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1 Introduction.

One of the key tools of Non-smooth anaylsis is the generalized derivative and
one of the first and best known generalized derivative is the Clarke gener-
alized derivative [6]. However, inspite of having enjoyed widespread utility
the Clarke derivative has attracted its fair share of detractors. Their main
objection to this derivative is that in general the Clarke gradient mappings is
just too large to reveal any fine structure. This critisim is of course not with-
out some basis. Indeed, even on IR there exist (uncountable many distinct,
by more than an additive constant) Lipschitz functions f : IR → IR such
that ∂f(x) ≡ [0, 1] on IR. Clearly, for such functions the Clarke derivative
yields very little information. On the other hand, one could argue that such
pathological functions do not naturally arise. This argument is supported by
the fact that it has recently been shown that there is a large class of locally
Lipschitz functions for which the Clarke derivative is well-behaved. Indeed,
in the papers [2], [3] and [4] the authors demonstrate that there is a large
robust class of locally Lipschitz functions whose members are:

(i) D-representable, that is, they are Gâteaux differentiable on some dense
subset D of their domain and their Clarke subdifferential mapping may be
recovered by using the derivatives chosen from any dense subset of D;

(ii) Integrable, that is, they may be determined up to an additive constant
from their Clarke sudifferential mapping - at least on the connected compo-
nents of their domain.

In this paper we show that the study of integrability and D-representability
reduces to the study of these properties on separable Banach spaces. In this
way we may extend many of the results in [2] to arbitrary Banach spaces and
make use of the Rademacher-type theorems that exist on separable Banach
spaces. (Note that for a densely Gâteaux differentiable Lipschitz function,
D-representability is equivalent to minimality of the Clarke subdifferential
mapping, [2].)

We begin with some preliminary definitions. A real-valued function f defined
on a non-empty open subset A of a Banach space X is said to be locally
Lipschitz on A, if for each x0 ∈ A there exists a K > 0 and a δ > 0 such that
|f(x) − f(y)| ≤ K‖x− y‖ for all x, y ∈ B(x0, δ).

For functions in this class, it is sometimes instructive to consider the following
directional derivatives:
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(i) The upper Dini derivative at x ∈ A in the direction y, given by:

f+(x; y) ≡ lim sup
λ→0+

f(x + λy) − f(x)

λ

(ii) The Clarke generalized directional derivative at x ∈ A in the direction y,
given by:

f 0(x; y) ≡ lim sup
z→x

f+(z; y)

Associated with the Clarke generalized directional derivative is the Clarke
subdifferential mapping, which is defined by:

∂f(x) ≡ {x∗ ∈ X∗ : 〈x∗, y〉 ≤ f 0(x; y) for each y ∈ X}.

The next definition required in order to formulate our two main theorems
is that of a ‘rich’ family of separable subspaces. Let X be a normed linear
space. We will call a family F of closed separable subspaces of X rich if:

∗1 For each increasing sequence of closed separable subspaces {Yn : n ∈ IN}
in F ,

⋃{Yn : n ∈ IN} ∈ F ;
∗2 For each separable subspace Y 0 of X there exists a Y ∈ F such that
Y 0 ⊆ Y .

Proposition 1.1 Let X be a normed linear space and let {Fn : n ∈ IN} be
rich families of closed separable subspaces of X. Then F =

⋂
{Fn : n ∈ IN}

is also a rich family of closed separable subspaces of X.

Proof: Clearly F satifies ∗1 so it remains to show that F satisfies ∗2. To
this end let Y 0 be any separable subspace of X. We proceed from here by
induction. At the first step we choose Y 1

1 ∈ F1 so that Y 0 ⊆ Y 1
1 . Now

after the first n-steps of the induction have been completed we will have
constructed an increasing sequence of closed separable subspaces,

Y 0 ⊆ Y 1
1 ⊆ Y 2

1 ⊆ Y 2
2 ⊆ Y 3

1 ⊆ . . . Y n
1 ⊆ Y n

2 ⊆ . . . Y n
n

so that Y m
j ∈ Fj for each 1 ≤ j ≤ m ≤ n. At the next step we choose closed

separable subspaces Y n+1
j ∈ Fj, 1 ≤ j ≤ n + 1 such that:

