On the Choquet-Dolecki Theorem

Jiling Cao, Warren Moors and Ivan Reilly

Department of Mathematics The University of Auckland Private Bag 92019 Auckland 1, New Zealand

Abstract

In this paper, we prove that if a multifunction $\Phi : T \to X$ from a first countable space T into a space X with property (*) is use at a point $t_0 \in T$, then the active boundary of Φ at t_0 is compact. Moreover, we also show that if X is an angelic space then the active boundary of Φ at t_0 is the smallest kernel of Φ at t_0 .

1 Introduction

Let T and X be topological spaces and $\Phi : T \to X$ a multifunction. We say that Φ is upper semicontinuous, (abbreviated as a usc), at $t_0 \in T$ if for each open subset V containing $\Phi(t_0)$ there exists a neighbourhood U of t_0 such that $\Phi(U) \subseteq V$ and we shall call a subset $K \subseteq \Phi(t_0)$ a kernel [2] of Φ at t_0 , if for every open set V containing K there is a neighbourhood U of t_0 such that $\Phi(U) \setminus \Phi(t_0) \subseteq V$. Obviously, $\Phi(t_0)$ is a kernel for Φ at t_0 and so the interest here is in finding smaller kernels. Choquet stated in [2], without proof, the following result.

Theorem 1.1. Let $\Phi : T \to X$ be a multifunction from a metric space T into a metric space X. If Φ is use at t_0 , then Φ has a compact kernel at t_0 .

⁰AMS (1991) Subject Classification—Primary 54C60; Secondary 54D99, 54E99.

Key Words and Phrases: Multifunction, kernel, Dieudonné-complete, angelic.

Nearly 30 years later Dolecki [3] improved Theorem 1.1 and provided a natural candidate for a kernel of any multifunction. This candidate kernel is called the *active boundary* of Φ at $t_0 \in T$, denoted by $Frac\Phi(t_0)$, and defined by:

$$Frac\Phi(t_0) \equiv \bigcap_{U \in \mathcal{U}(t_0)} \overline{\Phi(U) \setminus \Phi(t_0)},$$

where $\mathcal{U}(t_0)$ denotes the set of all neighbourhoods of t_0 .

Theorem 1.2. (Choquet-Dolecki Theorem) Let Φ be a multifunction from a topological space T into a metric space X. If $t_0 \in T$ has a countable local base and Φ is use at t_0 then $Frac\Phi(t_0)$ is compact and a kernel for Φ at t_0 .

The proofs of both Theorem 1.1 and Theorem 1.2 rely on the following simple lemma [1].

Lemma 1.3. Let Φ be a multifunction from a topological space T into a Hausdorff space X. If $\{U_n : n \in \mathbf{N}\}$ is a local base for $t_0 \in T$ and Φ is use at t_0 , then each sequence $(x_n : n \in \mathbf{N})$ in X with $x_n \in \Phi(U_n) \setminus \Phi(t_0)$ has a cluster point in $\Phi(t_0)$. In particular, if $x = \lim_{n \to \infty} x_n$ and $x_n \in \Phi(U_n) \setminus \Phi(t_0)$ then $x \in \Phi(t_0)$

Theorem 1.2 has subsequently been refined in terms of the following definitions. A space X is angelic [8] if (i) each relatively countably compact subset (i.e. every sequence of distinct elements of the set has a cluster point) of X is compact; (ii) each point in the closure of a relatively compact subset A of X is the limit of some sequence in A, and X is called *Dieudonné-complete* [7] if it can be embedded as a closed subspace of the Cartesian product of a family of metrizable spaces. It was shown in [6] that if a multifunction $\Phi: T \to X$ from a first countable space T into a Dieudonné-complete space X is use at t_0 and $\Phi(t_0)$ is closed then $Frac\Phi(t_0)$ is compact and a kernel for Φ at t_0 . In addition, it was shown in [9] that $Frac\Phi(t_0)$ is compact and a kernel for Φ at t_0 when X is angelic.

A common generalization of Dieudonné-completeness and angelicness is the property (*). The main purpose of this note is to study kernels and active boundaries of multifunctions that map into spaces possessing property (*).

2 Main results

Let X be a topological space. Consider the following property (*) of X:

(*): The closure \overline{A} of each relatively countably compact subset A of X is compact.

Property (*) is productive and hereditary, with respect to closed subsets, preserved by perfect maps and possessed by all metrizable topological spaces.

