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Abstract—Boolean matrix factorization (BMF) is a data sum-
marizing and dimension-reduction technique. Existing BMF
methods build on matrix properties defined by Boolean algebra,
where the addition operator is the logical inclusive OR and the
multiplication operator the logical AND. As a consequence, this
leads to the lack of an additive inverse in all Boolean matrix
operations, which produces an indelible type of approximation
error. Previous research adopted various methods to address
such an issue and produced reasonably accurate approximation.
However, an exact factorization is rarely found in the literature.
In this paper, we introduce a new algorithm named XBMAD
(XOR-based Boolean Matrix Decomposition) where the addition
operator is defined as the exclusive OR (XOR). This change
completely removes the error-mitigation issue of OR-based BMF
methods, and allows for an exact error-free factorization. An
evaluation comparing XBMAD and classic OR-based methods
suggested that XBMAD performed equal or in most cases more
accurately and faster.

I. INTRODUCTION

Data summarization is an important underpinning of ma-
chine learning and data mining. It exists in many forms, such
as dimensionality reduction, data compression, and pattern
identification [28], [21], [9], [15]. Effective data summariza-
tion benefits almost all tasks, including data storage, commu-
nication, pre-processing, modelling, and learning.

Among the most common data types, instance-attribute
relations are often represented as a matrix. When the focus
is on a Boolean relationship, such as the absence or presence
of each attribute per instance, the data can be represented as
a Boolean matrix. Categorical and continuous data are also
often re-coded into Boolean variables during pre-processing.
Boolean matrices are therefore a data format encountered
frequently in machine learning and data mining tasks.

Boolean matrix factorization (BMF), also commonly known
as Boolean matrix decomposition, is a data summarization
technique for data that is represented as a Boolean-valued
matrix [35]. It has gained increasing importance and popularity
along with the rapid upsurge of data scale and data complexity,
and has applications in multiple fields such as data mining,
machine learning [32], bioinformatics [28], or recommender
systems [17].

The aim of BMF is to represent a n X m Boolean-valued
matrix as a product of two (n x k, kxm) factor matrices -which
are often smaller. One of the factor matrices can be viewed
as a basis matrix describing meaningful features / attributes
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Fig. 1: Example factorization and reconstruction using OR
(Figure la) and XOR (Figure 1b) as the Boolean product.
We factorize matrix T such that T ~ P = A o B, where
T = P when the factorization is exact. Note that the same
factor matrices are used, but XOR is able to avoid one error
in the reconstruction.

of the dataset and the other describes different observed
combinations of these features. Although the problem has
been shown to be NP-hard, the past few decades have seen
the development of a number of effective heuristic algorithms
[28], [21].

So far, most of the well-known BMF algorithms are based
on standard Boolean algebra, the characteristics of which pose
challenges for tackling certain types of approximation error.
The main problem arises from the fact that when there is a 1
in a factor of the product, there is no possibility to change
the result back to a 0. Therefore the factor matrices tend
to be sparse to compensate for this problem. In this paper,
we address this by changing the definition of the Boolean
algebra to use the XOR operator for the Boolean product.
This change can fix certain errors in the factorization and can
achieve an exact factorization (given a high enough factor size)
— this differs from most OR-based approaches. An example
factorization is given in Figure 1.

There are three main contributions by this paper: (1) We
change the Boolean algebra to include an additive inverse,
allowing for exact factorizations. (2) We propose an algorithm
based on the new Boolean algebra. (3) We evaluate the new



algorithm on standard data sets and compare to state-of-the-art
approaches.

In the following sections, we provide a summary of the
BMF problem, the challenge of using standard Boolean-
algebra, and propose a modified algebra and a new algorithm
using the exclusive-or (XOR) operand. In the experiment
section, we share results of comparing our new algorithm with
some OR-based counterparts, followed by discussion.

II. PROBLEM DEFINITION

A Boolean matrix is any matrix T with Boolean-valued
entries, i.e., T;; € {true, false}, where the truth values are
often represented by 1 and O respectively. Boolean Matrix
Factorization (BMF) is the problem that given an n X m
Boolean matrix T, find two factor Boolean matrices A (n x k)
and B (kK x m) such that the Boolean matrix product of A
and B is either equivalent to or an approximation of T, i.e.,
T ~ P = A o B, where T = P when the factorization is
exact [28].

