

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

The Retention of Picoplankton by the Pacific Oyster, *Crassostrea gigas*, and Implications for Oyster Culture

Andrew Harwood Bell

A thesis submitted for the degree of Doctor of Philosophy, The University of Auckland, 2005

Abstract

Pacific oyster (*Crassostrea gigas*) farming in New Zealand has reached a point where the pressures on resources appear likely to constrain current, and future, development. To maintain industry growth, security of juvenile oyster (spat) supply and productivity gains within the existing farm leases, are becoming industry imperatives. The use of hatchery technology could achieve both of these requirements, but it is expensive to establish and maintain. The additional expense of a hatchery could be offset by the establishment of, for example, a selective breeding program to enhance oyster productivity and/or marketability. Consequently a pilot-scale oyster hatchery facility was constructed to investigate the potential for establishing hatchery production of Pacific oysters in New Zealand.

This study showed that in the pilot-scale hatchery, oysters could be successfully spawned from in-season broodstock, the eggs fertilised and the resultant larvae reared through to settlement for on-growing to adult size. This process was successful for both oysters selected for morphological characteristics and those which were not. On-growing of the resultant stock indicated growth rate could be normal relative to wild caught oysters spat, although data was limited by the small scale of the experiment. However, an investigation of broodstock conditioning, to achieve out-of-season spawning, was less successful. Disease occurred and condition was lost in some broodstock, suggesting they were enduring stress within the conditioning system. The microalgal food supply was examined but the clearance rate of the microalgal species suggested they were an acceptable feed supply which agreed with previous reports of successful conditioning techniques. Comparing the pilot-scale facility in this study with descriptions of facilities which reported successful broodstock conditioning suggested that the use of a microfiltered recirculating water supply, as opposed to the more common flow-through, natural seawater systems containing a range of small size particles, limited necessary nutrient and/or maturation factors and may have had a significant impact on conditioning. The nanoplanktonic (< 10 μ m), food resource, which includes key microalgal species such as *Chaetoceros* spp. and *Isochrysis* spp., is generally considered the primary food resource for suspension feeding bivalves, including *C. gigas*. However, the picoplanktonic fraction (< 3 μ m) can provide the largest proportion of this food resource in the water column in terms of abundance and biomass. Consequently, an investigation of the *in situ* retention of picoplankton populations (picoeukaryotes, *Synechococcus*-type cyanobacteria and heterotrophic bacteria) by oysters was undertaken. Flow cytometry was used to quantify the picoplankton populations in water samples taken from the inhalant and exhalant feeding currents of individual oysters, allowing retention efficiency of the particles to be calculated. Five picoplankton populations were identifiable by flow cytometry (picoeukaryotes, heterotrophic bacteria and 3 populations tentatively identified as cyanobacteria) and accounted for a large proportion (up to 97 %) of the estimated available carbon (picoplankton + microalgae) in Kerikeri Inlet water. Generally the heterotrophic bacteria accounted for the largest proportion of the biomass with up to 564 \pm 51 ng C ml⁻¹.

Retention of each picoplankton population was found to be variable and not directly related to particle concentration. Cyanobacteria (Cy2 population) were retained with the greatest efficiency (up to $42 \pm 4.4 \%$), followed by heterotrophic bacteria (up to $38 \pm 4.5 \%$) and picoeukaryotes (up to $12 \pm 3.8 \%$). Overall more picoplankton biomass was retained during the summer months, of which the heterotrophic bacteria made the largest contribution in either cell number or estimated carbon retained. Tracking of the condition and constituent fractions (glycogen, lipid and protein) of the subject oysters showed that in the summer months, post-spawn, these levels were lowest, indicting a period of nutritional stress. This appeared to suggest that *C. gigas* was able to alter its retention efficiency to expand the range of particles captured, and consequently the available nutrient pool. The retention of greater quantities of heterotrophic bacteria may allow for the acquisition of essential nutrients required for growth and later gametogenesis (such as B vitamins). However, it is also possible that the heterotrophic bacteria mediate access to otherwise inaccessible, or inefficiently accessed, nutrient resources through their degradation of, for example, crystalline cellulose.