Y n
n ⊆ Y n+1

1 ⊆ Y n+1
2 ⊆ . . . Y n+1

n+1
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This completes the induction. Let Y ≡ ⋃{Y n
n : n ∈ IN}, then Y 0 ⊆ Y and

for each j ∈ IN , Y =
⋃{Y n

j : j ≤ n} ∈ Fj. Therefore, Y 0 ⊆ Y ∈ ⋂{Fn : n ∈
IN} = F ; which shows that F is rich. ���
For a real-valued locally Lipschitz function f defined on a non-empty open
subset A of a Banach space X we shall denote by Ff the family of all those
closed separable subspaces Y of X for which there exists a countable dense
subset S of (A ∩ Y ) × Y with the property that for each (x, y,m) ∈ S × IN ,
sup{f+(z; y) : z ∈ B(x, 1/m) ∩A} = sup{f+(z; y) : z ∈ B(x, 1/m) ∩A ∩ Y }
Proposition 1.2 Let f be a real-valued locally Lipschitz function defined on
a non-empty open subset A of a Banach space X. Then Ff is a rich family
of closed separable subspaces of X.

Proof: With a moments thought one can see that Ff satisfies ∗1. Therefore
it remains to show that Ff satisfies ∗2. To this end let Y 0 be any separable
subspace of X. (Note that by possibly making Y 0 larger we may assume
A∩Y 0 �= ∅). We proceed by induction. At the first step we choose a countable
dense subset S1 of (A∩Y 0)×Y 0. Then for each (x, y,m) ∈ S1×IN we select
a countable set C1

(x,y,m) ⊆ B(x, 1/m) ∩ A so that:

sup{f+(z; y) : z ∈ B(x, 1/m) ∩ A} = sup{f+(z; y) : z ∈ C1
(x,y,m)}

and set Y 1 ≡ sp
⋃{C1

(x,y,m) : (x, y,m) ∈ S1 × IN}. Now after the first n steps
of the induction have been completed we will have constructed countable sets
S1, S2, . . . Sn and closed separable subspaces Y 0 ⊆ Y 1 ⊆ Y 2 ⊆ . . . Y n with
the property that for each 1 ≤ j ≤ n and (x, y,m) ∈ Sj × IN , Sj is dense in
(A ∩ Y j−1) × Y j−1 and

sup{f+(z; y) : z ∈ B(x, 1/m)∩A} = sup{f+(z; y) : z ∈ B(x, 1/m)∩A∩Y j}
At the next step we choose a countable dense subset Sn+1 of (A∩ Y n)× Y n.
Then for each (x, y,m) ∈ Sn+1 × IN we select a countable set Cn+1

(x,y,m) ⊆
B(x, 1/m) ∩ A so that:

sup{f+(z; y) : z ∈ B(x, 1/m) ∩ A} = sup{f+(z; y) : z ∈ Cn+1
(x,y,m)}

and set Y n+1 ≡ sp
⋃{Cn+1

(x,y,m) : (x, y,m) ∈ Sn+1 × IN}. This completes the

induction. Let Y ≡ ⋃{Y n : n ∈ IN} and S ≡ ⋃{Sn : n ∈ IN}. It is now easy
to see that S is dense in (A ∩ Y ) × Y and that:

sup{f+(z; y) : z ∈ B(x, 1/m) ∩A} = sup{f+(z; y) : z ∈ B(x, 1/m) ∩A ∩ Y }
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for each (x, y,m) ∈ S × IN . Therefore, Y 0 ⊆ Y ∈ Ff ; which shows that Ff

is rich. ���
Remark 1.1 Note that for each Y ∈ Ff and each (x, y) ∈ (A ∩ Y ) × Y
f 0(x; y) = (f |A∩Y )0(x; y) and so we have that:
∂(f |A∩Y )(x0) = {y∗ ∈ Y ∗ : y∗ = x∗|Y and x∗ ∈ ∂f(x0)} for each x0 ∈ A ∩ Y .

2 Separable reduction

Given a topological space A and a normed linear space X, a set-valued map-
ping Φ from A into non-empty subsets of the dual of X is called a weak∗

cusco on A if:
(i) For each x ∈ A, Φ(x) is weak∗ compact and convex;
(ii) For each weak∗ open subset W of X∗, {x ∈ A : Φ(x) ⊆ W} is open.

