
       

LANDAUER FORMULA AND FORMING
OF SPECTRAL BANDS

B.Pavlov1, G. Roach2, A.Yafyasov3.

Summary

The transmission coefficients through a single potential barrier is compared with
one corresponding to a finite periodic chain of N potential barriers or wells. It is
proved, that even for small periodic potentials the exponential decreasing of the
transmission coefficient for growing N takes place in lacunas of the corresponding
periodic operator on the whole real line. Using the Landauer formula we express
the conductivity of the corresponding onedimensional conductor in terms of the
transmission coefficient.

1. Introduction Due to the tunnel effect the quantum particle can pass
a potential barrier even if the height of it is greater than the particle’s energy.
But the transmission coefficient depends exponentially on the product of the
hight and the width of the barrier. Consider a quantum particle in a one
dimensional conductor described by the Schrödinger equation

− d2

dx2
u + q0(x)u = λu

with the step-wise potential which is the multiple of the indicator χ(0,L)(x)
of the finite interval (0, L)

q0(x) = Hχ(0,L)(x).

Then the corresponding transmission coefficient for scattered waves in the
energy range k2 = λ ≤ H is given by the formula

T (k) =
4ik

√
H2 − k2

√
H2 − k2 + ik

× 1

e
√
H2−k2L − e−

√
H2−k2L

,
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and thus is exponentially decreasing when
√
H2 − k2L tends to infinity. It

means, that the corresponding conductance for electron’s current is given by
the Landauer formula, see [1], which involves the transmission coefficient T :

e2

h̄

|T |2
1 − |T |2 ≈ e2

h̄

1

H2
e−2

√
H2−k2L.

It decreases exponentially for any fixed energy k2 with growing the “mass”
HL of the barrier. This formula was deduced for the case when electron -
phonon and Colomb scattering are absent.

If the potential barrier hight H measured from the vacuum level is formed
by the electrostatic potential, then the question arises, if the field is strong
enough, so that all conductivity electrons with the energy close to Fermi level
(see [5]) k2

0 are reflected. It terms of the asymptotics of the solutions of the
relevant homogeneous Schrödinger equation it means, that the corresponding
transmission coefficient T must be close to zero on some interval of energies

centered at k2
0 ( then the reflection coefficient |R| =

√
1 − |T |2 is close to

one). For simple rectangular barrier discussed above this impies, that all
electrons with the energies less than k2

0 will be reflected by the same barrier
as well.

But in real conductors only electrons with energies close to Fermi level
might participate in the conductivity process. This induces more special
question concerning the most “economical” form of the barrier which, being
created by the minimal electric field, would nevertheless reflect all conduc-
tivity electrons with energies close to the Fermi level k2

0 only . If it would
be achieved due to some special form of the electric field, then it would
suffice to block the conductivity totally, since at sufficiently low tempera-
tures all conductivity electrons have energies close to Fermi level. We call
the corresponding process selective reflection, and the conductance (resis-
tance) calculated on the base of T using Landauer formula will be called
selective conductance rsp. resistance. It is clear that for real conductors the
selective reflection in the interval of energies close to Fermi level is sufficient
to implement the resistance for all conductivity electrons at sufficiently low
temperatures.

We’ll show , that the selective reflection is possible, at least in prin-
ciple, for small intervall of energies near k2

0 if we form a periodic potential
inlet on the infinite conductor, the amplitude of the periodic potential being
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defined by the interval of energies around k2
0, where the reflection is being

implemented. This selective reflection is a partial case of resonance scatter-
ing caused by the effect of interference of wave functions. In some respect
it is much more delicate, than the direct tunnelling through the high barrier
mentioned in the beginning of this section, but it posesses the remarkable
stability under thermal fluctuations in comparing with other interferential
gates ( such as Aharonov - Bohm gate).

2 Spectral properties of a onedimensional conductor
perturbed by a finite periodic inlet.

Let us consider the onedimensional Schrödinger operator on L2 perturbed
by inserting a sample of N periodes of the periodic potential q(x), q(x+a) =
q(x). We assume that the periodic potentials is real and continuous, so
that the discontinuities of the resulting potential ρN can lie at the points of
contacts 0, Na only.