Consequently, the microbial flora associated with the oyster gut was investigated. An initial investigation, cultivating bacteria from gut contents, showed considerable variability in the numbers of colonies present within and between samples, but was inconclusive for identifying differences in species diversity. Using culture independent histological and 16S rDNA PCR/RFLP techniques to investigate the oyster gut microflora a spirochaete flora, commonly associated with bivalve crystalline styles, was clearly present. Molecular analyses provided evidence of other bacterial in the gut. A signature RFLP band pattern was found in oysters at low tide and this generally reoccurred in oysters that had been immersed for varying lengths of time up to high tide. However, the signature RFLP pattern became more dilute as immersion time/potential feeding time extended.

The isolation of culturable bacteria from the oyster gut allowed characterisation and identification of a subset of the oyster gut microflora. 16S rDNA sequence analysis from selected isolates showed a predominance of *Vibrio* spp. These bacteria had previously been associated with marine molluscs, including as symbionts. Characterisation of these and other isolates from oyster gut showed a diversity of attributes including the ability to degrade cellulose. This suggests the bacterial production of enzymes, such as cellulases, which have been reported by other researchers as being present in ineffectual or low native levels in oysters. Consequently the bacterial presence in the oyster gut may be essential to efficient nutrient acquisition.

The results of these investigations have highlighted the potential importance of the heterotrophic bacteria to *C. gigas*. To date, bacteria have received relatively little attention in terms of their potential nutritive contribution to oysters, primarily due to observations that they are retained with low efficiency. However, even at low retention efficiencies the potential nutritive contribution is large due to the available abundances of heterotrophic bacteria. While the mechanisms and controls of bivalve suspension feeding have yet to be fully elucidated, the published literature indicates that selective mechanisms are available to bivalves including *C. gigas* and this current research

suggests that even pico-sized particles, retained with apparently low efficiency, can be subject to selection. The importance of the heterotrophic bacteria to *C. gigas* requires further investigation as it will have implications for not only hatchery production, but also farm management, public health and environmental impact monitoring.

Acknowledgments

While a thesis feels like a very personal and isolated journey none can be completed without so many people providing assistance, be it physical, emotional, scientific or financial. This thesis is no different and the following is but a subset of those who I owe so much gratitude to. Anyone who I have not specifically listed is no less appreciated.

Thanks to Associate Professor Gillian Lewis and Professor Rufus Wells for academic supervision. Thanks to Sanford Ltd and Bay Oysters Ltd who, in conjunction with Technology New Zealand (HLF 701, BYOL 0001) and the Seafood Research Laboratory, Crop and Food Research, initiated and funded this project.

From Sanford Ltd and Bay Oysters Ltd I would particularly like to thank T. Borrell, S. Brown, V. Thirkell, R. Pokae and the rest of the farm crews in Kerikeri and Kaeo.

From the Seafood Research Laboratory many thanks to R. Wong, G. Fletcher, G. Summers, M. Leonard, M. Johansson, T. Lee, I. Kurtovic and O. Drean.

Thanks to all those at NIWA who were so helpful, especially J. Hall, and A. Cumming in Hamilton, P. Redfearn, R. Hickman and S. Allen at Mahunga Bay.

Thanks for the practical help from A. Janke and team at the Cawthron Institute hatchery, Nelson. There are many at the University of Auckland who particularly deserve my gratitude including support staff (Beryl, Ian, Adrian, and Liz), fellow students (Kelly & Tony, Raechel & Tony, Stephanie, Tamara) and academics (S. Turner, D. Brunton, M. Anderson).

I would particularly like to thank P. Gribben, M. Johansson and C. Moyes for their friendship and support throughout the entire process.