Moreover, Φ is called a minimal weak∗ cusco on A if its graph does not prop-
erly contain the graph of any other weak∗ cusco on A (see [7] for more infor-
mation). A closely related notion for real-vauled functions is the following. A
real-valued function f defined on A is said to be quasi lower semi-continuous
on A if for each r ∈ IR, f−1((r,∞)) is semi-open in A. Recall that a subset
B of a topological space is called semi-open if B ⊆ intB.

Lemma 2.1 ([2], Theorem 3.3) Let f be a real-valued locally Lipschitz func-
tion defined on a non-empty open subset A of a Banach space X. Then
x → ∂f(x), is a minimal weak∗ cusco on A if, and only if, for each y ∈ X,
the mapping x → f+(x; y) is quasi lower semi-continuous on A.

We now present the first of our two main theorems.

Theorem 2.1 Let f be a real-valued locally Lipschitz function defined on
a non-empty open subset A of a Banach space X. Then, x → ∂f(x), is a
minimal weak∗ cusco on A if, and only if, there exists a rich family F of
closed separable subspaces of X, such that, x → ∂(f |A∩Y )(x), is a minimal
weak∗ cusco on A ∩ Y for each Y ∈ F with A ∩ Y �= ∅.

Proof: Let FM be some rich family of closed separable subspaces of X, such
that x → ∂(f |A∩Y )(x) is a minimal weak∗ cusco on A ∩ Y for each Y ∈ FM

with A∩Y �= ∅. Let us suppose, for the purpose of obtaining a contradiction
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that x → ∂f(x) is not a minimal weak∗ cusco on A. That is, let us suppose
that there is a weak∗ cusco Φ : A → 2X

∗
whose gragh is properly contained

in that of ∂f . It follows then, via a separation argument in (X, weak∗), that
we may find a point x0 ∈ A and a direction y ∈ X so that:

max ŷ(Φ(x0)) < max ŷ(∂f(x0))

Let Y 0 ≡ sp{x0, y} and choose and Y ∈ FM ∩Ff so that Y 0 ⊆ Y ⊆ X. Then
define ΦY : A ∩ Y → 2Y

∗
by ΦY (x) ≡ {y∗ ∈ Y ∗ : y∗ = x∗|Y and x∗ ∈ Φ(x)}.

Clearly, Φ is a weak∗ cusco and ΦY (x) ⊆ ∂(f |A∩Y )(x) for each x ∈ A ∩ Y
because Y ∈ Ff . In fact, ΦY = ∂(f |A∩Y ) since Y ∈ FM . This however is
impossible because,

max ŷ(ΦY (x0)) = max ŷ(Φ(x0)) < max ŷ(∂f(x0)) = max ŷ(∂f |A∩Y (x0))

Therefore Φ must indeed be a minimal weak∗ cusco on A.

We now consider the converse. Let {rn : n ∈ IN} be an enumeration of the
rational numbers. For each (y, n) ∈ X × IN let us denote by A(y,n) ≡ {x ∈
A : f+(x; y) > rn}. We note that since x → ∂f(x) is a minimal weak∗ cusco
on A, each set A(y,n) is semi-open in X. Let use denote by FM the family
of all those closed separable subspaces Y of X for which there is a countable
dense subset S of (A∩Y )×Y such that: B(x, 1/m)∩A(y,n) �= ∅ if, and only
if, B(x, 1/m)∩ intA(y,n) ∩ Y �= ∅ for each (x, y, n,m) ∈ S × IN2. It follows
in a similar manner to the proof of Proposition 1.2 that FM is rich. So we
are left with showing that for each Y ∈ FM , x → ∂(f |A∩Y )(x) is a minimal
weak∗ cusco on A∩ Y . Fix Y ∈ FM and let S be the countable dense subset
of (A ∩ Y ) × Y given by the definition of FM . It follows from Lemma 2.1
that we need to show that for each (y, n) ∈ Y × IN , AY

(y,n) ≡ A(y,n) ∩ Y is

semi-open in Y . So let us fix (y0, n0) ∈ Y × IN and consider the set AY
(y0,n0).

