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INTRODUCTION

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured that

the number of B-weights equals the number of irreducible Brauer characters of B. Dade

[7] generalized the Knörr-Robinson version of the Alperin weight conjecture and presented

his ordinary conjecture exhibiting the number of ordinary irreducible characters of a fixed

defect in B in terms of an alternating sum of related values for p-blocks of some p-local

subgroups of G. Dade [8] announced that his final conjecture needs only to be verified

for finite non-abelian simple groups; in addition, if a finite group has both trivial Schur

multiplier and outer automorphism group, then the ordinary conjecture is equivalent to

the final conjecture. In this paper we verify the Alperin weight conjecture and the Dade

ordinary conjecture, and so the final one, for the Conway simple group Co2.

The outline of the paper is as follows. In Section 1, we fix our notation and state

the two conjectures. In Section 2, we discuss the computational tools used in deciding

the conjectures. In Section 3, we present a local strategy which we employed to determine

the radical subgroups of Co2. In Section 4, we classify the radical subgroups of Co2 up to

conjugacy and verify the Alperin weight conjecture. In Section 5, we do some cancellations

in the alternating sum of Dade’s conjecture when p = 2 or 3, and then determine radical

chains (up to conjugacy) and their local structures. In the last section, we verify Dade’s

conjecture.
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1. THE ALPERIN AND DADE CONJECTURES

Let R be a p-subgroup of a finite group G. Then R is radical if Op(N(R)) = R, where

Op(N(R)) is the largest normal p-subgroup of the normalizer N(R) = NG(R). Denote

by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set of

p-blocks, let B ∈ Blk(G) and ϕ ∈ Irr(N(R)/R). The pair (R,ϕ) is called a B-weight if ϕ

has p-defect 0 (see [7, (5.5)] for the definition) and B(ϕ)G = B (in the sense of Brauer),

where B(ϕ) is the block of N(R) containing ϕ. A weight is always identified with its

G-conjugates. Let W(B) be the number of B-weights, and �(B) the number of irreducible

Brauer characters of B. Alperin [1] conjectured that W(B) = �(B) for each B ∈ Blk(G).

Given a p-subgroup chain

C : P0 < P1 < · · · < Pn (1.1)

of a finite group G, define |C| = n, Ck : P0 < P1 < · · · < Pk, C(C) = CG(Pn), and

N(C) = NG(C) = NG(P0) ∩NG(P1) ∩ · · · ∩NG(Pn). (1.2)

The chain C is radical if it satisfies the following conditions:

(a) P0 = Op(G) and (b) Pk = Op(N(Ck)) for 1 ≤ k ≤ n.

Denote by R = R(G) the set of all radical p-chains of G. For B ∈ Blk(G) and integer

d ≥ 0, let k(N(C), B, d) be the number of characters in the set

Irr(N(C), B, d) = {ψ ∈ Irr(N(C)) : B(ψ)G = B, d(ψ) = d},

where d(ψ) is the defect of ψ.

Dade’s Ordinary Conjecture [7]. If Op(G) = 1 and B is a p-block of G with positive

defect, then for any integer d ≥ 0,∑
C∈R/G

(−1)|C| k(N(C), B, d) = 0, (1.3)

where R/G is a set of representatives for the G-orbits of R.

2. COMPUTATIONAL TOOLS

As part of this study of Co2, we developed and implemented a collection of procedures

which can be used to (partially or completely) decide the Alperin weight conjecture and
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the Dade ordinary conjecture for an arbitrary finite group. The group can be described

by a matrix or permutation representation.

These procedures are written in the language of the computational algebra system

MAGMA (see [3] for details). They perform the following tasks:

[1.] Determine the G-conjugacy classes of radical p-subgroups for a given prime p.

[2.] Determine the blocks of the normaliser of each radical subgroup.

[3.] Determine the weights for each block of a radical subgroup.

[4.] Identify up to isomorphism type the defect groups.

[5.] Construct the p-radical chains, up to conjugacy, and eliminate redundant chains.

[6.] For each non-trivial chain, determine its local structure and evaluate the corre-

sponding term of the alternating sum.

These procedures can be executed in sequence and hence, within the limits of com-

putational resources, allow a user to decide both conjectures for an arbitrary finite group.

Details of the algorithms used will be presented elsewhere. We plan to extend our algo-

rithms to deal with other forms of Dade’s conjecture.

The computations reported in this paper were carried out using these procedures

running MAGMA V.2.20-7 on a Sun UltraSPARC Enterprise 4000 server.

In our investigation, we used the minimal degree representation of Co2 as a permuta-

tion group on 2300 points. In constructing maximal subgroups of Co2, we made extensive

use of the algorithm described in [4] to construct random elements.

3. DETERMINING THE RADICAL SUBGROUPS OF Co2

The major computational challenge in deciding the conjectures for Co2 is to determine

the radical subgroups of Co2.

In summary, our standard algorithm to determine the radical p-subgroups of a group G

for a given prime p is the following: compute the subgroup classes of the Sylow p-subgroup

of G; for each p-subgroup R, compute the largest normal p-subgroup Op(N(R)) of the

normaliser N(R) in G of R; if Op(N(R)) equals R then R is radical.

This algorithm suffices to compute both the radical 3- and 5-subgroups of Co2. How-

ever, the Sylow 2-subgroup of Co2 has order 218 and, using available computing resources,

we could not determine the conjugacy classes of subgroups of this 2-group. Instead we use

the following local strategy to obtain the radical 2-subgroups of Co2.

Wilson [10] classifies the maximal subgroups of Co2. In (4C), we use his classifica-

tion to deduce that each radical 2-subgroup R of Co2 is radical in one of seven maximal

subgroups M and further that NG(R) = NM (R).
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(1). We first consider the case where M is a 2-local subgroup. Let Q = O2(M),

so that Q ≤ R. We find all the subgroup classes of a Sylow 2-subgroup D of M con-

taining Q. Using MAGMA, we explicitly compute the quotient M/Q and the natural

homomorphism η : M −→ M/Q. This approach provides a regular representation for

M/Q, whose (potentially large) degree is usually computationally limiting. Hence, we

construct a power-conjugate presentation for the quotient group η(D) = D/Q since such

presentations are computationally very effective. We now compute all subgroup classes in

D/Q. The preimages in D of the subgroup classes of D/Q are the subgroup classes of D

containing Q.

