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Abstract

Continuous complex branches of the inverses of each of the 12
Jacobi elliptic functions, for real argument, are constructed in terms
of real Incomplete Elliptic Integrals of the First Kind. These formulæ
have been used for practical computation of complex inverses of Jacobi
elliptic functions.
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Jacobi Elliptic Functions

1 Notation for Elliptic Integrals

and Elliptic Functions

We shall use Milne–Thomson’s notation for Legendre’s elliptic integrals and
Jacobi elliptic functions [Milne–Thomson].
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1.1 Elliptic Integrals

An integral of the form
∫
R(x, y) dx, where R(x, y) is a rational function of

x and y, and y2 = P (x) where P is a polynomial of degree 3 or 4, is called
an elliptic integral [Milne–Thomson, 17.1].

Legendre’s Elliptic Integral of the First Kind, with amplitude ϕ and pa-
rameter m, is defined [Milne–Thomson, 17.2.7] as

F (ϕ | m)
def
=

∫ sinϕ

0

dt√
(1 − t2)(1 −mt2)

. (1)

The parameter m can be taken as real with 0 ≤ m ≤ 1, and the complemen-
tary parameter is

m1
def
= 1 −m. (2)

(Earlier authors often used the modulus k, where m = k2). F (ϕ | m) is often
abbreviated to F (ϕ), when the parameter m is to be understood.

Legendre’s Complete Elliptic Integral of the First Kind [Milne–Thomson,
17.3.1] is

K(m)
def
= F (1

2
π | m) =

∫ 1

0

dt√
(1 − t2)(1 −mt2)

. (3)

As m ↗ 1, then K(m) ↗ ∞.
Legendre’s Complementary Complete Elliptic Integral of the First Kind

is defined [Milne–Thomson, 17.3.5] as

K ′(m)
def
= K(m1) = K(1 −m). (4)

K(m) and K ′(m) are often abbreviated to K and K ′, when the parameter
m is to be understood.

In the definition (1) of F (ϕ | m), the integrand has branch–points at
t = ±1 and at t = 1/

√
m (at P ) and at t = −1/

√
m (at Q)1. If the integral

in (1) is taken as a Riemann integral on the real interval (−1, 1) then it
is single–valued; but with complex limit sin ϕ the Cauchy line integral has
infinitely many values, depending on the number of loops made around each
of the branch–points.

If sin ϕ is in the upper half t–plane (including the real axis) and the path
of integration keeps t in the upper half–plane (including the real axis), then
the imaginary part of F (ϕ | m) is in the interval [0, K ′]. But if sin ϕ is in the

1The t–plane could be cut from 1 to 1/
√
m and from −1/

√
m to −1, giving a 4-sheeted

Riemann surface
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lower half t–plane (including the real axis) and the path of integration keeps
t in the lower half–plane (including the real axis) then the imaginary part of
F (ϕ | m is in the interval [−K ′, 0]. In each case, the real part of F (ϕ | m) is
in [−K,K]. [Jeffreys & Jeffreys, p.672].

↗↘
C ↗ ↘ ↗↘ D
↗ ↘ ↗ ↘

↗ ↘ ↗ ↘
↗ ↘↗ ↘

↗ ↗↘ ↘
↗ ↗ ↘ ↘

Q ↗ −1 0 ↗ 1 ↘ P ↘
↖ ↖ ↙ ↙

↖ ↖ ↙ ↙
↖ ↖↙ ↙

↖ ↙↖ ↙
↖ ↙ ↖ ↙

↖ ↙ ↖ ↙
↖ ↙ ↖↙

↖↙

(5)
But, for a path of integration taken (clockwise) around any loop C con-

taining the branch–points −1 and 1 the integral equals 4K, and around any
loop D containing the branch–points 1 and 1/

√
m (at P ) the integral equals

i2K ′ [Jeffreys & Jeffreys, p.672]. Hence any value of the integral (1) can have
4jK+ i2kK ′ added to it, by splicing j clockwise circuits of C and k clockwise
circuits of D into the path of integration.

1.2 Elliptic Functions

The theory of elliptic integrals, as developed by Fagnano, Euler and Legendre,
was exceedingly complicated, involving infinitely many values for each elliptic
integral. In 1827, Abel simplified the subject immensely by inverting elliptic
integrals to get elliptic functions, and he shewed that elliptic functions are
doubly–periodic single–valued functions [Abel, p.264].