Proposition 2.1. Let X be a regular Hausdorff space possessing property (*), and let $\{A_n : n \in \mathbf{N}\}$ be a decreasing sequence of non-empty subsets of X. If each sequence $(a_n : n \in \mathbf{N})$ with $a_n \in A_n$ has a cluster point in X, then $\bigcap_{n=1}^{\infty} \overline{A_n}$ is (non-empty) compact and for each open set W containing $\bigcap_{n=1}^{\infty} \overline{A_n}$ there exists a $n_0 \in \mathbf{N}$ so that $A_{n_0} \subseteq W$.

Proof. Let $A = \{a \in X : a \in \bigcap_{m=1}^{\infty} \overline{\{a_k : k \ge m\}} \text{ and } a_n \in A_n\}$. Clearly, from the regularity of X we have that $\emptyset \ne A \subseteq \bigcap_{n=1}^{\infty} \overline{A_n} \subseteq \overline{A}$. So to show that $\bigcap_{n=1}^{\infty} \overline{A_n}$ is compact it suffices to show that A is relatively countably compact. To this end, let $(a^n : n \in \mathbf{N})$ be a sequence in A. For each $n \in \mathbf{N}$, choose a sequence $(a_k^n : k \in \mathbf{N})$ with $a_k^n \in A_k$ so that a^n is a cluster point of $(a_k^n : k \in \mathbf{N})$. Let

$$B = \{a_k^n : 1 \le n \le k, (n,k) \in \mathbf{N} \times \mathbf{N}\}.$$

We claim that B is relatively countably compact. Indeed, let $\{b_n : n \in \mathbf{N}\} \subseteq B$ be an arbitrary sequence of distinct elements of B. Since for each $n \in \mathbf{N}, \{b \in B : b \notin A_n\}$ is finite we see that the sequence $(b_n : n \in \mathbf{N})$ must eventually pass down through the sets A_n . In particular this means that we may extract a subsequence $(b_{n_k} : k \in \mathbf{N})$ of $(b_n : n \in \mathbf{N})$ so that $b_{n_k} \in A_k$. Hence by the hypothesis $(b_{n_k} : k \in \mathbf{N})$ has a cluster point, and so B is relatively countably compact. This in turn implies that the sequence $(a^n : n \in \mathbf{N})$ has a cluster point, since $\{a^n : n \in \mathbf{N}\} \subseteq \overline{B}$. This shows that A is relatively countably compact and hence $\bigcap_{n=1}^{\infty} \overline{A_n}$ is compact. The proof of the last claim of the proposition is trivial.

If X is a topological space, then the G_{δ} -topology on X is the topology generated by taking all the G_{δ} -sets in X as a base. The following lemma is contained in [9].

Lemma 2.2. Let $\Phi: T \to X$ be a multifunction from a topological space T into a regular space X. If t_0 has a countable local base and Φ is use at t_0 , with $\Phi(t_0)$ closed in the G_{δ} -topology then $Frac\Phi(t_0) \subseteq \Phi(t_0)$.

Theorem 2.3. Let Φ be a multifunction from a topological space T into a regular Hausdorff space X with property (*). If Φ is use at $t_0 \in T$, t_0 has a countable local base and $\Phi(t_0)$ is closed in the G_{δ} -topology then $Frac\Phi(t_0)$ is compact and a kernel for Φ at t_0 .

Proof. This follows directly from Lemma 2.2, Lemma 1.3 and Proposition 2.1 applied to the sets $A_n = \Phi(U_n) \setminus \Phi(t_0)$, where $\{U_n : n \in \mathbf{N}\}$ is a countable monotonic decreasing local base for t_0 .

Next we will improve both Theorem 4.1 of [6] and Theorem 1 of [9].

Proposition 2.4. Let X be a regular Hausdorff angelic space, and let $\{A_n : n \in \mathbb{N}\}\$ be a decreasing sequence of non-empty subsets of X. If each sequence $(a_n : n \in \mathbb{N})\$ with $a_n \in A_n$ has a cluster point in X, then $\bigcap_{n=1}^{\infty} \overline{A_n}$ is (non-empty) compact and $\bigcap_{n=1}^{\infty} \overline{A_n} = \{a : a = \lim_{n \to \infty} a_n, a_n \in A_n\}.$

Proof. From Proposition 2.1, it suffices to show that:

$$\bigcap_{n=1}^{\infty} \overline{A_n} = \{a : a = \lim_{n \to \infty} a_n, a_n \in A_n\}.$$