We select those class representatives R which are radical by deciding whether R =

O2(NM (R)). Since computing the normalizer in M of R is potentially very expensive, we

also seek to limit the time taken by this step. In some cases, the quotient M/Q is a well-

known group. If a small degree permutation representation of M/Q is available, we explore

this representation independently to find the radical 2-subgroup classes of M/Q and then

use this information to guide our investigations and to provide termination conditions for

our computations.

For example, if M = 21+8
+ : S6(2), then D has 3200 subgroup classes containing

Q = 21+8
+ . By studying a permutation representation of degree 28 of M/Q = S6(2), we

learn that S6(2) has 7 non-trivial radical 2-subgroups: one each of order 25, 26, 27 and 29,

and three of order 28. Hence, we now know that the radical 2-subgroups of M have orders

2k for 14 ≤ k ≤ 18. We partition the 3200 classes according to their orders and search in

each partition only until we find the required number of radical subgroups of this order.

(2). Now consider the case where M is not 2-local. We may be able to find its

radical 2-subgroup classes directly. Alternatively, we find a subgroup K of M such that

NK(R) = NM (R) for each radical subgroup R of M . If K is 2-local, then we apply Step

(1) to K. If K is not 2-local, we can replace M by K and repeat Step (2).

After applying the local strategy, possible fusions among the resulting list of radical

subgroups can be decided readily by testing whether the subgroups in the list are pairwise

G-conjugate.

Although it was not necessary, we used the local strategy to construct the radical

3-subgroups of Co2 since it was significantly more efficient than the standard algorithm.

4. RADICAL SUBGROUPS AND WEIGHTS

Let Φ(G, p) be a set of representatives for conjugacy classes of radical p-subgroups

4



       

THE ALPERIN AND DADE CONJECTURES FOR Co2

of G. For H,K ≤ G, we write H ≤G K if x−1Hx ≤ K; and write H ∈G Φ(G, p) if

x−1Hx ∈ Φ(G, p) for some x ∈ G. We use the notation of [6]. In particular, if p is odd,

then p1+2γ
+ is an extra-special group of order p1+2γ with exponent p; if δ is + or −, then

21+2γ
δ is an extra-special group of order 21+2γ with type δ. If X and Y are groups, we

use X.Y and X : Y to denote an extension and a split extension of X by Y , respectively.

Given n ∈ N, we use Epn or simply pn to denote the elementary abelian group of order

pn, Zn or simply n to denote the cyclic group of order n, and D2n to denote the dihedral

group of order 2n.

Let G be Co2. Then |G| = 218 · 36 · 53 · 7 · 11 · 23, and we may suppose p ∈ {2, 3, 5},
since both conjectures hold for a block with a cyclic defect group by [7, Theorem 9.1].

We denote by Irr0(H) the set of ordinary irreducible characters of p-defect 0 of a finite

group H and by d(H) the number logp(|H|). Given R ∈ Φ(G, p), let C(R) = CG(R) and

N = NG(R). If B0 = B0(G) is the principal p-block of G, then by [2, (1.3)],

W(B0) =
∑
R

| Irr0(N/C(R)R)|, (4.1)

where R runs over the set Φ(G, p) such that the p-part d(C(R)R/R) = 0. The character

table of N/C(R)R can be constructed using MAGMA, hence we can find | Irr0(N/C(R)R)|.

(4A). The non-trivial radical 5-subgroups R of Co2 (up to conjugacy) are

R C(R) N | Irr0(N/C(R)R)|
5 5 × S5 F 4

5 × S5

51+2
+ 5 51+2

+ : 4S4 16,

where Fm
n is a Frobenius group with kernel Zn and complement Zm.

Proof. If G = Co2 and x is an element of class 5B, then NG(〈x〉) = 5.4 × S5 (cf. [10,

p. 111]), so that 5 = 〈x〉 is radical and CG(x) = 5× S5. In addition, if 51+2
+ ∈ Syl5(G) is a

Sylow 5-subgroup of G, then NG(51+2
+ ) = 51+2

+ .4S4. By MAGMA, Φ(G, 5) = {5, 51+2
+ }. �

(4B). The non-trivial radical 3-subgroups R of Co2 (up to conjugacy) are

R C(R) N | Irr0(N/C(R)R)|
3 3 × U4(2).2 S3 × U4(2).2

34 34 34.A6.D8 5

31+4
+ 3 31+4

+ : 21+4
− .S5 4

S 3 S.(SD24 × 2) 14,
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where S ∈ Syl3(Co2) and SD24 is the semidihedral group of order 24.

Proof. Let M1, M2 and M3 be subgroups of G = Co2 such that M1 	 31+4
+ : 21+4

− .S5,

M2 	 S3×U4(2).2 and M3 	 34.A6.D6. Then M1 and M2 are normalizers of a 3A and 3B

element, respectively. Suppose 1 
= R ∈ Φ(G, 3). Then X = Ω1(Z(R)) is an elementary

abelian subgroup of G.

If |X| = 3, then we may suppose NG(X) = M ∈ {M1,M2}, so that NG(R) ≤ M ,

R ∈ Φ(M, 3) and NM (R) = NG(R). Assume M = M1 and 31+4
+ = O3(M). Then

Φ(M1, 3) = {31+4
+ , S},

where S ∈ Syl3(G). Assume M = M2 and 3 = O3(M2). It follows by [6, p. 26] and

MAGMA that

Φ(M2, 3) = {3, 3 × 31+2
+ , 34, S′}, (4.2)

where S′ ∈ Syl3(M2). Moreover, NG(R) 
= NM (R) for each R ∈ Φ(M2, 3)\{3}. In

addition, CG(3 × 31+2
+ ) = CG(S′) = 32, CG(34) = 34 and (see [6, p. 26])

NM2(R) =

⎧⎪⎨⎪⎩
S3 × 31+2

+ : 2S4 if R = 3 × 31+2
+ ,

S3 × 33: (S4 × 2) if R = 34,
S3 × 33: (S3 × 2) if R = S′.

(4.3)

Suppose |X| ≥ 9, so that X is noncyclic. By [10, p. 112], X contains an element x

of class 3B. Thus X ≤ CG(x) = 〈x〉 × U4(2).2. Moreover, either NG(X) ≤ N(3A) or

CG(X) contains a normal subgroup shape 34. In the latter case, CG(X) ≤ 3 × 33 : D8

or CG(X) ≤ 3 × 33 : 22, so that CG(X) has exactly one Sylow 3-subgroup of order 34.