If g is a doubly–periodic function with ξ a period of least modulus, and
with χ a period of least modulus which is not an integral multiple of ξ, then
the pair of periods (ξ, χ) are called fundamental periods of g [Jeffreys &
Jeffreys, p.673], or its primitive periods.
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The doubly periodic function g(u) over the primitive period parallelogram
which is generated by the vectors ξ and χ from 0 in the complex u–plane,
gives a full representation of g(u); for the entire complex plane could be tiled
with copies of that parallelogram and the values of g(u) over it. Indeed, any
parallelogram with sides equal and parallel to those vectors, centred anywhere
in the complex plane, could be taken as a basic period parallelogram for g,
which could be copied to tile the entire complex plane with g.

As functions of the complex variable u, the Jacobi elliptic functions
sn(u), cn(u) and dn(u) are doubly–periodic single–valued functions of u.

1.2.1 Jacobi Elliptic Function sn(u)

The inverse function of the Legendre elliptic function F is ϕ = F−1(u), and

the Jacobi elliptic function snu
def
= sinϕ (or sn(u | m)) is single–valued for

all complex parameters [Milne–Thomson, 16.1.3], with

u =
∫ snu

0

dt√
(1 − t2)(1 −mt2)

, (6)

and sn(u) is an odd single–valued function of u.
For real u, the function sn has real period 4K(m) and range [−1, 1],

with sn(0) = 0, sn(K) = 1, sn(2K) = 0, sn(3K) = −1 and sn(4K) = 0
[Milne–Thomson, 16.2]. Let τ = snu, so that

sn−1τ = u =
∫ τ

0

dt√
(1 − t2)(1 −mt2)

= F
(
sin−1 τ | m

)
, (7)

using the principal branch of the function sin−1τ , through the origin. On the
real interval −K ≤ u ≤ K the function sn increases monotonically from −1
to 1, and so for real τ ∈ [−1, 1] the function sn−1τ has a single value in the
real interval [−K,K].

In addition to the primitive real period 4K, sn also has the primitive
imaginary period i 2K ′. It follows that, for every complex u, every η satisfying
the equation

sn η = snu = τ (8)

is of the form
η = (−1)ju + 2jK + i2kK ′ (9)

for integers j, k [Dixon, p.32].
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1.2.2 Jacobi Elliptic Function cn(u)

The Jacobi elliptic function cn is defined by

cnu = cn(u | m)
def
= cos φ, (10)

so that
cnu =

√
1 − sn2u, (11)

and cn(u) is an even single–valued function of u. The branch of the square
root function in (11) is determined by (10).

For real u, the function cn has real period 4K(m) and range [−1, 1], with
cn(0) = 1, cn(K) = 0, cn(2K) = −1, cn(3K) = 0 and cn(4K) = 1 [Milne–
Thomson, 16.2]. On the real interval 0 ≤ u ≤ 2K the function cn decreases
monotonically from 1 to −1, and so for real r ∈ [−1, 1] the function cn−1r
has a single value in the real interval [0, 2K].

In addition to the real primitive period 4K, cn also has the primitive
complex period 2K+i2K ′; and hence it also has the imaginary period i 4K ′ =
2(2K+ i2K ′)−4K, which is not a primitive period. It follows that, for every
complex u, every η satisfying the equation

cn η = cnu = τ (12)

is of the form
η = ±u + 4jK + k(2K + i 2K ′) (13)

for integers j, k [Dixon, p.33].

1.2.3 Jacobi Elliptic Function dn(u)

The Jacobi elliptic function dn is defined by

dnu = dn(u | m)
def
=

√
1 −m sn2u, (14)

and so dn(u) is an even single–valued function of u.
For real u, the function dn has real period 2K(m) and range [

√
m1, 1],

with dn(0) = 1, dn(K) =
√
m1 and dn(2K) = 1 [Milne–Thomson, 16.2].

On the real interval 0 ≤ u ≤ K the function dn decreases monotonically
from 1 to

√
m1, and so for real r ∈ [

√
m1, 1] the function dn−1r has a single

value in the real interval [0, K].
In addition to the primitive real period 2K, dn also has the primitive

imaginary period i 4K ′. It follows that, for every complex u, every η satisfying
the equation

dn η = dnu = τ (15)
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is of the form
η = ±u + 2jK + i 4kK ′ (16)

for integers j, k [Dixon, p.33].