In the above definition, the dimension k£ is the Boolean
rank, defined as the smallest number of factors k required to
solve the DBP problem [21], [4]. The symbol o represents the
Boolean matrix product defined under Boolean algebra, where
addition is the logical inclusive disjunction, and multiplication
the logical conjunction [21]. Thus, the Boolean matrix multi-
plication is defined as

<=

(AOB)ij = (Ail /\Blj) €))

=1

and the Boolean matrix addition is
(A V B)” = Aij V Bij 2)

One common interpretation of the factor matrices obtained
from BMF is to view the original matrix T as the object-
attribute matrix with rows as objects and columns as different
attributes. The corresponding factor matrices A and B are
then called usage and basis vector matrices [21]. In this sense,
adopting the matrix-left-multiplication view, each row of B
represents a basis factor, i.e., a particular combination of
attributes with observed association above a certain threshold;
and the i-th row of P is a Boolean vector/matrix sum of the
rows in B where corresponding entries in the i-th row in A
are 1s [21], [4].

The BMF problem has been shown to be NP-hard due to the
NP-completeness of the underpinning set-basis problem [4],
[11], and thus approximate factorization is most common. The
accuracy of the approximation is often measured in one of two
ways: by an error computed via a distance function involving
some type of matrix norm [21], [13], or by a coverage index c
indicating the extent to which the values (often 1s) in the
original matrix are covered in the approximation [4], [5].
Overall, past research often measures factorization quality
using one or both of the following criteria [4]: 1) for a
fixed Boolean rank k, a factorization that yielded smaller
error or greater coverage is considered better; and 2) within

an acceptable error/coverage threshold, a factorization that
requires a smaller &k is considered better. Some authors [4]
further suggested focusing on the marginal effect of the first
few factors, as a good factorization should reach high coverage
/ low error with very small k; and within the first small number
of factors, each increase in k results in a steep improvement
in error/coverage.

III. RELATED WORK

As a sub-topic of matrix factorization, BMF attracts research
interest for several reasons: First, Boolean-valued data are
naturally used when the analytical focus is on a yes/no relation
between subjects and attributes, such as user membership
and class enrolment [21]. Second, although Boolean-valued
matrices can be factorized using real-valued factorization
methods such as singular value decomposition (SVD) and
non-negative matrix factorization (NMF), the output factor
matrices are harder to make sense of due to the decimal and
negative values. On the other hand, BMF provides Boolean-
valued factor matrices that are easier to interpret [21].

Recently, BMF research has drawn increasing research in-
terest within the data mining community [13], [28]. Miettinen
et al. [21], Belohlavek et al. [4], and Sun et al. [28] provide
reasonably structured reviews of representative BMF studies,
whereas the remainder of this section will focus on how some
past work addresses the Boolean matrix addition problem
introduced below.

The matrix operation under Boolean algebra has one major
distinction from that of real-valued matrices: With inclusive
OR (V) as addition, where 1 V1 =1 and 1V 0 = 1, there is
no additive inverse 1 of 1 such that 1V1 = 0. Consequently, for
any given real-valued n x m matrices T and X, there always
exists an n X m matrix Y such that T = X + Y, but with

Boolean matrices, this is not always the case. For example, let

two Boolean-valued matrices T = (1) }

11
and X = Ll‘ J
No Boolean value in Yy can “cancel out” the 1 at X to
make T = X VY hold. Thus, in BMF where P = A o B,
if the original matrix has entry T;; = 0, but P;; = 1, there
is no way to rectify this error with the standard definition of
OR.

Prior studies made various attempts to address the above-
mentioned problem [21], [4], [28], [5], [6], [14]. One example
is the Asso algorithm by Miettinen et al. [21], which is
standard baseline method in BMF [13], [28]. Asso performs
a greedy search; it is initialized using an association matrix
generated from the input matrix with a confidence threshold
7. The search process is allowed to commit both 1-to-0 and
0-to-1 errors (where the original matrix’s entry T;; = 1 but
the approximation P;; = 0, and vice versa); moreover, the
search is steered by a cover function, which rewards accurate
covering of 1s and punishes the 0-to-1 error in order to address
the problem stated above [21], [5].

Some BMF methods based on the minimum-tiling problem
[12] make a more extreme attempt to address the matrix
addition problem by completely avoiding the 0-to-1 type error.