Since NG(R) ≤ NG(X) and R ≤ CG(X), it follows by [9, Lemma 2.1] that R is a radical

subgroup of CG(X). In particular, 34 ≤ O3(CG(X)) ≤ R. Therefore R = 34. Hence

M = M3, and by MAGMA,

Φ(M3, 3) = {34, S}; (4.4)

moreover, NG(R) = NM (R) for each R ∈ Φ(M3, 3). �
(4C). Given integer 1 ≤ i ≤ 7, let Mi be the maximal subgroups of G = Co2 such

that M1 	 21+8
+ : S6(2), M2 	 (21+6

+ × 24).A8, M3 	 24+10.(S5 × S3), M4 	 210 : M22 : 2,

M5 	 M cL, M6 	 M23 and M7 	 U6(2) : 2. Suppose R is a non-trivial radical 2-

subgroup of G. Then NG(R) ≤G Mi for some i. In particular, if NG(R) ≤ Mi, then

NG(R) = NMi(R) and R ∈G Φ(Mi, 2).

Proof. By [10, Theorem], each Mi is a maximal subgroup of G. If 1 
= R ∈ Φ(G, 2),

then X = Ω2(Z(R)) is an elementary abelian subgroup of G, and NG(R) ≤ NG(X). By
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[10, Proposition 4] and the proof given in [10, pp. 113-114], NG(X) ≤ Mi for some i and

so NG(R) ≤ Mi. �
How do we construct these maximal subgroups of Co2? From [6, 10], we learn that

M1 = N(2A), M2 = N(2B) and M4 = N(O2(N(2C))). The subgroup 24 = Z(O2(M3))

contains 5 elements of class 2A and 10 of class 2B, and it is also a subgroup of 210 =

O2(M4). Now 210 has 77 elements of class 2A and 330 of class 2B. Clearly we can assume

that 24 contains a central involution z of a Sylow 2-subgroup of M4. Thus a necessary

condition for an involution x ∈ 210 to be an element of 24 is that x and xz are of class

2A or 2B. This insight and repeated random element selection using the algorithm of

[4] allowed us to construct 24 and so M3. The remaining three maximal subgroups were

constructed using the black-box algorithms of Wilson [11].

(4D). The non-trivial radical 2-subgroups R of Co2 (up to conjugacy) are

R C(R) N/C(R)R | Irr0(N/C(R)R)|
21+8
+ 2 S6(2) 1

210 210 M22: 2 0

21+6
+ × 24 25 A8 1

21+8
+ .25 2 S4(2) 1

24+10 24 S5 × S3 0

210.24 24 L3(2) 1

21+8
+ .26 2 L3(2) 1

24+10.2 23 S3 × S3 1

210.25 24 S5 0

21+8
+ .23.24 2 S3 × S3 1

210.23.23 23 S3 1

21+8
+ .22.22.24 2 S3 1

21+8
+ .23.22.23 2 S3 1

21+8
+ .23.25 2 S3 1

S 2 1 1,

where S ∈ Syl2(Co2) is a Sylow 2-subgroup of Co2.

Proof. Suppose 1 
= R ∈ Φ(G, 2). Then we may assume that R ∈ Φ(Mi, 2) for some

i = 1, 2, . . . , 7.

We first consider those maximal subgroups – namely, M5,M6, and M7 – which are

not 2-local.
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(1) Let M be either M5 	 M cL or M6 	 M23. Then Φ(M, 2) can be calculated

directly using MAGMA, and M has no radical subgroups R such that NG(R) = NM (R).

Suppose M = M7 	 U6(2) : 2. A Sylow 2-subgroup S of M has order 216; hence we

could not use the standard algorithm to classify the radical 2-subgroups of M . Instead we

use Step (2) of the local strategy.

Suppose 1 
= D ∈ Φ(M, 2). If H = U6(2) is a subgroup of M of index 2, then by [9,

Lemma 2.1], D ∩H is a radical 2-subgroup of H. Moreover, if D ∩H = 1, then |D| = 2

and D is generated by an involution x. Thus NG(D) = CG(x) and so O2(CG(x)) ≤ D.

But |O2(CG(x))| ≥ 27 (cf. [10, Table II]), so |D| 
= 2 and D ∩H 
= 1. By the Borel-Tits

Theorem [5], NH(D ∩H) is a parabolic subgroup of U6(2) and D ∩H = O2(NH(D ∩H)).

Thus NH(D∩H) is a subgroup of a maximal parabolic subgroup L of H. Since NM (D) ≤
NM (D∩H) ≤ L.2 ≤ M , it follows that D ∈M Φ(L.2, 2) and NL.2(D) = NM (D). From [6,

p. 115] we may suppose

L.2 ∈ {21+8
+ :U4(2): 2, (24+8: (3 ×A5): 2).2, 29:L3(4): 2}.

The parabolic subgroup 21+8
+ :U4(2) is a centralizer W of an involution of class 2A and

NM (W ) = 21+8
+ :U4(2): 2. If W is the centralizer of an involution of class 2B, then O2(W ) =

24+8; also 24+8: (3×A5): 2 = NH(O2(W )) and (24+8: (3×A5): 2).2 = NM (O2(W )). More-

over, NG(O2(W )) is conjugate to M3 	 24+10.(S5 ×S3) in G. If W is the centralizer of an

involution of class 2C and if Q is a Sylow 2-subgroup of the commutator subgroup of W ,

then Q 	 29; further, NH(Q) = 29:L3(4) and NM (Q) = 29:L3(4): 2.

Applying the local strategy to each maximal subgroup L.2 of M , we obtained the

radical subgroups D of M and none satisfies NM (D) = NG(D).

We now consider the case where R ∈ Φ(Mi, 2) and i ∈ {1, 2, 3, 4}. Since each Mi is a

2-local subgroup of G, we can apply Step (1) of the local strategy to each Mi.

(2) Let 21+8
+ = O2(M1) and apply the local strategy to M1 	 21+8

+ : S6(2). Then

Φ(M1, 2) = {21+8
+ , 21+8

+ .25, 21+8
+ .26, 21+8

+ .23.24, 21+8
+ .22.22.24, 21+8

+ .23.22.23, 21+8
+ .23.25, S}

and NM1(R) = NG(R) for each R ∈ Φ(M1, 2). We may suppose Φ(M1, 2) ⊆ Φ(G, 2).