Let $A = \{a \in X : a \in \bigcap_{m=1}^{\infty} \overline{\{a_k : k \ge m\}} \text{ and } a_n \in A_n\}$. As in Proposition 2.1, $\overline{A} = \bigcap_{n=1}^{\infty} \overline{A_n}$. So consider $a \in \overline{A}$. If $a \in \bigcap_{n=1}^{\infty} A_n$, then the result is obvious, and so we will consider the case $a \notin \bigcap_{n=1}^{\infty} A_n$. In this situation there is a $n_0 \in \mathbb{N}$ so that $a \notin A_n$ for all $n \ge n_0$. Since X is angelic there exists a sequence $\{a^n : n \in \mathbb{N}\} \subseteq A$ such that $a = \lim_{n \to \infty} a^n$. For each $n \in \mathbb{N}$, choose a sequence $(a_k^n : k \in \mathbb{N})$ with $a_k^n \in A_k$ so that a^n is a cluster point of $(a_k^n : k \in \mathbb{N})$. Let $b_k^n = a_{k+n_0}^n$ and

$$B = \{b_k^n : 1 \le n \le k, (n,k) \in \mathbf{N} \times \mathbf{N}\}.$$

Then $a \notin B$, but $a \notin \overline{B}$, since $\{a^n : n \in \mathbf{N}\} \subseteq \overline{B}$. As shown in Proposition 2.1, B is relatively countably compact. Hence, there exists a sequence of distinct elements $(a'_n : n \in \mathbf{N})$ of B so that $a = \lim_{n \to \infty} a'_n$. After, possibly passing to a subsequence (and re-labeling), we may assume that $a'_n \in A_n$. This completes the proof.

Theorem 2.5. Let $\Phi : T \to X$ be a multifunction from a topological space T into a regular Hausdorff angelic space X. If Φ is use at t_0 and t_0 has a countable local base, then $Frac\Phi(t_0)$ is compact and is the smallest kernel of $\Phi(t_0)$ at t_0 .

Proof. That $Frac\Phi(t_0)$ is compact and a kernel follows directly from Proposition 2.4 and Lemma 1.3. So we are left with showing that $Frac\Phi(t_0)$ is the smallest kernel for Φ . To this end, let K be an arbitrary kernel of Φ at t_0 , and let $\{U_n : n \in \mathbf{N}\}$ be a countable monotonic decreasing local base for t_0 . Assume that there is some point $a \in Frac\Phi(t_0) \setminus K$, then by Proposition 2.4, there is a sequence $(a_n : n \in \mathbf{N})$ with $a_n \in \Phi(U_n) \setminus \Phi(t_0)$ such that $\lim_{n \to \infty} a_n = a$. Set $B = \{a\} \cup \{a_n : n \in \mathbf{N}\}$. Then B is closed and disjoint from K. Since K is a kernel there is some $n_0 \in \mathbf{N}$ such that $\Phi(U_{n_0}) \setminus \Phi(t_0) \subseteq (X \setminus B)$. It follows then that $a_{n_0} \notin B$, which is impossible. Hence $Frac\Phi(t_0) \subseteq K$ for every kernel K of Φ at t_0 . This completes the proof.

References

- [1] G. Beer, *Topologies on closed and closed convex sets*, Kluwer Academic Publishers, 1993.
- [2] G. Choquet, *Convergences*, Ann. Univ. Grenoble **23** (1947-48), 57-112.
- [3] S. Dolecki, *Constraints, stability and moduli of semicontinuity*, Prepint prepared for the 2nd IFAC Symposium, Warwick, 1977.
- [4] S. Dolecki, *Remarks on semicontinuity*, Bull. Acad. Polon. Sci. Ser. Sci. Math., 25 (1977), 863-867.
- [5] S. Dolecki and S. Rolewicz, Metric characterizations of upper semicontinuity, J. Math. Anal. Appl., 69 (1979), 146-182.
- [6] S. Dolecki and A. Lechicki, On the structure of upper semicontinuity, J. Math. Anal. Appl., 88 (1982), 547-554.
- [7] R. Engelking, *General topology*, Polish Scientific Publisher, Warszawa, 1977.
- [8] K. Floret, Weakly compact sets, Lecture Notes in Math., 801, Springer, 1980.

[9] R. Hansell, J. Jayne, I. Labuda and C. Rogers, Boundaries of and selectors for upper semicontiunous multi-valued maps, Math. Z., 189 (1985), 297-318.