One such method is the “from-below” approximation [5],
[6], which aims at covering as many existing 1s as possible
without introducing additional 1s that the original matrix does
not have. This improves the interpretability of the results: as
the output basis factors (B_.; , the j-th row in matrix B in
T ~ A oB) represent a subset of the original matrix features,
1s in the corresponding entries in the other factor matrix (in
this case, A) indicate that the subject truly has every feature
described in B_.; [5]. Similarly, Sun et al. [28] also poses the
from-below restriction on the 0-to-1 error, with an additional
“column-use” condition that the columns of the usage matrix
A should be subsets of those of the original matrix T in order
to reduce candidate search space.

On another track, methods such as Asso-XOR-DtM [22]
and C-Salt [13] merged tiling-based Boolean factorization with
the numerical optimization principle Minimum Description
Length (MDL). Since MDL requires exact reconstruction of
the input matrix [22], the authors introduced the concept of
an error matrix to accompany the approximation for a lossless
reconstruction and used different encodings to “fix” the O-
to-1 errors in the approximation. In C-Salt, the error matrix
N is a non-Boolean matrix defined as N;; € {-1,0,1}
such that T = A o B + N, where o still represents the
Boolean matrix product, but + is the addition defined over real
numbers [13]. In Asso-XOR-DtM [22], Miettinen and Vreeken
explicitly highlighted the non-inversibility issue of OR-based
Boolean addition and the role of O-to-1 error. Their solution
was to use the exclusive-OR (XOR, &) to combine their
Boolean-valued error matrix with the approximation, such that
N = T @ (A o B). The heuristics for computing MDL cost
is then guided by the goal of minimizing the number of 1’s
in N. Their experiment results suggest favorable model order
and accuracy of the XOR-encoding of error matrix, however,
the factorization results are still approximate [22].

Similarly, Kumar ez al. recently proposed algorithms for fast
Boolean matrix factorization [18]. They propose an algorithm
that is applied to both traditional OR-based Boolean matrix
factorization, and then extended to use GF'(2), i.e. XOR
instead of the OR. A related problem is the low-rank matrix
approximation problem, which is a step in BMF. This was
addressed using XOR by Fomin ef al. [10]. XOR has also
been used in independent component analysis [34], [25], [24].

The above review highlights the BMF literature’s awareness
and some recent attempts in addressing the shortcomings
brought by the OR-based Boolean matrix products. In the more
recent studies mentioned, approximation errors were explicitly
recorded in matrix form [22], yet such an error matrix serves
limited use in the factorization process.

IV. BOOLEAN MATRIX FACTORIZATION

In Section II, we introduced BMF as the task of factorizing a
Boolean matrix T of dimension n xm into two factor matrices,
A and B with dimensions n x k and k x m respectively. When
these factor matrices are multiplied under some definition of a
Boolean matrix product returns R — an approximate or lossless
reconstruction of T. Such a factorization would be considered

to be a rank-k factorization, generally, the higher the rank
the closer R will match T. The definition of Boolean matrix
multiplication in the literature is given in Equation 1 and is
analogous to normal matrix multiplication.

This definition of a Boolean matrix product known as
OR-Product as the V-operator is the analog to summation
under normal matrix multiplication. Algorithms to solve BMF
problems for a fixed k search the space of factorizations
for a good approximation. The primary metric to measure
the effectiveness is the reconstruction error of two Boolean
matrices € (R, T) - the number of bits in which R and T
differ, given by the formula below.

1 if Ry # Ty
5(R,T).. = i 7 3
( )” {O otherwise )
1 n m
e(R,T):nmeZMR,T)ij (4)

i=1j=1
A. Hillclimbing

As mentioned above, BMF is NP-hard, i.e. problems of
non-trivial sizes can not be practically solved to an optimal
factorization (with lowest reconstruction error) for a fixed k.
Heuristics are employed to give a “good enough” factoriza-
tion and make problems tractable. The most straightforward
heuristic approach is a hillclimbing approach. The hillclimber
explores the neighbourhood of factor pairs - solutions to the
BMF - A, B that differ by exactly one bit. More formally, the
neighbourhood rule for a solution is given below.