In what follows we use the following notations.
The “standard solutions” of the Schrödinger equation

−d2u

dx2
+ q(x)u = λu ≡ k2u

with the initial conditions at the origine u0 = 1, u′
0 = 0 or u0 = 0, u′

0 = 1 will
be denoted by θ(x, λ), rsp. ϕ(x, λ),. The corresponding Bloch solutions χ± ∈
L2(R±) are square integrable on positive halfaxis R+ or negative halfaxis R−
respectively for non-real λ. They are combined of θ, ϕ

χ+(x, λ) = θ(x, λ) + m+(λ)ϕ(x, λ), χ−(x, λ) = θ(x, λ) + m−(λ)ϕ(x, λ),

with coefficients coincining with the corresponding Weyl-Titchmarsh func-
tions (see[2]) m±(λ). The quasymomentum p and the quasimomentum ex-
ponentials μ± = e±iap are defined by the transformation of Bloch functions
under translation χq

±, χ
q
±(x + a) = μ±χq

±(x + a), |μ+(λ)| < 1. They are
calculated from the quadratic equation containing the Lyapunov function
l(λ) = θ+ϕ′

2

μ +
1

μ
= l(λ)

μ± = l(λ) ±
√
l2 − 1.
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One assumes usually that |μ+| < 1, |μ−| > 1 on the regularity field (that is
on the complement of the spectrum) of the periodic problem. The follow-
ing statement is just a particular case of the general results concerning the
Schrödinger equation with a decreasing potential [1]

Assertion Consider the Schrödinger operator with the potential ρN

−d2u

dx2
+ ρN(x)u ≡ LρNu (2)

which is defined on the Sobolev class W 2
2 (R) of all L2-functions with the

square-integrable derivatives is a selfadjoint operator in L2(R). The spectrum
σN of it consists of the absolutely - continuous branch, which coincides with
the ( absolutely - continuous ) spectrum [0,∞ ) of the unperturbed operator
L0 ≡ −d2u

dx2 and possibly a finite set of negative eigenvalues. The scattered
waves of LρN are formed of exponentials and Bloch waves. In particular for

the scattered waves
←
ψ iniciated by plane waves e−ikx from the right side we

have the following expression at the spectral point λ = k2:

←
ψ=

⎧⎪⎨⎪⎩
Te−ikx, −∞, x ≤ 0,

αχq
+(x) + βχq

− , 0 < x < Na,

e−ikx+
→
R eikx, Na < x < ∞,

The waves
→
ψ iniciated from the left are constructed in a similar way.The

system of all scattered waves
←
ψ,

→
ψ forms a complete orthogonal base in the

invariant subspace corresponding to the absolute- continuous spectrum of the
operator LρN . The corresponding spectral density coincides with the spectral
density of the nonperturbed operator L0 for the exponential system .The corre-
sponding expansion theorem in the space of all square integrable functions in-
volves the scattered waves and possibly finite number of negative bound states
with integrations spread over (0,∞) with Lebesgue measure dm = dλ

4π
√
λ
≡ dk

2π

δ(x− y) =
1

2π

∫ ∞

0

←
ψ (x)

←̄
ψ(y)dk +

1

2π

∫ ∞

0

→
ψ (x)

→̄
ψ(y)dk +

∑
l

ψl(x)ψ̄l(x).

We calculate the transmission and reflection coefficients T,R and the scat-
tered waves in explicite form and observe the creation of the spectral band
on the absolutely-continuous spectrum.
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Theorem 1.The Weyl functions m± of the periodic Schrödinger Operator
with the potential q on the right and left axis are equal respectively

m± =
μ± − θ(a)

ϕ(a)
.

The reflection coefficient
→
R is defined on the spectral bands of the periodic

operator by the following formula

→
R (k) = e−2ikaN ik + m+(λ)

ik −m+(λ)

μN
+ − μN

−
μN

+ − | ik+m+(λ)
ik+m−(λ)

|2μN
−
.

Proof of this statement can be received by the straightforward calculation.
Really, from the condition of smotheness of the scattered wave we have :

T = α + β; −ikT = αm+ + βm−,

αμN
+ + βμN

− = e−ikNa+
→
R (k)eikNa,

αm+μ
N
+ + βm−μ

N
− = −ike−ikNa + ik

→
R (k)eikNa.