2 Addition Formulæ for Elliptic Functions

For the extreme values m = 0 and m = 1, those elliptic functions reduce
respectively [Milne–Thomson, 16.6] to trigonometric and hyperbolic func-
tions:

sn(u | 0) = sin u, cn(u | 0) = cosu, dn(u | 0) = 1,

sn(u | 1) = tanhu, cn(u | 1) = dn(u | 1) = sechu. (17)

Hereafter we shall consider 0 < m < 1.
For all complex α and β [Milne–Thomson, 16.17],

sn(α + β) =
snα · cn β · dn β + sn β · cnα · dnα

1 −m sn2α · sn2β
,

cn(α + β) =
cnα · cn β − snα · dnα · sn β · dn β

1 −m sn2α · sn2β
,

dn(α + β) =
dnα · dn β −m snα · cnα · sn β · cn β

1 −m sn2α · sn2β
. (18)

2.1 Complex Amplitude and Parameter

Jacobi’s imaginary transform [Milne–Thomson, 16.20] gives the elliptic func-
tions of imaginary argument u = iy:

sn(iy | m) =
i sn(y | m1)

cn(y | m1)
= i sc(y | m1),

cn(iy | m) =
1

cn(y | m1)
= nc(y | m1),

dn(iy | m) =
dn(y | m1)

cn(y | m1)
= dc(y | m1). (19)

Applying Jacobi’s equations (19) to the addition formulæ (18), we get the
Jacobi elliptic functions for complex u = x+ iy in terms of elliptic functions
of real argument [Milne–Thomson, 16.21]. For brevity, here we write s, c
and d for sn, cn and dn:

s(x + iy | m) =
s(x | m)d(y | m1) + i c(x | m)d(x | m)s(y | m1)c(y | m1)

c2(y | m1) + m s2(x | m)s2(y | m1)
,
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c(x + iy | m) =
c(x | m)c(y | m1) − i s(x | m)d(x | m)s(y | m1)d(y | m1)

c2(y | m1) + m s2(x | m)s2(y | m1)
,

d(x + iy | m) =
d(x | m)c(y | m1)d(y | m1) − im s(x | m)c(x | m)s(y | m1)

c2(y | m1) + m s2(x | m)s2(y | m1)
.

(20)

These formulæ hold, even if x and y are not real.
Graphs of sn(u | m), cn(u | m) and dn(u | m) (and of the 9 other Jacobi

elliptic functions ns, nc, nd, sc, sd, cs, cd, ds and dc) for real u (and m = 0.5)
are given in [Milne–Thomson, Figure 16.1]. Very effective graphs of F, E,
sn, cn and dn for complex u (and m = 0.64) are given in [Jahnke & Emde,
pp. 91–93].

“In the complex domain cnu and dnu are not essentially different from
snu” [Jahnke & Emde, p.93], for it follows from (20) that

dn(u | m) =
√
m1 sn(K ′ − iK + iu | m1) (21)

and
cn(u | m) = sn

(
K
√
m1 + u

√
m1 | −m/m1

)
. (22)

The evaluation of sn(w | −λ) with negative parameter −λ (where λ = m/m1

in (22)) can be done in terms of a positive parameter μ [Milne–Thomson
16.10]. Define

μ =
λ

1 + λ
, μ1 =

1

1 + λ
, v =

w√
μ1

. (23)

Then,

sn(w | −λ) =
√
μ1 sd(v | μ) =

√
μ1 sn(v | μ)

dn(v | μ)
. (24)

Inverse Elliptic Functions
With Real Argument

3 Inverse Elliptic Functions

In Terms Of Real F (ϕ | m)

The inverse of each elliptic function has infinitely many complex values; but
it is sufficient to compute a single value u, since every value η of that inverse
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function can be expressed in terms of u. For computational purposes, any
function being computed should be a continuous function of its argument,
wherever possible. Accordingly, we shall construct algorithms for practical
computation of the inverses of each of the 12 Jacobi elliptic functions for real
argument, in each case constructing a single–valued complex function which
gives a continuous branch of the infinitely–valued complex inverse function.