N(A,B) = {(AlvB/)|
e(A",A) x (n x k) +€(B',B) x (m x k) =1} (5)

There are exactly k(n + m) neighbouring solutions for
every solution. Hillclimbing greedily searches through these
neighbourhoods keeping track of a single solution with the
least reconstruction error e. This is repeated until we reach
a neighborhood with no improvement possible — a locally
optimal solution with respect to the neighbourhood rule de-
fined above. Pseudo-code describing hillclimbing is given in
Algorithm 1.

Algorithm 1: Hillclimbing algorithm NEXTDESCENT
Input: T, k
Output: A,B
A B « INITIALISE(T, k)
incumbentError < € (A o B, T)
improved < true
while improved do
improved < false
for A/, B’ € N (A,B) do
if ¢ (A’ o B','T") < incumbentError then
A B+ A" B
incumbentError + ¢ (A’ o B', T)
10 improved < true

O T N N




The procedure is called NEXTDESCENT referring to the
fact that the next neighbouring solution which gives a lower
reconstruction error € is chosen immediately. There is the
option of exhausting the entire neighbourhood for a single
solution until the neighbouring solution with the least error is
chosen but this is often computationally prohibitive. The exact
locally optimal solution found depends on the initialization.
Often, this initialization is non-deterministic so there are
different local optima every time the algorithm completes a
restart.

V. XOR-BASED BOOLEAN MATRIX DECOMPOSITION

The key idea of switching to using XOR instead of OR
in BMF is that the XOR operation allows fixing errors of a
factorization. Consider a reconstructed matrix and its errors in
the reconstruction. A residual matrix with 1s at the positions
of all reconstruction errors can be used an XOR combination
with the reconstructed matrix. The result would be the original
matrix.

This property is used in our algorithm — XBMAD (XOR-
based Boolean Matrix Decomposition), where the main idea
is to partition the BMF problem into finding good rank 1-
factor matrices and using the XOR operation to iteratively
“repair” the factorizations. This approach is similar to other
machine learning areas, e.g. Ripple Down Rules [26], where
initial models are fixed and refined by using improvements on
the residual, i.e. the parts of the data that cannot be perfectly
modelled by the initial model.

A. XOR Reformulation

To formulate the XBMAD algorithm, we will first define
XO0R-based BMF. Let E be the error or residual matrix of an
approximation P. The entries of E are 1 if the approximation
in P differs from the target T in that position, O otherwise.
This is equivalent to the element-wise XOR of R with T.

E. — 1 if Ty; # Ry ©)
" 0 otherwise
=R;; YTy (7

The target matrix T can be re-obtained by element-wise XOR.
T;j =R Y E;; ®)

Therefore, any target matrix can be exactly represented by
the element-wise XOR (denoted by @) of an approximated
matrix with the error matrix associated with that approximate
factorization. The error matrix, by virtue of being a Boolean
matrix, can also be factorized into two other factor matrices.
For example, if some T can be factorized into A', B! with
an error matrix E1 associated with it. T = (A o B!) @ EL.
Suppose E?! has a factorization with factor matrices A2, B2,
T can be written as the following.

T=(A'oBY) @ (A?cB?) o E? 9)
— T~ (A'oB')® (A%0B?) (10)

This process of continuously factorizing the error matrix can
be repeated any number of times. So the two factorization
example above scales without loss of generality for an arbitrary
amount of factorization. Under OR-product this means that the
factor pairs for the two separate factorizations must be kept.
This motivates an alternate definition of the Boolean matrix
product, XOR-Product where the XOR is used as the analog
for addition. The explicit formulation is shown below:

(A®B);; = v

=1

(Ail /\Blj) (11

If the factorizations were solved under XOR-factorizations
then the approximation, i.e. T ~ (A'® B')® (A2 ® B?). The
factors can be concatenated. The proof is as follows:

R, = [(A' ®B') @ (A% 2 B?)] (12)
\Vis
= [_ll—l (Alill A Blllj)
\/k’1+k2
Y [—lz_klﬂ (A%, AB?,) (13)
Relabelling I € {k1 +1,..., k1 + ka}
\Vas
T —u=1 (Alill A Blllj)
\/k1+k2
Y [—MIH (A%, AB?,) (14)
= (Alil A Bllj) V... (Alil1 AN Blllj)
1 terms
Y (Azi(ll-irl) A B2(l1+1)j) (15)
lo terms
Vo (AN ) ABY 1 )5) (16)
l5 terms
142 B!
=[A'A%] ® [Bz} a17)

B. XBMAD Algorithm

The XBMAD (XO0OR-based Boolean Matrix Decomposition)
algorithm recursively approximates the error matrix with lower
rank factorizations, giving a pair of factors associated with
each approximation. Using the XOR- definition of a Boolean
matrix product, the final factorization can be returned by
concatenating the lower rank factorizations into two factor
matrices yielding a factorization of rank k. Algorithm 2 gives
the XBMAD algorithm.

