
Using Neuroevolved Binary Neural Networks to

solve reinforcement learning environments

Raul Valencia

School of Computer Science

University of Auckland

New Zealand, 1010

Chiu-Wing Sham

School of Computer Science

University of Auckland

New Zealand, 1010

Oliver Sinnen

Department of Electrical,

Computer and Software Engineering

University of Auckland

New Zealand, 1023

Abstract—With the explosive interest in the utilization of
Neural Networks, several approaches have taken place to make
them faster, more accurate or power efficient; one technique used
to simplify inference models is the utilization of binary represen-
tations for weights, activations, inputs and outputs. This paper
presents a novel approach to train from scratch Binary Neural
Networks using neuroevolution as its base technique (gradient de-
scent free), to then apply such results to standard Reinforcement
Learning environments tested in the OpenAI Gym. The results
and code can be found in https://github.com/rval735/BiSUNA.

Index Terms—Neuroevolution, binary neural networks,
BiSUNA, discrete optimization.

I. INTRODUCTION

The most frequent obstacle by the approach taken by binary

neural network (BNN) publications to date is the utilization

of gradient descent, given that the algorithm was originally

designed to deal with continuous values, not with discrete

spaces. NN can give promising results with Int4 [?] or binary

in inference but not training. Even when it has been shown

that precision reduction (Float32 -> Float16 -> Int16) can

train NN at a comparable precision [1], the problem resides in

the adaptation of a method originally designed for continuous

contexts into a different set of values that create instabilities

at time of training.

In order to tackle that problem, it is necessary to take a

completely different approach to how a BNN1) are trained,

which is the main proposition from this paper, expose a new

methodology to obtain neural networks that use binary values

in weights, activations, operations and is completely gradient

free, which brings us to the brief summary of changes made to

the published neuroevolutionary algorithm named SUNA [3]:

• Change floating point to unsigned short int values

• Use only logic operations instead of arithmetic functions

• Calculate gaps between individuals with hamming dis-

tance

With that context, this paper is organized as follows: a

brief introduction to alternative algorithms based on evolution

called ”TWEANN” is presented, with special focus on SUNA

given its learning generalization characteristics. Followed by

the main contribution of this paper: Binary SUNA (BiSUNA),

which is then tested on three OpenAI Gym environments, with

a slight description and experiments that compares how these

1For a richer explanation on how BNN work, check [2]

binary extensions solve those problems. Finally, a conclusion

is outlined with further research needed to explore the possi-

bilities of this new discovery.

II. NEUROEVOLUTION

In general terms, Evolutionary Algorithms (EAs) are op-

timization procedures based on population metaheuristics,

where proposed solutions to a problem are defined as individu-

als in that group, then subsequent iterated modifications of that

population commonly leads to an optimal result. Qualifications

of an individual to the environment is graded by design, to

which a mechanism of commonly known biological evolution

is applied to each character to form a new set in subsequent

trials of that group.

When EA clash with traditional NN, they form a new

area of research that combines the generalization strengths of

artificial NN with the search capabilities of evolution, named

as Neuroevolution. One of the many advantages of bio-inspired

algorithms is their ability of global optima search in complex

multidimensional spaces, and when they are used to train deep

NN, their utilization shines [4].

One more algorithm that deserves further explanation is

SUNA, which stands for Spectrum-diverse Unified Neuroevo-

lution Architecture [3], a recent addition to the TWEANN

family of algorithms that work towards the creation of neural

network topologies using mutation operators, starting from a

minimal structure and selecting those fittest individuals to the

problem at hand.

A. SUNA’s Unified Neural Model

Published in 2016, SUNA is a novel TWEANN algo-

rithm with important generalization characteristics: neurons

with different time scales, neurons that inhibit/excite others,

synaptic plasticity and feedback loops; as an optimization

algorithm, it works with a wide range of problems without

any prior knowledge. In its original paper [3], it demonstrated

how to solve reinforcement learning examples, like Mountain

Car, (Non-Markov) Double Pole Balancing, Multiplexer and

Function approximation, evolving populations from scratch

and resolving those problems with better scores than NEAT

[5], a widely popular TWEANN algorithm.