(3) Let 21+6
+ × 24 = O2(M2) and S′ ∈ Syl2(M2). Then

Φ(M2, 2) = {21+6
+ × 24, (21+6

+ × 24).23, 210.24,

24+10.2, 210.23.23, (21+6
+ × 24).22.23, (21+6

+ × 24).2.24, S′},
(4.5)
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and moreover, NM2(R) = N(R) for each R ∈ {21+6
+ × 24, 210.24, 24+10.2, 210.23.23}. In

addition, for R ∈ {(21+6
+ × 24).23, (21+6

+ × 24).22.23, (21+6
+ × 24).2.24, S′},

NM2(R)/R =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L3(2) if R = (21+6

+ × 24).23,

S3 if R = (21+6
+ × 24).22.23,

S3 if R = (21+6
+ × 24).2.24,

S′ if R = S′.

(4.6)

and CG(R) = 22.

(4) Let 24+10 = O2(M3). Then

Φ(M3, 2) = {24+10, 210.25, 24+10.2, 21+8
+ .23.24, 210.23.23, 21+8

+ .23.25, 21+8
+ .23.22.23, S}.

Also NM3(R) = NG(R) for R ∈ Φ(M3, 2). Hence we may suppose Φ(M3, 2) ⊆ Φ(G, 2).

(5) Let 210 = O2(M4). Then

Φ(M4, 2) = {210, 21+8
+ .25, 210.24, 210.25, 210.23.23, 21+8

+ .23.22.23, 21+8
+ .23.25, S}.

Also NM4(R) = N(R) for R ∈ Φ(M4, 2). Hence we may suppose Φ(M4, 2) ⊆ Φ(G, 2). �

In all cases, the normalizers and centralizers of each radical subgroup of G can be

computed using MAGMA.

Denote by D(B) a defect group of a block B, Irr(B) the set of irreducible ordinary

characters of B.

(4E). Let G = Co2 and let Blk0(G, p) be the set of p-blocks with a non-trivial defect

group.

(a) If p ∈ {5, 3}, then Irr0(G, p) = {B0, B1, B2} such that D(B1) 	 D(B2) 	 Zp,

where B0 = B0(G) is the principal block of G. In the notation of [6, pp. 154–155],

Irr(B1) =
{ {χ4, χ20, χ24, χ38, χ43} if p = 5,
{χ19, χ40, χ43} if p = 3,

and

Irr(B2) =
{
{χ8, χ14, χ26, χ39, χ44} if p = 5,
{χ33, χ36, χ44} if p = 3.

In addition, Irr(B0) = Irr+(G)\(Irr(B1) ∪ Irr(B2)), where Irr+(G) consists of characters

of Irr(G) with positive defects.

(b) If p = 2, then Blk(G, 2) = {B0} and Irr(B0) = Irr+(G). Moreover,
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�(B1) = �(B2) =
{

4 if p = 5,
2 if p = 3,

�(B0) =

⎧⎨⎩
16 if p = 5,
23 if p = 3,
12 if p = 2.

Proof. If B ∈ Blk(G, p) is non-principal with D = D(B), then Irr0(C(D)D/D) has a

non-trivial character, so by (4A), (4B) and (4D), p = 5, 3 and D ∈G {5, 3}. Moreover, for

each such D, | Irr0(C(D)D/D)| = 2, so G has exactly two blocks, B1 and B2 with a defect

group D. Using the method of central characters, we deduce that Irr(B) is described by

(a).

If D(B) is cyclic, then �(B) is the number of B-weights, so that �(B1) = �(B2) is 4

or 2 according as p = 5 or 3. If �(G) is the number of p-regular G-conjugacy classes, then

�(B0) can be calculated using the following equation due to Brauer:

�(G) =
⋃

B∈Blk0(G,p)

�(B) + | Irr0(G)| . �

(4F). Let B be a p-block of Co2 with a non-cyclic defect group. Then the number of

B-weights is the number of irreducible Brauer characters of B.

Proof. Follows by (4.1) and (4A), (4B), (4D) and (4E). �

5. RADICAL CHAINS

Let G = Co2, C ∈ R(G) and N(C) = NG(C).

(5A). In the notation of (4A), the radical 5-chains C of G (up to conjugacy) are:
C N(C) C N(C)

C(1) : 1 G C(2) : 1 < 5 F 4
5 × S5

C(3) : 1 < 5 < 52 F 4
5 × F 4

5 C(4) : 1 < 51+2
+ 51+2

+ : 4S4,

where 52 ∈ Syl5(F 4
5 × S5).

Proof. Straightforward. �
(5B). (a) In the notation of (4B) and (4.2), the radical 3-chains C(i) for 1 ≤ i ≤ 8

and their normalizers N(C) are:
C N(C) C N(C)

C(1) : 1 Co2 C(2) : 1 < 3 S3 × U4(2).2

C(3) : 1 < 3 < 34 S3 × 33: (S4 × 2) C(4) : 1 < 34 34.A6.D8

C(5) : 1 < 3 < 3 × 31+2
+ S3 × 31+2

+ : 2S4 C(6) : 1 < 31+4
+ 31+4

+ : (21+4
− .S5)

C(7) : 1 < 31+4
+ < S S.(SD24 × 2) C(8) : 1 < 3 < K < S′ S3 × 33: (S3 × 2),
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where K = 3 × 31+2
+ and S′ ∈ Syl3(3 × U4(2).2).

(b) Let R0(G) be the G-invariant subfamily of R(G) such that R0(G)/G = {C(i) :

1 ≤ i ≤ 8}. Then∑
C∈R(G)/G

(−1)|C| k(N(C), B0, d) =
∑

C∈R0(G)/G

(−1)|C| k(N(C), B0, d)

for all integers d ≥ 0.

Proof. If C : 1 < S and C ′ : 1 < 34 < S, then N(C) = N(C ′) = N(S), and we can

delete C and C ′ in the sum (1.3). Similarly, if C : 1 < 3 < S′ and C ′ : 1 < 3 < 34 < S′,

then N(C) = N(C ′) = NM2(S
′). The rest follows from the proof of (4B). �

(5C). (a) In the notation of (4D) and (4.5), the radical 2-chains C(i) for 1 ≤ i ≤ 16

and their normalizers N(C) are:

C N(C)

C(1) : 1 Co2

C(2) : 1 < 21+8
+ 21+8

+ : S6(2)

C(3) : 1 < 210 < 21+8
+ .25 21+8

+ .25.S6

C(4) : 1 < 210 210:M22: 2

C(5) : 1 < 210 < 210.25 210.25.S5

C(6) : 1 < 24+10 24+10.(S5 × S3)

C(7) : 1 < 24+10 < 21+8
+ .23.24 21+8

+ .23.24.(S3 × S3)

C(8) : 1 < 210 < 210.25 < 21+8
+ .23.25 21+8

+ .23.25.S3

C(9) : 1 < 21+6
+ × 24 < (21+6

+ × 24).23 (21+6
+ × 24).23.L3(2)

C(10) : 1 < 21+6
+ × 24 (21+6

+ × 24).A8

C(11) : 1 < 210 < 210.24 210.24.L3(2)

C(12) : 1 < 210 < 210.24 < (21+6
+ × 24).2.24 (21+6

+ × 24).2.24.S3

C(13) : 1 < 24+10 < 24+10.2 (24+10.2).(S3 × S3)

C(14) : 1 < 210 < 210.25 < 210.23.23 210.23.23.S3

C(15) : 1 < 210 < 210.25 < 210.23.23 < S′ S′

C(16) : 1 < 24+10 < 24+10.2 < (21+6
+ × 24).22.23 (21+6

+ × 24).22.23.S3.

