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Abstract

In this paper, we prove that if a multifunction Φ : T → X from a first
countable space T into a space X with property (∗) is usc at a point
t0 ∈ T , then the active boundary of Φ at t0 is compact. Moreover, we
also show that if X is an angelic space then the active boundary of Φ
at t0 is the smallest kernel of Φ at t0.

1 Introduction

Let T and X be topological spaces and Φ : T → X a multifunction. We
say that Φ is upper semicontinuous , (abbreviated as a usc), at t0 ∈ T if for
each open subset V containing Φ(t0) there exists a neighbourhood U of t0
such that Φ(U) ⊆ V and we shall call a subset K ⊆ Φ(t0) a kernel [2] of Φ
at t0, if for every open set V containing K there is a neighbourhood U of t0
such that Φ(U) \ Φ(t0) ⊆ V . Obviously, Φ(t0) is a kernel for Φ at t0 and so
the interest here is in finding smaller kernels. Choquet stated in [2], without
proof, the following result.

Theorem 1.1. Let Φ : T → X be a multifunction from a metric space T
into a metric space X. If Φ is usc at t0, then Φ has a compact kernel at t0.
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Nearly 30 years later Dolecki [3] improved Theorem 1.1 and provided a natu-
ral candidate for a kernel of any multifunction. This candidate kernel is called
the active boundary of Φ at t0 ∈ T , denoted by FracΦ(t0), and defined by:

FracΦ(t0) ≡
⋂

U∈U(t0) Φ(U) \ Φ(t0),

where U(t0) denotes the set of all neighbourhoods of t0.

Theorem 1.2. (Choquet-Dolecki Theorem)
Let Φ be a multifunction from a topological space T into a metric space X.
If t0 ∈ T has a countable local base and Φ is usc at t0 then FracΦ(t0) is
compact and a kernel for Φ at t0.

The proofs of both Theorem 1.1 and Theorem 1.2 rely on the following
simple lemma [1].

Lemma 1.3. Let Φ be a multifunction from a topological space T into a
Hausdorff space X. If {Un : n ∈ N} is a local base for t0 ∈ T and Φ is usc
at t0, then each sequence (xn : n ∈ N) in X with xn ∈ Φ(Un)\Φ(t0) has a
cluster point in Φ(t0). In particular, if x = lim

n→∞xn and xn ∈ Φ(Un)\Φ(t0)

then x ∈ Φ(t0)

Theorem 1.2 has subsequently been refined in terms of the following def-
initions. A space X is angelic [8] if (i) each relatively countably compact
subset (i.e. every sequence of distinct elements of the set has a cluster point)
of X is compact; (ii) each point in the closure of a relatively compact subset A
of X is the limit of some sequence in A, and X is called Dieudonné-complete
[7] if it can be embeded as a closed subspace of the Cartesian product of
a family of metrizable spaces. It was shown in [6] that if a multifunction
Φ : T → X from a first countable space T into a Dieudonné-complete space
X is usc at t0 and Φ(t0) is closed then FracΦ(t0) is compact and a kernel
for Φ at t0. In addition, it was shown in [9] that FracΦ(t0) is compact and
a kernel for Φ at t0 when X is angelic.

A common generalization of Dieudonné-completeness and angelicness is
the property (∗). The main purpose of this note is to study kernels and active
boundaries of multifunctions that map into spaces possessing property (∗).
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2 Main results

Let X be a topological space. Consider the following property (∗) of X:

(∗): The closure A of each relatively countably compact subset A of X is
compact.

Property (∗) is productive and hereditary, with respect to closed subsets,
preserved by perfect maps and possessed by all metrizable topological spaces.

Proposition 2.1. Let X be a regular Hausdorff space possessing property
(∗), and let {An : n ∈ N} be a decreasing sequence of non-empty subsets of
X. If each sequence (an : n ∈ N) with an ∈ An has a cluster point in X,
then

⋂∞
n=1 An is (non-empty) compact and for each open set W containing⋂∞

n=1 An there exists a n0 ∈ N so that An0 ⊆ W .

Proof. Let A = {a ∈ X : a ∈ ⋂∞
m=1 {ak : k ≥ m} and an ∈ An}. Clearly,

from the regularity of X we have that ∅ 	= A ⊆ ⋂∞
n=1 An ⊆ A. So to show

that
⋂∞

n=1 An is compact it suffices to show that A is relatively countably
compact. To this end, let (an : n ∈ N) be a sequence in A. For each n ∈ N,
choose a sequence (ank : k ∈ N) with ank ∈ Ak so that an is a cluster point of
(ank : k ∈ N). Let

B = {ank : 1 ≤ n ≤ k, (n, k) ∈ N × N}.