These algorithms have been used extensively, in testing numerically many
novel congruence identities [Tee 1994] for integer sums of powers of Jacobi
elliptic functions [Tee]. The computations were performed on a Macintosh
computer using THINK PASCAL 4.0.2 with extended precision, rounding
to about 19 significant decimal figures. The complete elliptic integrals and
the elliptic functions (real and complex) were computed by procedures based
on the Arithmetic-Geometric Mean [Milne–Thomson, 16.4, 16.21, 17.6].
However, the similar method given [Milne–Thomson, 17.6.8] for computing
the incomplete elliptic integral F (ϕ | m) is not workable, and hence that
incomplete elliptic integral was evaluated by numerical integration. The ver-
sion (1) of F (ϕ | m) is not suitable for numerical evaluation, since for all
m the integrand is infinite at ϕ = 1

2
π (t = 1). Accordingly, the Romberg

algorithm for numerical integration was applied to (1), transformed by sub-
stituting t = sin ξ:

F (ϕ | m) =
∫ ϕ

0

dξ√
1 −m sin2 ξ

, (25)

in which (with m < 1) the integrand is a bounded function of ξ for all ϕ.
As m ↗ 1 and ϕ ↗ 1

2
π, then F (ϕ | m) ↗ +∞, and hence direct

numerical evaluation of the above integral becomes difficult. If ϕ is nearly
1
2
π and m is nearly 1, then methods given in [Milne–Thomson 17.4.13, 17.5]

should be used for evaluating F (ϕ | m).
The computation of F (ϕ | m) for complex amplitude ϕ was considered

in [Milne–Thomson, 17.4.11]. The method given there could be used to
determine the moduli of the real and imaginary parts of one value of F (ϕ | m)
— but the information provided is not sufficient for determining the signs of
those real and imaginary parts. Carlson’s method [Carlson, (4.5)] could be
used to compute a value of F (ϕ | m) for complex amplitude ϕ. However,
it would probably be simpler to evaluate the integral (25) for complex ϕ
numerically, by constructing a simple integration path from 0 to ϕ in the
complex plane, composed of intervals parallel to the real or imaginary axes
(avoiding points ξ for which 1 − m sin2 ξ = 0). Over each such interval,
the complex path integral could readily be evaluated to high accuracy by
Romberg integration, and the complete path integral (25) is the sum of such
integrals over all intervals in the integration path.
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3.1 sn−1τ , for real τ

As was noted after (7), as x increases from −K to K, snx increases mono-
tonically from −1 to 1; and hence for real τ ∈ [−1, 1], x = sn−1τ has a single
real value in [−K,K]:

x = sn−1τ = F
(
sin−1 τ | m

)
. (26)

For u = K + iy, it follows from (20) that

sn(K + iy) =
dn(y | m1) + i0

cn2(y | m1) + m sn2(y | m1)
=

1

dn(y | m1)
, (27)

which is real (for real y); and as y increases from 0 to K ′, sn(K+iy) increases
monotonically from 1 to 1/

√
m. Hence, for τ ∈ [1,

√
m], sn−1τ has a single

value of the form K + iy, where 0 ≤ y ≤ K ′.

τ = sn(K + iy) =
1

dn(y | m1)
, (28)

and hence
τ−2 = dn2(y | m1) = 1 −m1 sn2(y | m1), (29)

and so

sn(y | m1) = ±
√

1 − τ−2

m1

. (30)

Therefore, for τ ∈ [1, 1/
√
m]

sn−1τ = K + i F

⎛⎝sin−1

⎛⎝√
1 − τ−2

m1

⎞⎠ | m1

⎞⎠ . (31)

It follows from (20) that

sn(u± iK ′) =
snu

√
m + i0

0 + m sn2u
=

1√
m snu

, (32)

and so, as real x decreases from K to 0, sn(x+ iK ′) increases monotonically
from 1/

√
m to +∞. Hence, for τ ≥ 1/

√
m, sn−1τ has a single value of the

form x + iK ′, where 0 ≤ x ≤ K, with

τ = sn(x + iK ′) =
1√

m snx
, (33)

so that

snx =
1

τ
√
m
. (34)
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Therefore, for τ ≥ 1/
√
m,

sn−1τ = F

(
sin−1

(
1

τ
√
m

)
| m

)
+ iK ′. (35)

And sn is an odd function, so that sn−1(−τ) = −sn−1τ .
Thus, for real τ , a continuous branch of u = sn−1τ is represented by the

following diagram in the plane of u, with arrows indicating increasing τ :

(u = iK ′) F ←−←−←−←− E

↑
↑

(u = −K) C −→−→−→−→ 0 −→−→−→−→ D (u = K)

↑
↑
B ←−←−←−←− A (u = −iK ′) (36)

As τ increases from −∞ to −1/
√
m, u moves from A to B. As τ increases

from −1/
√
m to −1, u moves from B to C. As τ increases from −1 to 1, u

moves from C through the origin 0 to D. As τ increases from 1 to 1/
√
m, u

moves from D to E. As τ increases from 1/
√
m to +∞, u moves from E to

F.
From the value u found on this continuous branch of the function sn−1,

every value η = sn−1τ is of the form (9).