(b) Let R0(G) be the G-invariant subfamily of R(G) such that R0(G)/G = {C(i) :

i = 1, 2, . . . , 16}. Then∑
C∈R(G)/G

(−1)|C| k(N(C), B, d) =
∑

C∈R0(G)/G

(−1)|C| k(N(C), B, d)

11
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for all integers d ≥ 0 and for each block B with a non-cyclic defect group.

Proof. (b) Suppose C ′ is a radical 2-chain such that

C ′ : 1 < P ′
1 < . . . < P ′

m. (5.1)

Let C ∈ R(G) be given by (1.1) with P1 ∈ Φ(G, 2).

Case (1). Let R ∈ Φ(M1, 2)\{21+8
+ }. Define G-invariant subfamilies M+(R) and

M0(R) of R(G), such that

M+(R)/G = {C ′ ∈ R/G : P ′
1 = R}, and

M0(R)/G = {C ′ ∈ R/G : P ′
1 = 21+8

+ , P ′
2 = R}.

(5.2)

For C ′ ∈ M+(R) given by (5.1), the chain

g(C ′) : 1 < 21+8
+ < P ′

1 = R < P ′
2 < . . . < P ′

m (5.3)

is a chain in M0(R) and N(C ′) = N(g(C ′)). For any B ∈ Blk(G) and for any integer

d ≥ 0,

k(N(C ′), B, d) = k(N(g(C ′)), B, d). (5.4)

In addition, g is a bijection between M+(R) and M0(R). So we may assume

C 
∈
⋃

R∈Φ(M1,2)\{21+8
+ }

(M+(R) ∪M0(R)) .

Thus P1 
∈ {21+8
+ .25, 21+8

+ .26, 21+8
+ .23.24, 21+8

+ .22.22.24, 21+8
+ .23.22.23, 21+8

+ .23.25, S}, and if

P1 = 21+8
+ , then C =G C(2). We may suppose

P1 ∈ Φ1(G, 2) = {210, 21+6
+ × 24, 24+10, 210.24, 24+10.2, 210.25, 210.23.23} ⊆ Φ(G, 2).

Case (2). Let Φ2(G, 2) = {210, 24+10, 210.25} ⊆ Φ1(G, 2) and assume R ∈ Ω =

{210.24, 24+10.2, 210.23.23} ⊆ Φ(M2, 2). Repeat the proof above with 21+8
+ replaced by

21+6
+ × 24. Then we may suppose P1 ∈ Φ2(G, 2)∪ {21+6

+ × 24}, and if P1 = 21+6
+ × 24, then

P2 ∈ Φ(M2, 2)\Ω. Now NM2((2
1+6
+ × 24).23) = N(C(9)) 	 (21+6

+ × 24).23.L3(2) and by

MAGMA

Φ((21+6
+ × 24).23.L3(2), 2) = {(21+6

+ × 24).23, (21+6
+ × 24).22.23, (21+6

+ × 24).2.24, S′},

which is a subset of Φ(M2, 2). In addition, NN(C(9))(R) = NM2(R) for each radical sub-

group R ∈ Φ((21+6
+ × 24).23.L3(2), 2).

12
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Given Q ∈ Φ((21+6
+ × 24).23.L3(2), 2)\{(21+6

+ × 24).23}, define G-invariant subfamilies

L+(Q) and L0(Q) of R(G), such that

L+(Q)/G = {C ′ ∈ R/G : P ′
1 = 21+6

+ × 24, P ′
2 = Q}, and

L0(Q)/G = {C ′ ∈ R/G : P ′
1 = 21+6

+ × 24, P ′
2 = (21+6

+ × 24).23, P ′
3 = Q}.

(5.5)

A similar proof to above shows that we may suppose

C 
∈
⋃
Q∈I

(L+(Q) ∪ L0(Q)), (5.6)

where I = Φ((21+6
+ × 24).23.L3(2), 2)\{21+6

+ × 24}. It follows that if P1 = 21+6
+ × 24, then

C ∈G {C(9), C(10)}, and we may suppose

P1 ∈ Φ2(G, 2) = {210, 24+10, 210.25}.

Case (3). Let M+(210.25) and M0(210.25) be given by (5.2) with R replaced by 210.25

and 21+8
+ by 24+10. Then (5.4) holds for C ′ ∈ M+(210.25) and we may suppose P1 
=G

210.25 and if P1 = 24+10, then P2 
=G 210.25. Since N(21+8
+ .23.24) 	 (21+8

+ .23.24).(S3 ×
S3) ≤ M3, it follows that

Φ((21+8
+ .23.24).(S3 × S3), 2) = {21+8

+ .23.24, 21+8
+ .23.25, 21+8

+ .23.22.23, S} ⊆ Φ(G, 2),

and moreover, NN(21+8
+ .23.24)(R) = NM3(R) = N(R) for all R ∈ Φ(N(21+8

+ .23.24), 2). Let

Ω′ = {21+8
+ .23.25, 21+8

+ .23.22.23, S} ⊆ Φ(N(21+8
+ .23.24), 2), and W ∈ Ω′. Replace Q by W ,

21+6
+ × 24 by 24+10 and (21+6

+ × 24).23 by 21+8
+ .23.24 in the definition of (5.5). A similar

proof to above shows that we may suppose

C 
∈
⋃

W∈Ω′

(L+(W ) ∪ L0(W )).

Thus if P1 = 24+10, then we may suppose P2 ∈ {24+10.2, 21+8
+ .23.24, 210.23.23}, and more-

over, if P2 =G 21+8
+ .23.24, then C =G C(7).