The main improvement of SUNA’s paper was the creation

of a TWEANN algorithm that joined multiple characteristics



into one simple procedure with the capacity to generalize

onto many environments, which is the reason for the name of

Unified Neural Model; in other words, it was the conjunction

of the properties described early into a single venue using

4 neuron activation types (Sigmoid, Threshold, Random and

Identity), adaptation speeds, control assignations, neuromodu-

lation and weights that can connect to previous neurons.

From the mathematical neuron model shown in Eq 1, wi is

the weight value at element i; xi the input, both are multiplied

and summed over all elements from i to n. The result is fed

into function f to obtain the partial result of that neuron υ.

In order to bring an adaptation speed, a factor is placed to

modify the current result (υ).

In Eq 2, yt−1 represents the neuron’s output at iteration

t − 1, also known as internal state. α is a constant value

assigned to that neuron at creation with the purpose of

dampening its excitation to reach a different scale neuron;

yt is the output of that element at execution t. As discussed

previously, this enables the model to have different rates of

change given certain circumstances. The second characteristic

(inhibition/excitation) is achieved using control neurons which

only activate when the stimulation exceeds the threshold as

displayed in Eq 3.

υ = f

(

n
∑

i=1

wixi

)

(1)

yt = yt−1 +
1

α
(υ − yt−1) (2)

s =

n
∑

i=0

(wicsi) with c =

{

true, s >= tr

false, otherwise
(3)

Variable csi represents the stimulation a control neuron

receives at position i; wi are weights that connect to that

neuron, to then be summed up and stored in s. The actual

control value c is triggered in case s is more than or equal

to a constant threshold tr, in any other case it will remain

inactive.

Neuromodulation is present in the architecture as con-

nections that affect other connections, which is changed as

iterations continue and individuals are evolved. With that

context, SUNA’s connections have the ability to modify one

another and change how results are propagated.

Lastly, feedback loops are added as part of mutations that

allow new connections to be randomly selected from/to any

neuron in the list, including calling the neuron itself. That

covers a general overview of how SUNA manages to include

its unified model.

III. BINARY SUNA

Experiments demonstrated SUNA’s ability in the solution

of reinforcement learning problems with the utilization of

continuous parameters as inputs/outputs; nonetheless the char-

acteristics of the algorithm are easily transformed to binary

operations that can extend its domain from floating to a

discrete space. First, equations 1 and 2 are updated as follows:

υ = popcount

(

n
∨

i=1

wi ∧ xi

)

(4)

yt = yt−1 ⊕ α ∧ (υ ⊙ yt−1) (5)

In BiSUNA, variable υ becomes a bitset with a fixed

range. The popcount function returns the number of bits

”on” in a binary word, for example 100101 would return

3. All floating point multiplications are replaced with logic

AND (∧); summation is reinstated with logic OR (∨). yt−1

is also another discrete variable with the same properties

as υ that are XNOR’ed (⊙). A substantial difference with

respect to SUNA, is the utilization of α, a variable bitset

that neurons with different firing rates use a neuron inhibitor,

which hinders/excites the lower parts of the binary set. The

last section applies logic XOR (⊕) to the result of previous

operations against yt−1.

The utilization of these operations is not arbitrary, first

with the intent to use functions that achieve a similar goal

but in a discrete environment, with simple replacements like

summations with OR, multiplications with AND. Also the

presence of XOR serves the purpose of a logic summation for

between previous values of the neuron state and new inputs

presented, whereas XNOR function serves as a moderator

of new values that must match the previous state given its

properties as an equivalence gate. This type of applications

have been shown as well in other BNN papers, for example

[6].

It is possible to graphically visualize how a single binary

neuron is connected to other elements in Fig 1. There are

multiple elements represented, xn are other neurons in the

arrangement, each of which has their own state. wn are the

weights in every of the connections that link xn to yt; state

values and weight values are bitset with values established at

compile time. Also, yt neuron has two important variables,

yt−1 and α, the first represents previous state stored in the

neuron and the second is the neuron firing rate, which has

the purpose of creating neurons that work at different scales,

performing activations given parameter α.

Fig. 1: Binary neuron representation with neuromodulation

represented as the circle thickness.