3.2 ns−1σ, for real σ

If
τ = snu, (37)

then

σ
def
=

1

τ
=

1

snu
= nsu, (38)

so that
u = ns−1σ = ns−1(1/τ). (39)

The function sn has period i2K ′, and hence so does the function ns.
Thus, from the diagram (36), for real σ a continuous branch of u = ns−1σ is
represented by the following diagram in the plane of u, with arrows indicating
decreasing σ:
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H −→−→−→−→ I (u = i2K ′)

↑
↑
G ←−←−←−←− F ←−←−←−←− E

↑
↑

0 −→−→−→−→ D (u = K) (40)

For σ > 0, as σ decreases from +∞ to 0, u moves from 0 (σ = +∞) to D
(σ = 1) to E(σ =

√
m) to F (σ = 0), with

u = ns−1σ = sn−1(1/σ) (σ > 0). (41)

For σ = 0,
u = ns−1σ = iK ′. (σ = 0). (42)

For σ < 0, as σ decreases from 0 to −∞, u moves from F to G (σ = −√
m)

to H (σ = −1) to I(σ = −∞), with

u = ns−1σ = sn−1(1/σ) + i2K ′ (σ < 0). (43)

In both (41) and (43), the branch of sn−1 given in (36) is to be used.
From the value u found on this continuous branch of the function ns−1,

every value η can be generated from (9).

3.3 cn−1τ , for real τ

Let
τ = cnu, (44)

so that
τ 2 = cn2u = 1 − sn2u, (45)

and hence
snu = ±

√
1 − τ 2. (46)

As was noted after (11), as x increases from 0 to 2K, cnx decreases
monotonically from 1 to −1; and hence for real τ ∈ [0, 1], x = cn−1τ has a
single real value in [0, K]:

x = cn−1τ = F
(
sin−1

(√
1 − τ 2

)
| m

)
. (47)
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For all u, cn(2K − u) = −cnu in view of (18), and hence for real τ ∈
[−1, 0], x = cn−1τ has a single real value in [K, 2K]:

x = cn−1τ = 2K − F
(
sin−1

(√
1 − τ 2

)
| m

)
. (48)

For u = iy, it follows from (19) that as y increases from 0 to K ′, cn(iy)
increases monotonically from 1 to +∞. Hence, for τ ≥ 1, cn−1τ has a single
value of the form u = iy, where 0 ≤ y ≤ K ′.

τ = cn(iy) =
1

cn(y | m1)
, (49)

and hence
τ−2 = cn2(y | m1) = 1 − sn2(y | m1), (50)

and so
sn(y | m1) = ±

√
1 − τ−2. (51)

Therefore, for τ ≥ 1

cn−1τ = i F
(
sin−1

(√
1 − τ−2

)
| m1

)
. (52)

It follows from (20) that

cn(2K − iy) =
−1

cn(y | m1)
, (53)

and so, as real y increases from 0 to K ′, cn(2K− iy) decreases monotonically
from −1 to −∞. Hence, for τ ≤ −1, cn−1τ has a single value of the form
2K − iy, where 0 ≤ y < K ′, with

τ 2 = cn2(2K − iy) =
1

cn2(y | m1)
=

1

1 − sn2(y | m1)
, (54)

so that
sn(y | m1) = ±

√
1 − τ−2. (55)

Therefore, for τ ≤ −1,

cn−1τ = 2K − i F
(
sin−1

(√
1 − τ−2

)
| m1

)
. (56)

Thus, for real τ , a continuous branch of u = cn−1τ is represented by the
following diagram in the plane of u, with arrows indicating increasing τ :
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(u = iK ′) D

↑
↑
0 ←−←− C ←−←− B (u = 2K)

↑
↑
A (u = 2K − iK ′) (57)

As τ increases from −∞ to −1, u moves from A to B. As τ increases
from −1 to 0, u moves from B to C (u = K). As τ increases from 0 to 1, u
moves from C to the origin 0. As τ increases from 1 to ∞, u moves from the
origin 0 to D.