The initialization of rank-1 factors is done by selecting one
random non-empty row of T in b and setting the correspond-
ing a to all zeros. This is repeated until the specified k rank is
reached or a lossless factorization (e = 0) is achieved. Figure
2 gives an example factorization of a 3 x 3 matrix.

VI. EXPERIMENTS

To evaluate the performance of the XBMAD algorithm, we
compared it to other algorithms proposed in BMF literature on
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Algorithm 2: XBMAD

Input: T,k
Output: A;B
tAB«[ |[ ]
2Q«T
3 notdone < true
41«1
5 while notdone do
6 a,b < NEXTDESCENT (Q, 1)
7 A B + CONCATENATE (A, B, a,b)
8 | Q+—(A®B)aT
9 l+1+1;
10 notdone < e (A®B, T)>0AIl<k

several datasets. Our implementation of XBMAD is in Java,
it is publicly available as part of the BMaD library [30]. The
implementations of Asso or similar algorithms proposed by
Miettinen are in the BMaD [30] library which is written in
Java. The implementations of the other algorithms evaluated
were provided by their respective authors.

A. Experiment Design

For every algorithm evaluated, we factorize each matrix T
of size n x m to a targeted rank k € {k | k = 2% Va €
NAk < min(n,m)} and record all the statistics of the binary
reconstruction IR produced. Since every algorithm that was
tested relies on some randomization, we ran a total of 100
runs of every dataset and £ value pair. A limit of 30 minutes
was set for the runtime. Note that the reconstruction matrix
was produced using XOR-based Boolean algebra in the cases

TABLE I: Datasets used in the experiments with their dimen-
sions. Density gives the fraction of 1s in the matrix.

Dataset Height Width Density

Audiology 200 317 0.060  [3]
Breast 699 91 0.102  [33]
Car 1728 25 0.280 [71
Digits 2000 240 0.608  [31]
Chess (krvskp) 3196 75 0.400 [29]
Mushroom 8124 119 0.176  [27]
Nursery 12960 28 0.268  [23]
Phishing 1353 27 0.338 [1]
Soybean 307 100 0.215  [20]
Student 649 177 0.186 [81]
Tic-tac-toe 958 28 0.345  [19]
Zoo 101 28 0.305  [16]

of XOR-based algorithms (XBMAD and Hillclimbingxor),
and OR-based Boolean algebra for OR-based algorithms.
In cases where algorithms automatically optimize the rank
internally, we set the parameters to choose a fixed rank for
our experiments to compare the performance on a given size
of the factor matrices.

B. Datasets

We conducted tests using 12 real-world datasets of various
sizes from the UCI Machine Learning repository!. Details on
the datasets are shown in Table I. We treat missing values as
false bits as it is not the focus of this paper.

C. Evaluation Metrics

In our experiments, the quality of factorization for a target
matrix T is measured by comparing T to the reconstructed

Isee http://archive.ics.uci.edu/ml



matrix R. The reconstruction is the primary evaluation metric
given by €(T,R) (see Equation 4). In addition, we used
the well-known metrics recall, precision, and Fl-Measure.
Recall gives the fraction of all true positives, i.e. 1s in the
reconstructed matrix that are also 1s in the original matrix,
over all 1s in the original matrix:

TP
TP+ FN
Precision is then the fraction of all true positives, i.e. 1s in
the reconstructed matrix that are also 1s in the original matrix,
over all 1s in the reconstructed matrix:

recall = (18)

TP
TP+ FP
And F1-Measure gives the harmonic mean of the two:

precision = (19)

Pl 2 X recall X precision

20
recall + precision 20)

In addition, we also measured the runtime of the test
algorithms to provide an approximate indication of their
performances and scalability despite their implementation dif-
ferences.

Note that both algorithms Primp and Panpal use the CUDA
library so they were tested in a different environment than the
other algorithms.