Those changes allow BiSUNA’s connections to completely

switch how information is organized, from floating point to

binary words, which in turn, replaces the need of Arithmetic

Logic Units (ALU) with only binary operations. Memory re-

duction of connections is 16 bits, given that floats need 32 bits

and unsigned short integer only 16; these subtle but important

changes could mean the difference between running BiSUNA

on a limited capabilities device (ex. ASIC/FPGA) or not. Even

some researchers have shown that power consumption, while

performing only inference, can be reduced 31x by simply

switching ALU with logic functions [7].

In terms of the evolutionary path both algorithms take,

there is no substantial change, BiSUNA’s Spectrum Diversity,

reproduction and mutation follow the same pattern as outlined

in the original publication. Those procedures only require

comparators, memory assignation and counters, which are

basic instruments of any processing unit.

BiSUNA, as its parent algorithm does, takes advantage of

a special structure named Novelty Map: a simple table that

divides individuals given a novelty metric, which is calculated

given the spectra of each individual, in other words, it counts

the type neurons it has. One distinction with SUNA resides on

the distance function used to discern between elements, where

it would normally use a squared distance between individuals,

y = (x1 − x2)
2; BiSUNA takes advantage of the hamming

distance, y = popcount(x1⊕x2), that keeps the utilization of

only logic operations in place.

A. BiSUNA Impact

BiSUNA’s main contribution stands around the adaptation of

the current implementation of SUNA to work exclusively with

binary values and operators. This paper serves as the first brick

in a bridge being looked forward to construct, where BiSUNA

is optimized to execute at the hardware level; the next natural

step is its optimization onto FPGA devices, time at which it

this algorithm will be expected to perform faster and consume

less resources.

This paper is most impactful given that, to the authors’

knowledge, there are no binary neural networks being trained

using neuroevolutionary techniques as its main search algo-

rithm, replacing the classical gradient descent used by most

NN models. Where other researchers have focused on mak-

ing marginal improvements over traditional discrete gradient

descent implementations, this work takes on a completely

newfangled approach.

One more important improvement shown is the utilization

of binary neural networks to solve reinforcement learning (RL)

problems, as shown in the next section. Most BNN publica-

tions reviewed apply their models to supervised learning, in

areas like image recognition ([6]) or motion detention ([8]).

The work presented in this paper can be generalized further in

comparison to what has been analyzed by the authors, setting

a precedence on the application of BNN to RL.

IV. EXPERIMENTS

After a technical overview of the binary extensions in

BiSUNA, this section will execute simulations provided by

the OpenAI Gym [9] for selected environments: NChain,

Duplicated Input & Copy. Each of them are going to be

introduced with a description, objectives, range of values and

results obtained with both, SUNA and BiSUNA. Also, this

is the first time these algorithms are used with a standard

reinforcement learning environment.

A. Settings

This publication uses the same configuration meta-

parameters as the original SUNA implementation for both

execution type (from [3], table III); all code is written in

C++, interfacing with OpenAI Gym via the gRPC framework.

Environments with discrete values, SUNA just clips numbers

to the closest integer, whereas BiSUNA directly reads those

as inputs; only cases that have a specific range of possible

details (ex. states between 1 . . . 5) in the action range, the NN

output is limited to what the environment considers acceptable

numbers.

Another important consideration, every environment was

repeated 10 epochs and the fastest execution time is the

one being reported. Each test ran on a Nectar VM, sim-

ilar to an AWS c5.large virtual machine (dual core, 4GB

RAM), using Ubuntu 18.04 LTS. The code used along

environment replication scripts are provided in repository

https://github.com/rval735/BiSUNA, including as well results

raw data, other RL tests and more related information.

B. NChain

This environment [10] shows the possibility to move along

a linear chain of states, with two feasible actions: stepping

forward (no points), or backwards (small reward) but returns

to the beginning. If an agent reaches the end of the chain,

it will obtain a large bonification, which can be repeated by

stepping ”forward” to the chain’s end. During tests performed,

it was noticed how both executions exceeded over 4500 points,

with an average reward of 4325.36 (BiSUNA) and 4348.60

(SUNA). In the OpenAI Gym solutions page for NChain [11],

a reported result for this test was 1029.74 ± 9.19 over a 100

episode.