From the value u found on this continuous branch of the function cn−1,
every value η = cn−1τ is of the form (13).

3.4 nc−1σ, for real σ

If
τ = cnu, (58)

then

σ
def
=

1

τ
=

1

cnu
= ncu, (59)

so that
u = nc−1σ = nc−1(1/τ). (60)

The function cn has primitive periods 4K and 2K + i2K ′, so that cn also
has the period −2K + i2K ′, and hence so does the function nc. Thus, from
the diagram (57), for real σ a continuous branch of u = nc−1σ is represented
by the following diagram in the plane of u, with arrows indicating decreasing
σ:

(u = −K + i2K ′) F ←−←− E (u = i2K ′)

↑
↑
D

↑
↑
0 ←−←− C (u = K) (61)
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For σ > 0, as σ decreases from +∞ to 0, u moves from C (σ = +∞) to 0
(σ = 1) to D (σ = 0), with

u = nc−1σ = cn−1(1/σ) (σ > 0). (62)

For σ = 0,
u = nc−1σ = iK ′ (σ = 0). (63)

For σ < 0, as σ decreases from 0 to −∞, u moves from D to E (σ =
−1) to F (σ = −∞), with

u = nc−1σ = cn−1(1/σ) − 2K + i2K ′ (σ < 0). (64)

In both (62) and (64), the branch of cn−1 given in (57) is to be used.
From the value u found on this continuous branch of the function nc−1,

every value η can be generated from (13).

3.5 dn−1τ , for real τ

Let
τ = dnu, (65)

so that
τ 2 = dn2u = 1 −m sn2u, (66)

and hence

snu = ±
√

1 − τ 2

m
. (67)

As was noted after (14), as x increases from 0 to K, dnx decreases
monotonically from 1 to

√
m1; and hence for real τ ∈ [

√
m1, 1], x = dn−1τ

has a single real value in [0, K]:

x = dn−1τ = F

⎛⎝sin−1

⎛⎝√
1 − τ 2

m

⎞⎠ | m
⎞⎠ . (68)

For u = iy, it follows from (19) that as y increases from 0 to K ′, dn(iy)
increases monotonically from 1 to +∞. Hence, for τ ≥ 1, dn−1τ has a single
value of the form u = iy, where 0 ≤ y ≤ K ′.

τ = dn(iy) =
dn(y | m1)

cn(y | m1)
, (69)

and hence

τ 2 =
dn2(y | m1)

cn2(y | m1)
=

1 −m1sn
2(y | m1)

1 − sn2(y | m1)
, (70)
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and so

sn(y | m1) = ±
√

1 − τ−2

1 −m1τ−2
. (71)

Therefore, for τ ≥ 1

dn−1τ = i F

⎛⎝sin−1

⎛⎝√
1 − τ−2

1 −m1τ−2

⎞⎠ | m1

⎞⎠ . (72)

It follows from (20) that

dn(K + iy) =

√
m1

(
dn(y|m1)

cn(y|m1)−i0

)
1 + m1sn2(y|m1)

cn2(y|m1)

=

√
m1 cn(y | m1)

dn(y | m1)
; (73)

and so, as y increases from 0 to 2K ′, dn(K + iy) decreases monotonically
from

√
m1 to −√

m1. Hence, for τ ∈ [−√
m1,+

√
m1], dn−1(K + iy) has a

single value of the form K + iy, where 0 ≤ y ≤ 2K ′.
Now,

τ 2 = dn2(K + iy) =
m1 cn2(y | m1)

dn2(y | m1)
=

m1(1 − sn2(y | m1))

1 −m1sn2(y | m1)
, (74)

and so

sn(y | m1) = ±
√

1 − τ 2/m1

1 − τ 2
. (75)

Therefore, for τ ∈ [0,
√
m1],

dn−1τ = K + i F

⎛⎝sin−1

⎛⎝√
1 − τ 2/m1

1 − τ 2

⎞⎠ | m1

⎞⎠ . (76)

Now, from (20), sn(i(2K ′ − y) | m1) = sn(i y | m1); and therefore, for
τ ∈ [−√

m1, 0],

dn−1τ = K + i

⎛⎝2K ′ − F

⎛⎝sin−1

⎛⎝√
1 − τ 2/m1

1 − τ 2

⎞⎠ | m1

⎞⎠⎞⎠ . (77)