Heartfelt thanks to my wife Tracey Bootten who has made an invaluable contribution through the last years.

Finally I would like to thank all of the family who have provided so much support over the course of my PhD. The greater Bell, McLeod and Bootten families alike have always offered encouragement and support in whatever way possible and you cannot ask for anymore than that. My closest family (Bruce, Margaret and Stuart) have continued to support me throughout this venture despite the significant trials they have had to face through the same period. Thus,

I would like to dedicate this thesis to my parents, Bruce and Margaret

Table of Contents

Abstract	.ii
Acknowledgements	. V
Table of Contents	.vi
List of Figures	. X
List of Tables	. xiii
Abbreviations	.XV

1.0 General Introduction

1.1 Background	1
1.2 Biology, Life History and Ecology of Crassostrea gigas	2
1.2.1 General biology	2
1.2.2 Life history characteristics	5
1.2.3 Ecology	6
1.3 Feeding and Digestion	7
1.3.1 Feeding currents and regulation	7
1.3.2 Particle capture	9
1.3.3 Retention efficiency and particle selection	10
1.3.4 Ingestion and digestion	13
1.3.5 Bacteria and the digestive process	15
1.4 Aims	17

2.0 Investigation of Pacific Oyster Breeding and Conditioning

2.1 Introduction	18
2.1.1 Oyster farming in New Zealand	18
2.1.2 Hatchery technology	20
2.1.3 Aims	26
2.2 Materials and Methods	27
2.2.1 Hatchery	27
2.2.1.1 Physical description	27
2.2.1.2 Microalgal species and culture	

2.	2.2 Oyster breeding and husbandry	29
	2.2.2.1 Broodstock collection	29
	2.2.2.2 Spawning and fertilisation	29
	2.2.2.3 Larval rearing and settlement	30
	2.2.2.4 On-growing of spat	32
2.	2.3 Conditioning of broodstock	32
2.	2.4 Clearance of microalgae from suspension	34
2.3 Re	esults	36
2.	3.1 Spawning and husbandry of oysters	36
2.	3.2 Broodstock conditioning	37
2.	3.3 Clearance of microalgal feed species from suspension	40
2.4 Di	iscussion	42
2.	4.1 Oyster breeding and husbandry	42
2.	4.2 Conditioning of broodstock	44
2.	4.3 Food quality	49
2.	4.4 Physical hatchery and methodology	51
2.	4.5 Conclusions	52

3.0 Seasonal Variation in the Retention of Picoplankton by Crassostrea gigas.

3.1 Introduction	54
3.2 Materials and Methods	59
3.2.1 Sample collection	59
3.2.1.1 In situ sampling of feeding currents	59
3.2.1.2 Microalgal data	64
3.2.1.3 Oyster sample collection for condition indexing	64
3.2.1.4 Additional data	64
3.2.2 Sample analysis	65
3.2.2.1 Picoplankton identification and enumeration	65
3.2.2.2 Biomass estimation	66
3.2.2.3 Oyster condition index analysis	67
3.2.3 Statistical analysis	69
3.2.3.1 In situ feeding data	69
3.2.3.2 Oyster condition index data	70
3.3 Results	71
3.3.1 Sea surface temperature and rainfall	71
3.3.2 Temporal ecology of picoplankton populations	72

3.3.3 Microalgal abundance	
3.3.4 Identification of feeding currents	77
3.3.5 Retention efficiency of picoplankton populations	
3.3.6 Oyster condition	
3.3.7 Condition index and retention efficiency	
3.4 Discussion	83
3.4.1 Picoplankton ecology	83
3.4.2 Retention efficiency	

