network can improve the efficacy of predictive risk models. The models we fitted have far

fewer predictor variables than other published models but comparable accuracy [1,4,40]. The

aim of the study was not to develop an operational model, but to show that existing models

could be improved by including this additional information. As with any predictive tool, this

would need to be rigorously tested to assess its acceptability and usefulness to social workers in

their regular practice, as well as to track its effectiveness and any unintended consequences [5].

We restricted our analysis to a child’s immediate family network, i.e. individuals with

whom the child has a direct documented relationship. In our initial data exploration, we also

investigated extended networks, i.e. individuals who are connected to the child via a chain of two

or three relationships. Preliminary results indicated that this additional layer of complexity did

not add to the model’s predictive power, so we excluded it. Nevertheless, the data and model

framework allow information from extended networks to be included in the future if desired.

We tested two alternative ways of capturing information about a child’s family network: (i)

using the relationship data in the Ministry for Social Development dataset, which was reason-

ably comprehensive but generally only recorded data after an initial notification; (ii) using

whole-life relationships, which are a subset of the relationship data (parent/child, sibling and

half sibling relationships only), but which were assumed to be available at the time of the first

notification. Models including network variables based on whole-life relationships were gener-

ally more accurate than models that did not include them. This effect was clearest in the first

notifications subsample, in which few or no relationships were typically recorded (e.g. Fig 1A),

and hence the recorded network variables contained very little information. In many cases, the

child had family members that were known, at the time of the notification, to have instigated

other abusive relationships and/or had prior involvement with child protection services, but

whose relationship with the child had not yet been recorded (e.g. individual 4 in Fig 1A). The

whole-life relationship variables allowed some of this information to be included in the model

(e.g. Fig 1D) and consequently improved accuracy.

It is not surprising that having family members or social contacts who have had some prior

involvement with child protection services or some history of abuse, is a risk factor, but our

models rigorously quantified this effect. More importantly, our results show that this informa-

tion is much more useful if social workers have access to an up-to-date picture of a child’s fam-

ily network at the time a decision is taken about whether further investigation is warranted.

This is particularly true for the crucial first time that contact is made about a particular child,

when child protection services are not likely to have much prior information to base decisions

on. In these cases, drawing on data about a child’s family network from other sources, such as

birth records or data from other agencies, has the greatest potential to improve decision mak-

ing. New Zealand has a national database (the integrated data infrastructure) that contains

data about education, income, benefits, migration, justice and health, sourced from several

government agencies and non-government organisations [41]. This database includes birth

records and close family relationships and so contains the information needed to construct the

whole-life networks, although we recognize that linking this information to child protection

services data may not be straightforward. New Zealand is a world-leader in this regard: most
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other countries do not have a comprehensive national database linking data from multiple

government agencies [46]. This is partly due to the inherently bigger challenges many coun-

tries face in doing this, for example larger population size, or a decentralized administration

where relevant social services are devolved into state or provincial jurisdictions. Our results

show that linked databases have the potential to improve the performance of predictive tools

and should provide additional impetus for countries to invest in national data infrastructure.

Nevertheless, a model of the type we have developed could be implemented without a national

data infrastructure as comprehensive as New Zealand’s. The minimum that would be needed

in practice is for child protection services to have access to a birth registry which identifies

parents and children using a common unique identifier, such as a national social security

number or inland revenue number.

Predictive risk models are rightly viewed with scepticism by many practitioners, particu-

larly when they resemble black boxes[39]. A major limitation of the modelling framework

used here is that it is based on a response variable, estimated concern, that reduces a complex

array of factors and events in children’s lives, filtered through biases in reporting, decision-

making and recording, to a single binary variable. Obtaining suitable response variables for

maltreatment of children is an extremely difficult task, not least because child protection ser-

vices have an ethical duty to prevent harm, which makes it challenging to assess the effect of

specific interventions[4]. However, it is clear that further work remains to be done in combat-

ing systemic biases and obtaining a more nuanced measurement of estimated concern that bet-

ter distinguishes cases where intervention by child protection services was or was not required.

One criticism of predictive risk models is that they risk entrenching or amplifying existing

biases and disparities between groups. There is a particular danger of a self-reinforcing feed-

back loop when decision-making is informed by models that use data partly concerning previ-

ous decisions about the same child or family. To help address this, we excluded information

about previous referrals from the model. The use of the predictive risk model should be strictly

limited in scope to reduce the potential for confirmation bias [19]. In our case, we would

strongly recommend that the risk score is only used to inform the initial screening decision

about whether to refer a notification for further investigation, and is not used as justification

for any care and protection related decision, nor shared with the case worker or with any third

party (see also sec. 2 of S1 Text for ethical guidelines). A practical example where a model of

this sort could be useful is where a social worker makes an initial assessment that, based on

presenting information received by the national call centre, the case does not need to be

referred for further investigation. However, the predictive model produces a high risk score

and this alerts the social workers to a relationship between the child concerned and an individ-

ual with a documented history of maltreatment. This may prompt the social worker to revisit

their initial assessment.
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