If AY
(y0,n0) = ∅ then we are done. So let us suppose that AY

(y0,n0) �= ∅. Let

x0 ∈ AY
(y0,n0) and let V be any neighbourhood of x0. We may, without loss

of generality, assume that f is Lipschitz on V with Lipschitz constant K.
Let ε ≡ 1/2(f+(x0; y0) − rn0) > 0. Next we choose (x, y,m) ∈ S × IN so
that x0 ∈ B(x, 1/m) ⊆ V and ||y − y0|| < ε/K. Then f+(x0; y) > rn >
f+(x0; y0)− ε for some n ∈ IN , and so B(x, 1/m)∩AY

(y,n) �= ∅. Therefore, by

the definition of S, B(x, 1/m)∩ intAY
(y,n) �= ∅. Now for each z ∈ B(x, 1/m)∩

intAY
(y,n), f

+(z; y0) > f+(z; y) − ε > rn − ε > f+(x0; y0) − 2ε = rn0 .
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Hence, ∅ �= B(x, 1/m)∩ intAY
(y,n) ⊆ intAY

(y0,n0) ∩ V ; which shows that AY
(y0,n0)

is semi-open in Y . ���
Let f be a real-valued locally Lipschitz function defined on a non-empty
open subset A of a Banach space X. Then we say that f is integrable on A if
∂(f−g)(x) ≡ {0} for each real-valued locally Lipschitz function g defined on
A with ∂g(x) ⊆ ∂f(x) for all x ∈ A. It is easy to see that this is equivalent
to saying that f − g ≡ constant on each of the connected components of
A, whenever ∂g(x) ⊆ ∂f(x) for all x ∈ A. This of course implies that f is
integrable on A if, and only if, the appropriate restriction of f is integrable
on each of the connected components of A.

Lemma 2.2 Let f be an integrable real-valued locally Lipschitz function de-
fined on a non-empty open connected subset A of a Banach space X. Then
for each (x0, y0, ε0) ∈ A × A × (0,∞) there is a finite dimensional subspace
Y(x0,y0,ε0), containing the points x0 and y0, such that if g is any locally Lip-
schitz function defined on A ∩ Y(x0,y0,ε0) with g0(x; y) ≤ f 0(x; y) for each
(x, y) ∈ (A ∩ Y(x0,y0,ε0)) × Y(x0,y0,ε0) then g(x0) − g(y0) < f(x0) − f(y0) + ε0.

Proof: Fix (x0, y0, ε0) ∈ A×A× (0,∞) and let us suppose, for the purpose
of obtaining a contradiction, that the conclusion of the lemma is false. Let
D be the family of all the finite dimensional subspaces Y of X that contain
the points x0 and y0. Then (D,⊆) is an upwardly directed set. Now, by
our assumption there exists, for each Y ∈ D, a locally Lipschitz function
gY : A ∩ Y → IR such that g0

Y (x; y) ≤ f 0(x; y) for all (x, y) ∈ (A ∩ Y ) × Y
while,

gY (x0) − gY (y0) ≥ f(x0) − f(v0) + ε0

(Note that we may, and do, assume gY (x0) = 0 for all Y ∈ D). For each such
function we consider the following extension, g̃Y : A → IR, defined by:

g̃Y (x) =

{
gY (x) if x ∈ A ∩ Y
0 otherwise

Thus, (g̃Y : D) is a net in (IRe)
A - which is compact. Therefore, (g̃Y : D)

has a convergent subnet which converges to some element g ∈ (IRe)
A. It is

now routine to check that g is real-valued and locally Lipschitz on A. In
fact, one can show that ∂g(x) ⊆ ∂f(x) for each x ∈ A. On the other hand,



      

8 Jonathan M. Borwein and Warren B. Moors

g(x0) − g(y0) ≥ f(x0) − f(y0) + ε0; which is impossible since f is integrable
on A. Hence the statement of the lemma must in fact be true. ���
We now present the second of our two main theorems.

Theorem 2.2 Let f be a real-valued locally Lipschitz function defined on a
non-empty open subset A of a Banach space X. Then f is integrable on A
if, and only if, there exists a rich family F of closed separable subspaces of
X, such that f |A∩Y is integrable on A ∩ Y for each Y ∈ F with A ∩ Y �= ∅.