We claim that B is relatively countably compact. Indeed, let {bn : n ∈
N} ⊆ B be an arbitrary sequence of distinct elements of B. Since for each
n ∈ N, {b ∈ B : b 	∈ An} is finite we see that the sequence (bn : n ∈ N)
must eventually pass down through the sets An. In particular this means
that we may extract a subsequence (bnk

: k ∈ N) of (bn : n ∈ N) so that
bnk

∈ Ak. Hence by the hypothesis (bnk
: k ∈ N) has a cluster point, and so

B is relatively countably compact. This in turn implies that the sequence
(an : n ∈ N) has a cluster point, since {an : n ∈ N} ⊆ B. This shows that
A is relatively countably compact and hence

⋂∞
n=1 An is compact. The proof

of the last claim of the proposition is trivial.

If X is a topological space, then the Gδ-topology on X is the topology
generated by taking all the Gδ-sets in X as a base. The following lemma is
contained in [9].
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Lemma 2.2. Let Φ : T → X be a multifunction from a topological space T
into a regular space X. If t0 has a countable local base and Φ is usc at t0,
with Φ(t0) closed in the Gδ-topology then FracΦ(t0) ⊆ Φ(t0).

Theorem 2.3. Let Φ be a multifunction from a topological space T into a
regular Hausdorff space X with property (∗). If Φ is usc at t0 ∈ T , t0 has a
countable local base and Φ(t0) is closed in the Gδ-topology then FracΦ(t0) is
compact and a kernel for Φ at t0.

Proof. This follows directly from Lemma 2.2, Lemma 1.3 and Proposition 2.1
applied to the sets An = Φ(Un) \ Φ(t0), where {Un : n ∈ N} is a countable
monotonic decreasing local base for t0.

Next we will improve both Theorem 4.1 of [6] and Theorem 1 of [9].

Proposition 2.4. Let X be a regular Hausdorff angelic space, and let {An :
n ∈ N} be a decreasing sequence of non-empty subsets of X. If each sequence
(an : n ∈ N) with an ∈ An has a cluster point in X, then

⋂∞
n=1 An is (non-

empty) compact and
⋂∞

n=1 An = {a : a = lim
n→∞ an, an ∈ An}.

Proof. ¿From Proposition 2.1, it suffices to show that:⋂∞
n=1 An = {a : a = lim

n→∞ an, an ∈ An}.

Let A = {a ∈ X : a ∈ ⋂∞
m=1 {ak : k ≥ m} and an ∈ An}. As in Proposi-

tion 2.1, A =
⋂∞

n=1 An. So consider a ∈ A. If a ∈ ⋂∞
n=1 An, then the result

is obvious, and so we will consider the case a 	∈ ⋂∞
n=1 An. In this situation

there is a n0 ∈ N so that a 	∈ An for all n ≥ n0. Since X is angelic there
exists a sequence {an : n ∈ N} ⊆ A such that a = lim

n→∞ an. For each n ∈ N,

choose a sequence (ank : k ∈ N) with ank ∈ Ak so that an is a cluster point of
(ank : k ∈ N). Let bnk = ank+n0

and

B = {bnk : 1 ≤ n ≤ k, (n, k) ∈ N × N}.
Then a 	∈ B, but a 	∈ B, since {an : n ∈ N} ⊆ B. As shown in Proposi-
tion 2.1, B is relatively countably compact. Hence, there exists a sequence
of distinct elements (a′n : n ∈ N) of B so that a = lim

n→∞ a′n. After, possibly

passing to a subsequence (and re-labeling), we may assume that a′n ∈ An.
This completes the proof.
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Theorem 2.5. Let Φ : T → X be a multifunction from a topological space
T into a regular Hausdorff angelic space X. If Φ is usc at t0 and t0 has a
countable local base, then FracΦ(t0) is compact and is the smallest kernel of
Φ(t0) at t0.

Proof. That FracΦ(t0) is compact and a kernel follows directly from Propo-
sition 2.4 and Lemma 1.3. So we are left with showing that FracΦ(t0) is the
smallest kernel for Φ. To this end, let K be an arbitrary kernel of Φ at t0,
and let {Un : n ∈ N} be a countable monotonic decreasing local base for t0.
Assume that there is some point a ∈ FracΦ(t0)\K, then by Proposition 2.4,
there is a sequence (an : n ∈ N) with an ∈ Φ(Un)\Φ(t0) such that lim

n→∞ an = a.

Set B = {a}⋃{an : n ∈ N}. Then B is closed and disjoint from K. Since
K is a kernel there is some n0 ∈ N such that Φ(Un0) \ Φ(t0) ⊆ (X \ B). It
follows then that an0 	∈ B, which is impossible. Hence FracΦ(t0) ⊆ K for
every kernel K of Φ at t0. This completes the proof.
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