C. Copy

This simple task involves the replication of symbols from

the input to the output tape. Although elementary, a trained

model has to learn the correspondence between symbols in the

observation and actions, which is translated into executing the

move right action on the input tape.

With 500 iterations, BiSUNA implementation was able to

reach a 32 score, SUNA only a maximum of 15; what is more

interesting, only BiSUNA solved it in each trial (10 epochs),

whereas SUNA did it only in 6. The longer it took to finish

the test is explained as the evolutionary algorithm tried to

increase the complexity of the population even though the

result was satisfactory for this case, which made more complex

organisms and took longer to evaluate them.



(a) Copy (b) Duplicated Input

Fig. 2: Implementation performance in Copy and DuplicatedInput. X-axis represents the number of iterations and the Y-axis

plots the best agent score obtained.

TABLE I: Results of executing Duplicated Input and Copy

with SUNA and BiSUNA. (Better result is in bold).

Duplicated Input Copy

Parameter SUNA BiSUNA SUNA BiSUNA

Iterations 1000 1000 500 500

Maximum Result 15 16 32 32

Solved out of 10 0 9 6 10

Best time (min:sec) 4:32 3:13 5:01 6:11

Worst time 10:11 12:55 5:56 7:44

D. Duplicated Input

As its name indicates, the input tape has been structured so

that it repeats values, for example (x1, x1, x1, x2, x2, x2, . . . ,

xk, xk, xk) with the expected output as (x1, x2, . . . , xk). In

this case, each input symbol is replicated 3 times, therefore,

the best reward would be obtained by writing to the tape every

third input symbol.

BiSUNA once more outperformed SUNA, reaching a solu-

tion of 16 points in 9 out of 10 trials; on the other hand, SUNA

had a maximum result of 15 in only 2 executions. As shown

in Fig 2b, this particular case, after 461 iterations, BiSUNA

solved the problem and effectively learned how to deal with

the environment, as it did with the Copy test.

V. CONCLUSION

This work provides insights on a different method the

artificial intelligence community can take when approaching

Binary Neural Networks using evolutionary principles, which

was shown as an alternative to train them while avoiding

completely the use of gradient descent. BiSUNA’s spectra

utilization for individual analysis in a population, the appli-

cation of the novelty map and pillars of a unified learning

model have shown their generalization capacity, now that the

neuroevolution principles have been applied to fully discrete

environments with binary operations. This is the first publica-

tion aimed to explore an extension to the original algorithm

that transforms floating point operations to logic functions,

confirms that agents’ behavior were not affected and even

improve for two cases, Copy and Duplicated Input tests,

provided by the OpenAI Gym; corroborating how BiSUNA

is capable of finding solutions to standardized problems.

REFERENCES

[1] M. Blott, T. B. Preusser, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, pp. 16:1–
16:23, Dec. 2018.

[2] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, 2019.

[3] J. M. Danilo Vargas, “Spectrum-diverse neuroevolution with unified
neural models,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 28, no. 8, pp. 1759–1773, Aug 2017.
[4] G. I. Sher, Handbook of Neuroevolution Through Erlang. New York,

NY: Springer New York, 2013.
[5] K. O. Stanley, “Efficient evolution of neural networks through complex-

ification,” Ph.D. dissertation, Department of Computer Sciences, The
University of Texas at Austin, 2004.

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
525–542.

[7] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in Proceedings of the 43rd International Symposium on

Computer Architecture, ser. ISCA ’16. Piscataway, NJ, USA: IEEE
Press, 2016, pp. 243–254.

[8] J. Kung, D. Zhang, G. van der Wal, S. Chai, and S. Mukhopadhyay,
“Efficient object detection using embedded binarized neural networks,”
Journal of Signal Processing Systems, vol. 90, no. 6, pp. 877–890, Jun
2018.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv e-prints, Jun. 2016.

[10] M. J. A. Strens, “A bayesian framework for reinforcement learning,”
in Proceedings of the Seventeenth International Conference on Machine

Learning, ser. ICML ’00. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000, pp. 943–950.

[11] blole. (2016) Algorithm on nchain-v0. [Online]. Available:
https://gym.openai.com/evaluations/eval 8KB72MuwRqqdbRG4UMs1w/