It follows from (20) that for all u,

dn(2K − u + i 2K ′) = dn(−u + i 2K ′) = −dn(−u) = −dnu; (78)

and so as x increases from 0 to K, dn(2K−x+i 2K ′) increases monotonically
from −√

m1 to −1. Hence, for τ ∈ [−1,−√
m1], dn−1τ has a single value of

the form 2K − x + i 2K ′, where 0 ≤ x ≤ K, with

τ = dn(2K − x + i 2K ′) = −dnx, (79)
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so that

snx = ±
√

1 − τ 2

m
. (80)

Therefore, for τ ∈ [−1,−√
m1],

dn−1τ = 2K − F

⎛⎝sin−1

⎛⎝√
1 − τ 2

m

⎞⎠ | m
⎞⎠ + iK ′. (81)

It follows from (19) that for all y

dn(2K + i 2K ′ − iy) = dn(i(2K ′ − y)) = −dn(iy) =
−dn(y | m1)

cn(y | m1)
; (82)

and so, as yincreases from 0 to K ′, dn(2K+2K ′−iy) decreases monotonically
from −1 to −∞. Further,

τ 2 = dn2(2K + i(2K ′ − y)) =
dn2(y | m1)

cn2(y | m1)
=

1 −m1sn
2(y | m1)

1 − sn2(y | m1)
, (83)

whence

sn(y | m1) = ±
√

1 − τ−2

1 −m1τ−2
. (84)

Hence, for τ ≤ −1, dn−1τ has a single value of the form 2K + i 2K ′ − iy,
where 0 ≤ y ≤ K ′, with

dn−1τ = 2K + i

⎛⎝2K ′ − F

⎛⎝sin−1

⎛⎝√
1 − τ−2

1 −m1τ−2

⎞⎠ | m1

⎞⎠⎞⎠ . (85)

Thus, for real τ , a continuous branch of u = dn−1τ is represented by the
following diagram in the plane of u, with arrows indicating increasing τ :

(u = K + i 2K ′) C ←−←−←−←− B (u = 2K + i 2K ′)

↓ ↑
↓ ↑

(u = iK ′) F D A (u = 2K + iK ′)

↑ ↓
↑ ↓
0 ←−←−←−←− E (u = K) (86)

As τ increases from −∞ to −1, u moves from A to B. As τ increases
from −1 to −√

m1, u moves from B to C. As τ increases from −√
m1 to 0, u
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moves from C to D. As τ increases from 0 to
√
m1, u moves from D to E. As

τ increases from
√
m1 to 1, u moves from E to the origin 0. As τ increases

from 1 to ∞, u moves from the origin 0 to F.
From the value u found on this continuous branch of the function dn−1,

every value η = dn−1τ is of the form (16).
Note the close relation between the diagram (36) for sn−1τ and the dia-

gram (86) for dn−1τ , which follows from (21) and from the fact that dn is an
even function.

3.6 nd−1σ, for real σ

If
τ = dnu, (87)

then

σ
def
=

1

τ
=

1

dnu
= ndu, (88)

so that
u = nd−1σ = nd−1(1/τ). (89)

The function dn has primitive periods 2K and i4K ′, and hence so does
the function nd. Thus, from the diagram (86), for real σ a continuous branch
of u = nd−1σ is represented by the following diagram in the plane of u, with
arrows indicating decreasing σ:

H ←−←−←−←− G (u = i2K ′)

↓ ↑
↓ ↑

(u = −K + iK ′) I (u = iK ′) F D (u = K + iK ′)

↑ ↓
↑ ↓
0 ←−←−←−←− E (u = K) (90)

For σ > 0, as σ decreases from +∞ to 0, u moves from D (σ = +∞) to E (σ =
1/
√
m) to 0 (σ = 1) to F (σ = 0), with

u = nd−1σ = dn−1(1/σ) (σ > 0). (91)

For σ = 0,
u = nd−1σ = iK ′ (σ = 0). (92)
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For σ < 0, as σ decreases from 0 to −∞, u moves from F to G (σ = −1) to
H (σ = −1/

√
m) to (σ = −∞), with

u = nd−1σ = dn−1(1/σ) − 2K (σ < 0). (93)

In both (91) and (93), the branch of dn−1 given in (86) is to be used.
From the value u found on this continuous branch of the function nd−1,

every value η can be generated from (16).