D. Algorithms

Overall, we compared XBMAD to eight state-of-the-art
matrix factorization algorithms:

a) Hillclimbing: Hillclimbing uses the NEXTDESCENT
Algorithm 1. This is the basis of XBMAD, used to find low-
rank factorizations. We tested two configurations: One using
the OR and the other using XOR definition of a Boolean prod-
uct. We refer to them as Hillclimbingo i and Hillclimbing xo g
respectively.

b) FastStep: This algorithm by Araujo et al. [2] uses
a thresholding operator and relaxation of those operators to
model BMF as a numerical optimization problem. This is
solved by a gradient descent approach and uses a scalable
method to approximate the gradient for each step. This algo-
rithm yields non-negative factors for its binary reconstruction.
In the experiments we used the approximate gradient approach
and left all the parameters as their defaults.

c¢) PRIMP and PANPAL: Both approaches are presented
by Hess et al. in the PALTiling framework [14] which uses
BMF to solve the Tiling Problem. This is a numerical op-
timization method somewhat similar to FastStep with binary
factors. We used a rank increment of 1 and set the max rank to
the desired k. Since k is set to the max rank, the algorithms
usually do not reach the full value of k, generally stopping
around a value of 4. A solution that was recommended in
the paper is to set the rank increment to max rank, however
in our experiments that resulted in a rank O (or all zero)
reconstruction. So we decided on using a rank-increment of
1.

d) DBP, Asso, and Loc-Iter: These are standard algo-
rithms described above and in previous publications. Asso is
based on a greedy search and initialized using association
rules, all algorithms are implemented in the BMAD library
[21], [30].

VII. RESULTS

The results calculating the F1-Measure of the factorizations
are given in Figure 3. We give the mean of the 100 runs. Due to
space limitations, we display only a selection of representative
figures of the result. The full results and figures are provided
in the supplements 2. The given plots are representatives of
the overall results and similar behaviour can be found in the
remaining results. Note that FastStep did not finish in time
for all the experiments and therefore is missing entries in the
plots.

We can see that XBMAD in most cases, outperforms
other algorithms. Just in the case of higher density datasets,
such as “digits”, the simple OR-based hillclimbing achieves a
comparable performance. This is due to the fact that any OR-
based factorization results in a higher number of 1s — once a
product (AND operation) produces a 1 in a column-row pair,
the result becomes 1. In a denser matrix, this is less likely
to cause errors compared to a sparser matrix. This applies
to all OR-based matrices and explains the comparable worse
performance of XBMAD in these data sets, i.e. it does not
perform worse than in other data sets, the other algorithms just
“catch up” with its performance. Additionally, this shows that
there are easier structures that can be represented by simple
OR-based algebra.

For most algorithms the performance on the krvskp dataset
stagnates quickly with increasing k. However, XBMAD keeps
improving and reaches a lossless factorization around k = 32.
This shows the advantage of XBMAD in that it can always
achieve a lossless reconstruction given a high enough k.

To further understand the differences found in different
algorithms’ performance, we give the precision of the re-
constructions in Figure 4. These results show how well an
algorithm is able to reconstruct the 1s in the original matrix
compared to all 1s in the reconstructed matrix. As expected,
OR-based algorithms tend to produce more ls in the recon-
structed matrix and therefore match the Is in the original
matrix more easily.

Putting the results on precision in relation to the results on
F1-measure, we can see that many OR-based algorithms catch
up with the performance of XOR-based algorithms. This is
caused by the OR-based algorithms tending to predict more 1s
than XOR-based algorithms, making it easier to match the 1s
in the original matrix. If there are two matching Is in each of
a factor, no matter what is in the remaining rows or columns.
While the overall number of 1s increases when using OR-
based algorithms, and therefore also the number of FPs, they
seem to match enough of the TPs at the same time to raise
the overall precision.

2Supplementary material is available in the BMaD repository at https://
github.com/joergwicker/bmad/tree/master/xbmad-supplementary
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Fig. 4: Results of precision on selected representative datasets. Again, the results show that in the case of the digits data set, the
performance of XBMAD can be reached by OR-based algorithms. Overall these results prove the assumption that OR-based
algorithms produce more 1s and therefore match the 1s in the original matrix more easily.