Similarly, NM3(2
4+10.2) = N(24+10.2) 	 24+10.2.(S3 × S3), and

Φ(24+10.2.(S3 × S3), 2) = {24+10.2, 210.23.23, (21+6
+ × 24).22.23, S′} ⊆ Φ(M2, 2),

and moreover, NN(24+10.2)(R) = NM2(R) for each R ∈ Φ(N(24+10.2), 2). Replace Q by

210.23.23, 21+6
+ × 24 by 24+10 and (21+6

+ × 24).23 by 24+10.2 in the definition of (5.5). We

may suppose P2 
=G 210.23.23, and if P1 = 24+10 and P2 =G 24+10.2, then P3 
=G 210.23.23.

13
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Let C ′ be the chain 1 < 24+10 < 24+10.2 < (21+6
+ × 24).22.23 < S′, and g(C ′) : 1 <

24+10 < 24+10.2 < S′. Then N(C ′) = N(g(C ′)) = S′ and (5.4) holds. It follows that if

P1 = 24+10, then C ∈G {C(6), C(7), C(13), C(16)}.

Case (4). Suppose P1 = 210. By (4D), NM4(2
1+8
+ .25) = N(21+8

+ .25) = 21+8
+ .25.S6 and

by MAGMA,

Φ(21+8
+ .25.S6, 2) = {21+8

+ .25, 21+8
+ .23.22.23, 21+8

+ .23.25, S} ⊆ Φ(G, 2),

and moreover, NN(21+8
+ .25)(R) = N(R) for each R ∈ Φ(N(21+8

+ .25), 2). Suppose Q ∈
Φ(N(21+8

+ .25), 2)\{21+8
+ .25}. Replace 21+6

+ ×24 by 210 and (21+6
+ ×24).23 by 21+8

+ .25 in the

definition of (5.5). The same proof shows that we may suppose

C 
∈
⋃

Q∈Φ(N(21+8
+ .25),2)\{21+8

+ .25}

(L+(Q) ∪ L0(Q)).

Thus we may suppose P2 ∈G {21+8
+ .25, 210.24, 210.25, 210.23.23}, and if P2 = 21+8

+ .25, then

C =G C(3). Since NM4(2
10.24) = N(210.24) = 210.24.L3(2), it follows by MAGMA that

Φ(210.24.L3(2), 2) = {210.24, 210.23.23, (21+6
+ × 24).2.24, S′} ⊆ Φ(M2, 2)

and moreover, NN(210.24)(R) = NM2(R) for each R ∈ Φ(N(210.24), 2).

Let L+(210.23.23) and L0(210.23.23) be defined by (5.5) with Q replaced by 210.23.23,

21+6
+ × 24 by 210 and (21+6

+ × 24).23 by 210.24. A similar proof shows that we may suppose

P2 
=G 210.23.23 and if P2 = 210.24, then P3 
=G 210.23.23.

Let C ′ : 1 < 210 < 210.24 < S′ and g(C ′) : 1 < 210 < 210.24 < (21+6
+ × 24).2.24 < S′.

Then N(C ′) = N(g(C ′)) = S′ and (5.4) holds. Thus if P1 = 210 and P2 = 210.24, then

C ∈G {C(11), C(12)}.
Similarly, N(210.25) = NM4(2

10.25) = 210.25.S5 and

Φ(210.25.S5, 2) = {210.25, 210.23.23, 21+8
+ .23.25, S} ⊆ Φ(G, 2)

and moreover, NN(210.25)(R) = N(R) for all R ∈ Φ(N(210.25), 2). Let C ′ : 1 < 210 <

210.25 < S and g(C ′) : 1 < 210 < 210.25 < 21+8
+ .23.25 < S. Then N(C ′) = N(g(C ′)) = S

and (5.4) holds.

Finally, Φ(N(210.23.23), 2) = {210.23.23, S′} ⊆ Φ(M2, 2) and for each radical subgroup

R ∈ Φ(N(210.23.23), 2), NN(210.23.23)(R) = NM2(R). Thus if P1 = 210 and P2 = 210.25,

then we may suppose C ∈G {C(5), C(8), C(14), C(15)}. This completes the proof of (b).

14
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(a). The proof follows easily by that of (b) or (4D). �

6. THE PROOF OF DADE’S CONJECTURE

(6A). Let B be a p-block of G = Co2 with positive defect. If p is odd, then B satisfies

the ordinary conjecture of Dade.

Proof. We may suppose p = 5 or 3, and B = B0.

Suppose p = 5 and let C = C(2), C ′ = C(3). Then N(C) 	 F 4
5 × S5 and N(C ′) 	

F 4
5 × F 4

5 . The principal blocks of N(C) and N(C ′) both have exactly 25 irreducible

characters of height 0, so that

k(N(C), B0, d) = k(N(C ′), B0, d).

for all integers d ≥ 0. The subgroup N(C(4)) 	 51+2
+ .2S4 has 27 irreducible characters.

The degrees of characters of Irr(51+2
+ .2S4)

Degree 1 2 3 4 20 24 40 60

Number 4 6 4 2 3 4 3 1

It follows by [6, p. 154] and (4E) that

k(G,B0, d) = k(N(C(4))), B0, d) =

⎧⎨⎩
20 if d = 3,
7 if d = 2,
0 otherwise.

Thus (6A) holds when p = 5.

Suppose p = 3. Then N(C(2)) 	 S3 × U4(2).2 and N(C(3)) 	 S3 × 33: (S4 × 2) have

75 and 66 irreducible characters, respectively.

The degrees of characters of Irr(S3 × U4(2).2)

Degree 1 2 6 10 12 15 20 24 30 40 48 60 64 80 81 90 120 128 160 162 180

Number 4 2 4 2 2 8 7 4 8 3 2 8 4 2 4 2 3 2 1 2 1

The degrees of characters of Irr(S3 × 33: (S4 × 2))

Degree 1 2 3 4 6 8 12 16 24 32

Number 8 8 8 2 12 4 14 4 5 1

15
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It follows that

k(N(C), B0, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
27 if d = 5,
39 if d = 4,
α if d = 3,
0 otherwise,

where C ∈ {C(2), C(3)} and α = 3 or 0 according as C = C(2) or C(3).

The subgroups N(C(5)) 	 S3 × 31+2
+ : 2S4 and N(C(8)) 	 S3 × 33: (S3 × 2) have 54

and 51 irreducible characters, respectively.