4.0 Investigation of the Bacterial Microflora of the Oyster Gut

4.1 Introduction	95
4.2 Materials and Methods	99
4.2.1 General	99
4.2.2 Comparison of the culturable gut microflora of wild and hatchery oysters	99
4.2.3 Pilot investigation of the occurrence of gut microflora in wild oysters	100
4.2.3.1 Molecular investigation of gut microflora	100
4.2.3.2 Histological investigation of gut microflora	101
4.2.4 Temporal variation in bacterial presence and diversity in the oyster gut	101
4.2.4.1 Sample collection and processing	101
4.2.4.1.1 Oysters	101
4.2.4.1.2 Seawater concentration	103
4.2.4.1.3 Oysters sampled for their crystalline style	104
4.2.4.2 Histological analysis	105
4.2.4.3 Molecular analysis	106
4.2.4.3.1 DNA extraction	106
4.2.4.3.2 PCR	106
4.2.4.3.3 PAGE analysis	107
4.2.4.3.4 RFLP	108
4.2.5 Characterisation of the culturable bacteria from the guts of wild oysters	109
4.2.5.1 Oyster sampling	109
4.2.5.2 Bacterial isolation and culture	109
4.2.5.3 Biochemical profiling of isolates	111
4.2.5.4 Molecular identification of isolates	111
4.2.5.4.1 DNA extraction from cultures	111
4.2.5.4.2 Sequencing and identification	112
4.3 Results	113

4.3.1 Comparison of culturable gut microflora in hatchery and farmed oysters	113
4.3.2 Pilot scale investigation of oyster gut bacteria	114
4.3.2.1 Histological analysis	114
4.3.3.2 Molecular analysis	116
4.3.3 Temporal variation in bacterial presence and diversity in the oyster gut	117
4.3.3.1 Histological analysis	117
4.3.3.2 Molecular analysis	120
4.3.4 Characterisation of oyster gut bacteria	121
4.4 Discussion	125

5.0	General	Discussi	ion	•••••	•••••			132
-----	---------	----------	-----	-------	-------	--	--	-----

Appendices

Appendix 2.1 Hatchery Details	
Appendix 2.2 Composition of Guillard's F/2 Microalgal Culture Mediu	ım142
Appendix 2.3 Procedures for the Culture of Microalgae	
Appendix 3.1 Microalgal Species, their Biovolume and Carbon Conter	nt145
Appendix 3.2 Post-hoc Tukey Analysis of ANOVA of Picoplankton	147
Appendix 4.1 Staining Protocols for Histological Sections	149
Appendix 4.2 Gram Staining of Bacterial Isolates	
Appendix 4.3 Colony Counts from Samples of Farmed and Hatchery C	Oysters152
Appendix 4.4 Determinative Assays for the Characterisation of Oyster	Gut Microflora153
Bibliography	159

List of Figures

Figure 1.1	General orientation of a Pacific oyster with the top shell	
	and upper mantle removed	3
Figure 1.2	Simplified life-cycle of the Pacific oyster (Crassostrea	
	gigas)	6
Figure 1.3	Location of the inhalant and exhalant feeding currents in a	
	Pacific oyster	8
Figure 2.1	An overview of the processes for the hatchery production	
	of Pacific oysters (Crassostrea gigas).	21
Figure 2.2	Floor plan of the pilot-scale hatchery at the Mt Albert	
	Research Centre	27
Figure 2.3	Location of Kerikeri Inlet and Whangaroa Harbour where	
	on-growing and broodstock collections were made	31
Figure 2.4	Average oyster condition index as a function of days held	
	in the conditioning system	
Figure 2.5	Oyster clearance rate for each microalgal species after six	
	hours	41
Figure 2.6	The proportion of each microalgal species cleared from	
	suspension by oysters after six hours	41
Figure 3.1	The location of the Bay Oysters Ltd/Sanford Ltd oyster	
	farming leases in Kerikeri Inlet	58
Figure 3.2	Oysters on a wooden growing stick showing the density	
	and mud accumulation	60
Figure 3.3	Diagram of the flow-through tank setup on a barge for the	
	purpose of sampling feeding oysters	61
Figure 3.4	The flow-through tank system with three dozen oysters	
	distributed in the oyster tray.	62
Figure 3.5	Sampling of water from the exhalant (A) and inhalant (B)	
	feeding currents of a Pacific oyster (Crassostrea gigas)	63