We have now:
β

α
= −ik + m+

ik + m−
,

and →
R (k) = e−ikNa α

2ik
(m+ + ik)[μN

+ − μN
− ].

From the second pair of equations we find α

α =
2ike−ikNa

(ik −m−)[μN
+

ik−m+

ik−m−
− μN

−
ik+m+

ik+m−
]
.

Combiming last two formulas we get the following expression for the reflection
coefficient :

→
R (k) = e−2ikNa ik + m+

ik −m+

μN
+ − μN

−
μN

+ − (ik+m+)(m−−ik)
(ik+m−)(m+−ik)

μN
−
.

Using the the connection between the Weyl-functions m± on the spectral
bands of the periodic operator m−(λ) = m̄+(λ) we see that the last equation
coincides with the announced one .
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Remark. Note that the similar expression for lattice model was sug-
gested in [10]. The typical feature of both expressions is the presence of
zeroes of the reflection coefficient on each “future” spectral band ( the spec-
tral band of the periodic Schrödinger operator on the infinite axis). It is
a remerkable fact, that these zeroes divide each future spectral band into
N equal intervals in quasimomentum scale. This fact was noticed first in
[11]. The expression for the reflection coefficient permitts to calculate the
conductivity using the Landauer formula:

σ =
e2

h̄

|T |2
1 − |R|2 .

Due to the unitarity of the scattering matrix the last expression is equal to

σ =
e2

h̄

1 − |R|2
|R|2 .

Generally the spectral problem for the Schrödinger operator with the poten-
tial vanishing on a half - axis (or the whole real axis) can be considered in
terms of Resonance Scattering and Lax - Phillips theory, see for instance [12].
This gives the interpretation of the reflection and transmission coefficients
as characteristic functions of some contracting semigroups or eigenvalues of
the dissipative operators, which generate the reduced dynamics. In partic-
ular the zeroes of the reflection coefficient are the spectral singularities of
this generator. In terms of this theory the spectral band of the Schrödinger
operator with the “semi - infinite” periodic potential ( where the reflection
coefficient is modulo less than 1 ) are developed when N goes to infinity from
the intervals, divided into N equal parts ( in quasimomentum scale ) by these
spectral singularities - the zeroes of the reflection coefficient. Note that the
conductivity calculated from Landauer formula is infinite at these points .

From the point of view of the theory of nonselfadjoint operators the spec-
tral singularities are generallly very difficult to localize . But in the model
we consider now they have extremely clear and important physical meaning
mentioned above.

Theorem 2 Inside the spectral band the conductivity is represented in
form

σ =
e2

h̄

|sin(Np + iβ)|2 − sin2Np

sin2(Np)
,
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where β = log | ik+m+

ik−m+
|.

On the complementary intervals of real axis - spectral lacunas - the con-
ductivity is exponentially small for large N and is represented by formula:

σ = 4
e2

h̄
μ2N

+

sin2Δ

|1 − μ2N
+ |2 ,

where 2Δ = arg(μ+ − θ − ikϕ) − arg(μ− − θ − ikϕ) ≡ ψ+ − ψ− and both
μ+, μ− = μ−1

+ are positive functions on even lacunas and negative on odd
ones, |μ+| < 1.

Proof. Really, on the spectral band we have m− = m̄+, hence

ik −m+ = −ik −m−, ik −m− = −ik −m+,

and for some positive β

ik −m+

ik −m−

ik + m−
ik + m+

≡ e−2β < 1.

Then for the corresponding conductivity σ we have:

σ =
e2

h̄

(
|ik −m−
ik + m−

|2 |μ
N
+e

−2β − μN
− |2

|μN
+ − μN

− |2
− 1

)
=

e2

h̄

(
|μN

+e
−β − μN

−e
β|2

|μN
+ − μN

− |2
− 1

)
=

e2

h̄

|sin(Np + iβ)|2 − sin2Np

sin2(Np)
,

since |e2ikNa| = 1.
Considering the lacunas, we take into account that both periodic Weyl-

functions are real, m+ = m̄+,m− = m̄−, and

m+ − ik

m+ + ik
= e2i arg(μ+−θ−ikϕ) ≡ eikψ+ ,

m− − ik

m− + ik
= e2i arg(μ−−θ−ikϕ) ≡ eikψ− ,

|R|2 =
|μN

+ − μN
− |2

|μN
+eiψ+ − μN

−eiψ−|2 .