The degrees of characters of Irr(S3 × 31+2
+ : 2S4)

Degree 1 2 3 4 6 8 12 16 18 24 32 36

Number 4 8 4 5 8 5 9 4 2 3 1 1

The degrees of characters of Irr(S3 × 33: (S3 × 2))

Degree 1 2 4 6 8 12

Number 8 12 6 16 1 8

It follows that

k(N(C), B0, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
27 if d = 5,
24 if d = 4,
β if d = 3,
0 otherwise,

where C ∈ {C(5), C(8)} and α = 3 or 0 according as C = C(5) or C(8). Thus

k(N(C(2)), B0, d) + k(N(C(8)), B0, d) = k(N(C(3)), B0, d) + k(N(C(5)), B0, d).

The subgroups N(C(4)) 	 34.A6.D8 and N(C(7)) 	 S.(SD24 × 2) have 42 and 45 irre-

ducible characters, respectively.

The degrees of characters of Irr(34.A6.D8)

Degree 1 2 9 10 16 18 20 40 60 120 160 180

Number 4 1 4 8 4 1 5 3 4 2 2 4

The degrees of characters of Irr(S.(SD24 × 2))

Degree 1 2 4 8 16 18 24 36 48 72

Number 8 10 3 4 2 4 4 7 2 1
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It follows that

k(N(C), B0, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
27 if d = 6,
6 if d = 5,
γ if d = 4,
0 otherwise,

(6.1)

where C ∈ {C(4), C(7)} and γ = 9 or 12 according as C = C(4) or C(7).

Finally, the subgroup N(C(6)) 	 31+4
+ : (21+4

− .S5) has 50 irreducible characters.

The degrees of characters of Irr(31+4
+ : (21+4

− .S5))

Degree 1 4 5 6 10 15 16 18 20 24 54

Number 2 4 4 1 5 2 2 1 4 1 2

Degree 72 80 90 160 180 216 240 270 288 320 360

Number 2 2 4 3 2 2 2 1 1 1 2

It follows by [6, p. 154] that

k(N(C), B0, d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

27 if d = 6,
6 if d = 5,
δ if d = 4,
5 if d = 3,
0 otherwise,

(6.2)

where C ∈ {C(1), C(6)} and δ = 9 or 12 according as C = C(1) or C(6). Thus Dade’s

conjecture follows by (6.1) and (6.2). �
(6B). Let B be a 2-block of G = Co2 with positive defect. Then B satisfies the

ordinary conjecture of Dade.

Proof. We may suppose B = B0 = B0(G). Since C(C) is a 2-subgroup for each chain

C 
= C(1), it follows that Irr(B0(N(C))) = Irr(N(C)). We first consider the chains C(j)

such that d(N(C(j))) = 17. So 9 ≤ j ≤ 16.

The subgroup N(C(10)) 	 (21+6
+ × 24).A8 has 111 irreducible characters.

The degrees of characters of Irr((21+6
+ × 24).A8)

Degree 1 7 8 14 15 20 21 28 35 45 56 64 70

Number 1 1 1 1 1 1 3 3 5 4 2 1 5

Degree 90 105 112 120 140 160 168 210 224 252 280 315 360

Number 1 7 1 2 5 1 3 5 1 2 3 10 4

Degree 420 448 512 560 630 720 840 960 1260 1680 2520

Number 9 2 1 1 4 1 7 1 8 1 2
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Thus k(10, d) = k(N(C(10)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 8 otherwise

k(10, d) 32 16 28 24 4 2 4 1 0

The subgroup N(C(12)) 	 (21+6
+ × 24).2.24.S3 has 345 irreducible characters.

The degrees of characters of Irr((21+6
+ × 24).2.24.S3)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192

Number 4 2 28 28 30 22 64 4 110 8 20 6 16 1 2

Thus k(12, d) = k(N(C(12)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise

k(12, d) 32 32 92 132 24 24 8 1 0

The subgroup N(C(14)) 	 (210.23.23).S3 has 354 irreducible characters.

The degrees of characters of Irr((210.23.23).S3)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 192

Number 16 12 16 2 60 8 90 22 56 13 38 2 17 2

Thus k(14, d) = k(N(C(14)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 otherwise

k(14, d) 32 72 92 64 60 30 4 0

The subgroup N(C(16)) 	 (21+6
+ × 24).22.23.S3 has 333 irreducible characters.

The degrees of characters of Irr((21+6
+ × 24).22.23.S3)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192

Number 8 4 24 8 52 12 68 20 56 16 44 6 12 1 2

Thus k(16, d) = k(N(C(16)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise

k(16, d) 32 56 76 68 64 28 8 1 0

18
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If ke =
∑8

j=5 k(N(C(2j)), B0, d), then ke are as follows:

Defect d 17 16 15 14 13 12 11 10 8 otherwise

ke 128 176 288 288 152 84 24 2 1 0

The subgroup N(C(9)) 	 (21+6
+ × 24).23.L3(2) has 174 irreducible characters.

The degrees of characters of Irr((21+6
+ × 24).23.L3(2))

Degree 1 3 6 7 8 14 21 24 28 42 48

Number 1 2 1 9 3 4 20 4 22 11 2

Degree 56 64 84 112 168 192 224 336 384 448 512

Number 21 3 22 4 32 2 4 2 1 3 1

Thus k(9, d) = k(N(C(9)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 8 otherwise

k(9, d) 32 16 44 60 8 4 8 1 1 0

The subgroup N(C(11)) 	 (210.24).L3(2) has 186 irreducible characters:

The degrees of characters of Irr((210.24).L3(2))

Degree 1 3 6 7 8 14 21 24 28 42 48 56 64 84 112 168 224 336 448 672

Number 2 4 2 14 4 10 12 4 18 20 2 14 2 42 4 18 5 6 2 1

Thus k(11, d) = k(N(C(11)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 otherwise

k(11, d) 32 32 60 40 12 6 4 0

The subgroup N(C(13)) = 24+10.2.(S3 × S3) has 262 irreducible characters.

The degrees of characters of Irr(24+10.2.(S3 × S3))

Degree 1 2 3 4 6 8 9 12 16 18 24 32 36 48 64 72 96 144 192 288

Number 8 8 8 2 8 4 16 14 12 40 10 9 44 20 2 18 13 20 2 4

Thus k(13, d) = k(N(C(13)), B0, d) are as follows:
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Defect d 17 16 15 14 13 12 11 otherwise

k(13, d) 32 56 60 32 52 26 4 0

The subgroup N(C(15)) = S′ = (21+6
+ × 24).2.24.2 ∈ Syl2((2

1+6
+ × 24).A8) has 521

irreducible characters.