Proof: Let FI be some rich family of closed separable subspaces of X
such that for each Y ∈ FI with A ∩ Y �= ∅, fA∩Y is integrable on A ∩ Y .
Furthermore, let F = FI ∩ Ff and let g be any real-valued locally Lipschitz
function defined on A such that ∂g(x) ⊆ ∂f(x) for each x ∈ A. It follows
immediately from the definition of FI and Remark 1.1 that for each Y ∈ F ,
f |A∩Y − g|A∩Y ≡ constant on each of the connected components of A ∩ Y .
Now with some thought it should eventually become clear that this implies
f − g ≡ constant on each of the connected components of A. This shows
that f is integrable on A.

We now consider the converse. Let {Aγ : γ ∈ Γ} denote the connected
components of A and let FI denote the family of all the closed separable
subspace Y of X for which there is a countable subset S of:⋃

{(Aγ ∩ Y ) × (Aγ ∩ Y ) × (0,∞) : γ ∈ Γ and Aγ ∩ Y �= ∅}

such that Y(x,y,ε) ⊆ Y for each (x, y, ε) ∈ S. (Note: if Y is any separable
subspace of X then {γ ∈ Γ : Aγ ∩ Y �= ∅} is at most countable). As in
Theorem 2.1, the proof that FI is a rich family is similar to the proof of
Proposition 1.2. It should also be clear that for each Y ∈ FI with A∩Y �= ∅,
f |A∩Y is integrable on A ∩ Y . ���
We now present a few simple consequences of Theorems 2.1 and 2.2.

Let X be a separable Banach space, then a Borel subset N is a Haar-null set
if there is a Borel probability measure p on X such that x+N is p-null for all
x ∈ X. It is well-known that the Haar-null sets are closed under translation
and countable unions and moreover, it is known that the complement of any
Haar-null set is dense in X, [5]. We shall call a real-vauled locally Lipschitz
function f defined on a non-empty open subset A of X essentially smooth if
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{x ∈ A : ∂f(x) is not a singleton} is a Haar-null set, and we shall denote by
Se(A) the set of all the essentially smooth locally Lipschitz functions on A.
In [2] it is shown that the essentially smooth functions are both integrable
and D-representable.
For a non-empty open subset A of an arbitrary Banach space X we shall
denote by Re(A) the family of all those locally Lipschitz functions f on
A for which there is a rich family F (possibly depending on f) of closed
separable subspaces Y of X such that f |A∩Y ∈ Se(A ∩ Y ) for each Y ∈ F
with A ∩ Y �= ∅. It follows then that each member of Re(A) is integrable
and possesses a minimal Clarke subdifferential mapping. In fact we have the
following even stronger result.

Proposition 2.1 Let f and g be real-valued locally Lipschitz functions de-
fined on a non-empty open subset A of a Banach space X.
(a) If x → ∂f(x) is a minimal weak∗ cusco on A and g ∈ Re(A), then
x → ∂(f + g)(x) is a minimal weak∗ cusco on A.
(b) If f is integrable on A and g ∈ Re(A) then f + g is integrable on A.

Proof: In light of Theorems 2.1 and 2.2 we may assume that X is separable.
(a) follows from Proposition 8.2 part (i) in [2]. (b) Suppose that h : A → IR
is locally Lipschitz on A and ∂h(x) ⊆ ∂(f + g)(x) for all x ∈ A. Then:

∂(h− g)(x) ⊆ ∂h(x) − ∂g(x)

⊆ ∂(f + g)(x) − ∂g(x)

⊆ ∂f(x) + ∂g(x) − ∂g(x)

Now, ∂g(x) − ∂g(x) = {0} except on a Haar-null set. Therefore, by Propo-
sition 2.2 in [8] we have that ∂(h− g)(x) ⊆ ∂f(x) for all x ∈ A. The result
should now be clear. ���
Remark 2.1 In contrast to Proposition 2.1 it is shown in [2] that neither
integrability nor D-representability is closed under addition.

Proposition 2.2 Let A be a non-empty open subset of a Banach space X,
then Re(A) is closed under addition, subtraction, multiplication and division
(when this is defined), as well as, both of the lattice operations. Moreover,
Re(A) contains all the pseudo-regular and semi-smooth locally Lipschitz func-
tions defined on A.
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Proof: This follows directly from Theorems 2.1 and 2.2 and Theorem 3.12
in [1], see [2] for the definition of semi-smooth and pseudo-regular. ���
Thanks are due to the referee of [2] whose incisive comments formed the
genesis of this paper.
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