This behaviour becomes most obvious in the car data set
(or similar data sets in the supplement). Numerous OR-based
algorithms are able to achieve high precision. Notably, DBP
and the OR-based Hillclimbing algorithm achieve the highest
precision over all values of k.

Figure 5 shows the results of the evaluation based on
recall. Overall, XBMAD tends to achieve higher recall and
outperform OR-based approaches in many cases. Note that in
the case of the car dataset, XBMAD needs a relatively low
value of k to achieve an almost lossless decomposition with
regard to recall, while other approaches need a higher value

of k to achieve similar results.

The results of the car dataset shows that XBMAD in
comparison corrects more errors (1s) in the residual matrix,
archives higher recall, and results in more 1s matched in both
factor matrices. With lower k, other algorithms tend to achieve
a better recall, but they seem to reach a limit rather early,
shown by the curves flat and stabilizing while the recall of
XBMAD keeps improving.

Results from the digits dataset shows that with a small k&,
XBMAD can already achieve a high recall. This suggests that
with the right structure, XBMAD can quickly “fix” the errors
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Fig. 5: Results of Recall, i.e. the fraction of 1s in both the reconstructed matrix and the original matrix over all 1s in the
original matrix. The results show that this seems to be an easier task for XOR-based algorithms. XBMAD faster reaches a
near-perfect factorization in digits and achieves better results on the car dataset on higher k¥ compared to other algorithms.

in the residual matrix. On the other hand, since OR-based
algorithms tend to generate approximated matrices with higher
density, they are also more prone to generate mismatched 1s
as the result suggests.

Figure 6 shows the reconstruction error on the selected
datasets. The lower the error, the better the performance.
Overall, the reconstruction error exhibits similar patterns to
the F1 measure across all datasets. The explanation of the
observed behavior is similar to that for F1 mentioned above.
Fl-measure averages recall and precision, thus measuring a
value very similar to what the reconstruction error gives. Note
again the low reconstruction error of OR-based Hillclimbing
on the denser digits data set.

Finally, Figure 7 shows the runtime behaviour of the al-
gorithms. XBMAD exhibits near linear runtime, as every
increase in k results in the same operation to be repeated.
In higher ks, the runtime of each step should reduce given
that the density of the residual matrices will reduce, resulting
in lower complexity for the I-factor factorization. However,
due to the overall low runtime of the approach, this cannot be
seen in the figures. Compared to other approaches, XBMAD’s
runtime is very low.

To statistically evaluate the results, we carried out a
Nemenyi-Friedman test and plotted the results in Figure 8. The
results’ overall rankings show that XBMAD performs similar
to XOR-based Hillclimbing and are together significantly
better than other algorithms. However, F1-measure shows that
while Hillclimbing does not significantly outperform DBP,
XBMAD does.

VIII. CONCLUSION

In this paper, we introduced XBMAD, an XOR-based
Boolean matrix factorization algorithm. To do this, we adapted
the Boolean algebra to use XOR instead of OR, including

an additive inverse that is missing when using an OR-based
algebra. This use of XOR guarantees a lossless factorization
for a high enough value of k. The evaluation shows that XOR-
based algorithms outperform OR-based algorithms in both per-
formance and runtime. Overall, this allows better factorizations
at a lower k compared to state-of-the-art approaches.

While the performance of the new approach already proved
its usefulness for many applications in machine learning and
data mining, there are a number of research questions that arise
from this work. First of all, in OR-based BMF, the factors can
be interpreted, e.g. for using it in graph clustering. This is
due to the fact that the factors represent a compressed version
of the original matrix. However, the representation changes
when using an XOR-based BMF. Each row/column in the
factors represents another residual matrix, i.e. a function to fix
errors in another row/column. Therefore it does not translate
to the traditional interpretation of a BMF. Future research will
address this and aim to find an interpretation of the factors.

Another open problem is the forward-only approach of the
algorithm. In each iteration, another 1-factor is added, without
going back to previous factors and combining them or reducing
factors that might cancel each other out. How this can be done
is not trivial, simple approaches that relied on straight-forward
techniques did not show improvements. However, this has the
potential to further reduce the size of k£ and achieve smaller
factorizations.

Finally, initial experiments showed that the choice of the
initialization has a strong impact on the performance of
the overall decomposition. Using a row or column of the
matrix showed to achieve good results, but this might still be
improved by using different candidates, especially in the later
factors where the residual matrices become more and more
sparse.
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