Figure 3.6	Rainfall in Kerikeri Inlet as total for the month and for the
	7 days prior to sampling71
Figure 3.7	Photomicrographs of seawater samples with (A) and
	without (B) the addition of the nucleic acid stain SYBR
	Green I72
Figure 3.8	Representative density plots of picoeukaryote,
	cyanobacteria and heterotrophic bacteria populations
	showing seasonal variation73
Figure 3.9	Monthly mean ambient cell concentrations of picoplankton
	populations (picoeukaryotes, cyanobacteria and
	heterotrophic bacteria) from June 2001 to October 200274
Figure 3.10	Total microalgal cell numbers averaged for each month
	from the Kerikeri Delivery Centre Ltd microalgal
	monitoring data for years 1998 – 200176
Figure 3.11	Proportion of monthly estimated total carbon attributed to
	microalgae, picoeukaryotes, cyanobacteria and
	heterotrophic bacteria76
Figure 3.12	Feeding currents visualised with Fluorescein dye77
Figure 3.13	Monthly mean retention efficiency for picoeukaryotes,
	cyanobacteria and heterotrophic bacteria78
Figure 3.14	Average monthly levels of glycogen, protein, lipid,
	expressed as constituent fraction indices and biometric
	condition index80
Figure 3.15	Retention efficiency of picoeukaryotes, cyanobacteria and
	heterotrophic bacteria in relation to the condition index of
	the individual oysters sampled81
Figure 3.16	Retention efficiency as a function of glycogen and protein
	constituent fraction indices for individual oysters
Figure 3.17	Data redrawn from Dinamani (1987) showing the
	correlation between sea surface temperature and the
	proportion of oysters either spawning or spawned90

Figure 3.18	Estimated contribution of picoplankton populations to the	
	carbon requirement of Pacific oysters.	92
Figure 4.1	Diagram of the filter and pump setup for the concentration	
	of seawater samples	103
Figure 4.2	Pacific oyster with the top shell and upper mantle removed	
	showing the location of the hand sections made for	
	histological analysis	105
Figure 4.3	Representations of the three sections (anterior, middle and	
	posterior) made from each oyster sampled showing the	
	location of the gut lumen, style sac and digestive	
	diverticular	115
Figure 4.4	RFLP banding pattern from Hae III digest of 16S rDNA	
	amplified by PCR from DNA extracted from the gut of	
	Pacific oysters in the pilot study	116
Figure 4.5	Photomicrograph of Cristispira-like spirochaetes in a gut	
	lumen	118
Figure 4.6	Photomicrograph of spirochaetes in the outer laminates of a	
	freshly isolated crystalline style	118
Figure 4.7	Photomicrograph of a typical section through the style	
	lumen from a posterior section	119
Figure 4.8	Photomicrograph of a typical "crescent shaped" lumen	
	showing "food debris" (brown) and the ciliated lumen wall	119
Figure 4.9	Photomicrograph of bacterial rods found amongst food	
	debris in a gut lumen	120
Figure 4.10	RFLP pattern from Hae III digestion of PCR amplified,	
	16S rDNA extracted from the gut of Pacific oysters	121
Figure 4.11	Examples of starch plates that have been stained with I_2/KI	
	solution (Table 4.1).	122
Figure A2.1	Floor plan of pilot scale hatchery at the Mt Albert Research	
	Centre	139