The degrees of characters of Irr((21+6
+ × 24).2.24.2)

Degree 1 2 4 8 16 32 64 128

Number 32 72 124 156 80 48 8 1

Thus k(15, d) = k(N(C(15)), B0, d) are as follows:

Defect d 17 16 15 14 13 12 11 10 otherwise

k(15, d) 32 72 124 156 80 48 8 1 0

It follows that

8∑
j=5

k(N(C(2j)), B0, d) =
8∑

j=5

k(N(C(2j − 1)), B0, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

128 if d = 17,
176 if d = 16,
288 if d = 15,
288 if d = 14,
152 if d = 13,
84 if d = 12,
24 if d = 11,
2 if d = 10,
1 if d = 8,
0 otherwise.

Finally, we consider the 2-chains C(j) such that d(N(C(j))) = 18, so that 1 ≤ j ≤ 8.

The subgroup N(C(2)) 	 21+8
+ : S6(2) has 100 irreducible characters:

The degrees of characters of Irr(21+8
+ : S6(2))

Degree 1 7 15 16 21 27 35 56 70 84 105 112 120 135 168

Number 1 1 1 1 2 1 2 1 1 1 3 1 3 1 1

Degree 189 210 216 240 280 315 336 378 405 420 432 512 560 720 810

Number 3 2 1 1 2 1 3 1 3 1 1 1 2 2 1

Degree 840 896 945 1080 1120 1344 1680 1890 1920 2520 2688 2835 3024 3240 3360

Number 2 1 5 1 1 1 6 2 1 2 1 8 3 2 2

Degree 3456 3780 4480 5040 5376 5670 6048 6480 6720 7560 7680 8192

Number 1 2 2 2 1 1 1 1 2 1 1 1
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Thus k(2, d) = k(N(C(2)), B0, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 9 5 otherwise

k(2, d) 32 8 4 16 23 4 3 6 1 2 1 0

The subgroup N(C(4)) 	 210:M22: 2 has 79 irreducible characters.

The degrees of characters of Irr(210:M22: 2)

Degree 1 21 22 45 55 99 154 210 231 385 440 560 770

Number 2 2 2 4 2 2 2 2 6 2 2 1 6

Degree 924 990 1155 1386 1408 1540 2772 3080 3465 4620 6930 9240 13860

Number 4 4 4 2 2 2 1 4 8 4 6 2 1

Thus k(4, d) = k(N(C(4)), B0, d) are as follows:

Defect d 18 17 16 15 14 11 otherwise

k(4, d) 32 24 12 8 1 2 0

The subgroup N(C(6)) 	 24+10.(S5 × S3) has 156 irreducible characters.

The degrees of characters of Irr(24+10.(S5 × S3))

Degree 1 2 3 4 5 6 8 10 12 15 18 20 30 40

Number 4 2 4 4 4 2 2 2 5 4 2 4 2 4

Degree 45 60 80 90 120 160 180 240 320 360 480 640 720 960

Number 16 13 1 14 8 8 10 1 8 14 10 2 1 5

Thus k(6, d) = k(N(C(6)), B0, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 otherwise

k(6, d) 32 24 36 28 3 18 13 2 0

The subgroup N(C(8)) 	 (21+8
+ .23.25).S3 has 264 irreducible characters.

The degrees of characters of Irr((21+8
+ .23.25).S3)

Degree 1 2 3 4 6 8 12 16 24 32 48 64 96 128 192 256

Number 8 6 24 9 34 6 35 9 46 6 28 9 32 6 5 1

Thus k(8, d) = k(N(C(8)), B0, d) are as follows:
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Defect d 18 17 16 15 14 13 12 11 10 otherwise

k(8, d) 32 40 44 52 37 38 14 6 1 0

If ke =
∑4

j=1 k(N(C(2j)), B0, d), then ke are as follows:

Defect d 18 17 16 15 14 13 12 11 10 9 5 otherwise

ke 128 96 96 104 64 60 30 16 2 2 1 0

The subgroup N(C(3)) 	 (21+8
+ .25).S6 has 148 irreducible characters.

The degrees of characters of Irr((21+8
+ .25).S6)

Degree 1 5 6 9 10 15 16 20 24 30 36 40 45 60 80

Number 2 4 2 2 6 8 3 1 2 6 1 4 16 4 4

Degree 90 96 120 144 160 180 240 256 320 360 384 480 576 640 720

Number 10 2 10 2 6 6 8 1 1 16 2 4 1 4 10

Thus k(3, d) = k(N(C(3)), B0, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 otherwise

k(3, d) 32 24 12 32 27 12 2 6 1 0

The subgroup N(C(5)) 	 (210.25).S5 has 187 irreducible characters.

The degrees of characters of Irr((210.25).S5)

Degree 1 2 4 5 6 8 10 12 15 20 30 40 60 80 120 160 240 320 480 640

Number 8 2 8 8 4 2 2 1 16 8 32 6 27 1 20 16 10 12 2 2

Thus k(5, d) = k(N(C(5)), B0, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 otherwise

k(5, d) 32 40 44 28 11 18 12 2 0

The subgroup N(C(7)) 	 (21+8
+ .23.24).(S3 × S3) has 205 irreducible characters.

The degrees of characters of Irr((21+8
+ .23.24).(S3 × S3))

Degree 1 2 3 4 6 8 9 12 16 18 24 32

Number 4 4 8 5 6 4 20 9 5 14 8 4

Degree 36 48 64 72 96 128 144 192 256 288 384

Number 22 9 5 24 14 4 11 10 1 12 2
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Thus k(7, d) = k(N(C(7)), B0, d) are as follows:

Defect d 18 17 16 15 14 13 12 11 10 otherwise

k(7, d) 32 24 36 36 25 30 15 6 1 0

It follows by [6, p. 154] that k(1, d) = k(G,B0, d) are as follows:

Defect d 18 17 16 15 14 12 11 9 5 otherwise

k(1, d) 32 8 4 8 1 1 2 2 1 0

It follows that

4∑
j=1

k(N(C(2j)), B0, d) =
4∑

j=1

k(N(C(2j − 1)), B0, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

128 if d = 18,
96 if d = 17,
96 if d = 16,
104 if d = 15,
64 if d = 14,
60 if d = 13,
30 if d = 12,
16 if d = 11,
2 if d = 10,
2 if d = 9,
1 if d = 5,
0 otherwise,

which implies (6B). �
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