3.7 Inverses of sc and cs

If
τ = scu =

snu

cnu
, (94)

then

τ 2 =
sn2u

cn2u
=

sn2u

1 − sn2u
, (95)

and so

snu =
±τ√
1 + τ 2

. (96)

For u ∈ (−K,K),

snu =
τ√

1 + τ 2
. (97)

As u increases from −K to K, scu increases monotonically and continu-
ously from −∞ to +∞. Hence, for real τ , a continuous branch of the function
sc−1τ , which increases from −K to K as τ increases from −∞ to +∞, is
given (cf. (7)) by

u = sc−1τ = sn−1

(
τ√

1 + τ 2

)
= F

(
sin−1

(
τ√

1 + τ 2

)
| m

)
. (98)

Thus, for all real τ , a continuous branch of sc−1τ is given by

u = sc−1τ = F
(
tan−1 τ | m

)
, (99)

using the principal branch of tan−1τ , through the origin.
Jacobi’s imaginary transform (19) shews that

sc(y | m) = −i sn(iy | m1). (100)

Hence the function sc has the primitive periods 2K ′ and i4K ′, and the equa-
tion

sc(η | m) = sc(u | m) = τ (101)
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is equivalent to
sn(iη | m1) = sn(iu | m1), (102)

whose general solution is (cf. (9))

iη = (−1)jiu + 2jK ′ + i 2kK, (103)

Thus, from the value (99) of u found on this continuous branch of the
function sc−1, every value η satisfying (101) is of the form

η = (−1)ju + 2kK − i 2jK ′ (104)

for integers j, k . And that can be rewritten as

η = (−1)ju + 2kK + i 2jK ′ (105)

for integers j, k .
With

σ
def
=

1

τ
=

1

scu
= csu, (106)

so that
u = cs−1σ = sc−1(1/σ). (107)

The function sc has primitive periods 2K and i4K ′, and hence so does the
function cs. Hence, for real σ a continuous branch of cs−1σ, which increases
from 0 to 2K as σ decreases from +∞ to −∞, is given (cf. (99)) by:

cs−1σ =

⎧⎪⎨⎪⎩
F (tan−1(1/σ) | m) (σ > 0)
K (σ = 0)
F (tan−1(1/σ) | m) + 2K (σ < 0)

(108)

From the value of u found on this continuous branch of the function cs−1,
every value η can be generated as in (105).

3.8 Inverses of cd, dc, sd, ds

From the addition formulæ (20), we get the identity in u:

sn(u + K) = cdu =
cnu

dnu
. (109)

Hence, if
τ = cdu = sn(u + K), (110)

so that
u = cd−1τ, (111)
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then also
u + K = sn−1τ. (112)

Therefore, a continuous branch of cd−1τ , for real τ , can be computed as

u = cd−1τ = sn−1τ −K, (113)

using the continuous branch of sn−1 given in (36).
Similarly, if

σ = dcu = ns(u + K), (114)

then a continuous branch of dc−1σ, for real σ, can be computed as

u = dc−1σ = ns−1σ −K, (115)

using the continuous branch of ns−1 given in (40).
Equation (109) shews that the functions cd and dc have the same primi-

tive periods as sn; and hence from the values of u generated on the continuous
branch of cd−1 (or of dc−1), the general solution η is given by (9).

Likewise, from the addition formulæ (20), we get the identity in u:

cn(u−K) =
√
m1 sdu =

√
m1

snu

dnu
. (116)

Hence, if

τ = sdu =
cn(u−K)√

m1

, (117)

so that
u = sd−1τ, (118)

then also
u−K = cn−1(τ

√
m1). (119)

Therefore, a continuous branch of cd−1τ , for real τ , can be computed as

u = sd−1τ = cn−1(τ
√
m1) + K, (120)

using the continuous branch of cn−1 given in (57).
Similarly, if

σ = dsu =
√
m1 nc(u−K), (121)

then a continuous branch of ds−1σ, for real σ, can be computed as

u = ds−1σ = nc−1(σ/
√
m1) + K, (122)

using the continuous branch of nc−1 given in (61).
Equation (109) shews that the functions sd and ds have the same primitive

periods as cn; and hence from the values of u generated on the continuous
branch of sd−1 (or of ds−1), the general solution η is given by (13).
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