List of Tables

Table 1.1	Morphological characteristics of four oyster species.	4
Table 2.1	Nutritional analysis of the different microalgal species used	
	in the pilot scale hatchery	22
Table 2.2	Microalgal species used in the clearance rate experiments	34
Table 2.3	Average size and density of hatchery-produced spat on	
	leaving the hatchery (Month 0) and in subsequent months	37
Table 2.4	Summary of the success of conditioning broodstock oysters	
	in a recirculating seawater system	
Table 3.1	Published retention efficiencies of various food items by	
	oysters	55
Table 4.1	Solutions used in the extraction of DNA from samples	102
Table 4.2	Primer sequences for amplification of 16S rDNA.	106
Table 4.3	Master mix for PCR amplification of DNA extracted from	
	oyster gut	107
Table 4.4	Composition of polyacrylamide gels	108
Table 4.5	Media used for the culturing, isolating and determining	
	nutrient utilisation, of bacteria from samples of oyster gut	110
Table 4.6	Presumptive identifications of isolates from samples of	
	hatchery seawater, the gut of hatchery conditioned oysters	
	or wild oysters	113
Table 4.7	Occurrence of bacteria in histological sections taken in the	
	pilot-scale investigation	114
Table 4.8	Occurrence of bacteria in histological sections from the	
	broader investigation	117
Table 4.9	Phenotypic characters of the 10 isolated bacteria	
	sequenced	123
Table 4.10	Results of the BLAST search (Altschul et al. 1997) of	
	sequences derived from the PCR amplification of 16S	
	rDNA from each isolate.	124

Table A2.1	Composition of the stock solutions used in the F/2 culture		
	medium	142	
Table A3.1	Microalgal species enumerated by the Cawthron Institute		
	for the Kerikeri Delivery Centre Ltd	145	
Table A3.2	Significant differences between months for ambient		
	concentrations and retention efficiencies of picoeukaryotes.		
		147	
Table A3.3	Significant differences between months for ambient		
	concentrations and retention efficiencies of cyanobacterial		
	population 1.	147	
Table A3.4	Significant differences between months for ambient		
	concentrations and retention efficiencies of cyanobacterial		
	population 2	147	
Table A3.5	Significant differences between months for ambient		
	concentrations and retention efficiencies of cyanobacterial		
	population 3	148	
Table A3.6	Significant differences between months for ambient		
	concentrations and retention efficiencies of heterotrophic		
	bacteria.	148	
Table A4.1	Number of colonies counted on agar plates of different		
	media types inoculated with 100 μ l of dilute oyster gut		
	content or seawater.	152	
Table A4.2	Colony morphology, cell descriptions, growth and		
	utilisation of different media for all isolates	153	
Table A4.3	Results of the reactions on the api 20E identification strip		
	after 24 hours incubation	157	

Abbreviations

S.I. (Systéme International d'unités) abbreviations for units and standard notations for chemical elements, formulae, and chemical abbreviations are used in this work. Other abbreviations used are listed below.

$A_{\rm xxx}$	absorbance at xxx nm	PCR	Polymerase Chain Reaction
bp	base pairs	PEG	polyethylene glycol
сс	cubic centimetres	RFLP	restriction fragment length
C.I.	colour index		polymorphism
dH ₂ O	sterile, glass distilled water	rpm	revolutions per minute
dNTP	deoxyribonucleoside triphosphate	SDS	sodium dodecyl sulphate
EDTA	ethylenediamine-tetra-acetic-acid	s.e.	standard error (sample)
	(disodium salt)	TBE	Tris-borate-EDTA-buffer
Exh	exhalant	TE	Tris-EDTA buffer
g	grams	TEMED	Tetramethlethylenediamine
g	acceleration due to gravity	Tris	[2-amino-2(hydroxymethyl) propane-
h	hour		1,3-diol, (tris)]
Inh	inhalant	Tris-HCl	Tris solution pH adjusted with HCl
kb	kilobase pairs (1000 base pairs)	U	units of enzyme (manufacturer defined)
kDa	kiloDaltons	UV	ultraviolet light
1	litre(s)	v/v	volume:volume
М	molarity (moles litre ⁻¹)	w/v	weight:volume
MW	molecular weight		
min	minute(s)		
ml	millilitre(s)		
Ν	normal (concentration)		
		I	