Now we have for the conductivity inside the lacuna:

σ =
e2

h̄

(
1

|R|2 − 1

)
=

e2

h̄

(
|1 − μ2N

+ ei(ψ+−ψ−)|2
|1 − μ2N

+ |2 − 1

)
=

4μ2N
+

sin2
(
ψ+−ψ−

2

)
|1 − μ2N

+ |2 .
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3. Explicite expressions for conductivity inside the lacuna and
the band in terms of the potential.

The standard perturbation technique permitts to calculate the relevant
spectral quantities in terms of the potential. Actually we need the spectral
data for the periodic potential q(x) only. All relevant spectral data can be
recovered from the behaviour of the standard solutions θ, ϕ, which satisfy the
initial conditions θ(0) = 1, θ′(0) = 0, ϕ(0) = 0, ϕ(0) = 1. On the other hand
these solutions fulfill Volterra-type integral equations which can be solved by
succesive approximation method. Really, for the standard solutions θ, ϕ of
the homogeneous equation

−y′′ + q(x)y = λy ≡ k2y,

we have, see [2]:

θ(k, x) = coskx +
∫ x

0

sink(x− t)

k
q(t)θ(k, t)dt,

ϕ(k, x) =
sinkx

k
+

∫ x

0

sink(x− t)

k
q(t)ϕ(k, t)dt.

We use these integral equations to calculate the elements of the monodromy
matrix

M(k) =

(
θ(k, a) ϕ(k, a)
θ′(k, a) ϕ′(k, a)

)
.

The spectral bands coincide with the intervals, where |TraceM(k)| = |θ(k, a)+
ϕ′(k, a)| ≤ 2. Taking into account the terms of the first and second order of
the perturbation series for the solutions of the previous integral equations in
respect to the potential q we get the following ”explicite” expression for the
Lyapunov function l(λ) = 1

2
TraceM(k):

cosak +
sinak

2k

∫ a

o
q(t)dt− coska

4
(
∫ a

o
q(t)dt)2

coska

4

[
(
∫ a

0
q(t) cos2ktdt)2 − (

∫ a

0
q(t) sin2ktdt)2

]
−

sinka

4

∫ a

0
q(t)dt

∫ t

0
q(s)ds sin2k(s− t).

The approximate positions of spectral bands and the values of quasimomen-
tum and Weyl functions can be found from the last formula. But here we
just consider two simplest examples.
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Example 1 Dirac “Comb” ( periodic δ - potential, see [9]) After proper
change of variables we rewrite the corresponding Sturm-Liouvilles problem
in the following form :

−d2u

dx2
+ Q

∑
δ(x− la)u = λu.

Note that the half-trace of the monodromy matrix - the Lyapunov function
- in this case is just

l(k) = cos ak +
sin ak

2k
Q ,

which coincides with the main part of our general expression when Q =∫ a
0 q(t)dt. We calculate now the conductivity which corresponds to the finite

periodic inlet on the infinite axis

ρ(x) =
N∑
0

Q δ(x− al).

The equation for the end-points of spectral lacunae on k-axis, k2 = λ, (πl
a
, πl

a
+

δl) which correspond to “infinite” periodic potential can be reduced to the
form

Q
πl
a

+ δl
= 2 tg

δ

2

Assuming that aQ
πl

<< 1 we get for the width of the l-th lacuna,l ≥ 1 ,

the approximate expression δl ≈ aQ
πl

Strictly inside the l-th lacuna where
| cos ak + Q sin ak

2k
| > 1 or inside the spectral band | cos k + Q sin ka

2k
| < 1 we

get respectively from the equations

cos ak + Q
sin ak

2k
Q = cosh ap,

cos ak + Q
sin ak

2k
Q = cos ap

the following approximate expression for the quasimomentum p ≡ (πl
a

+ δp)
as a function of energy λ = k2 ≡ (πl

a
+ δk)

2 (for positive Q)

δp ≈
√

(δk)2 − Qaδk
πe

,
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which takes imaginary values on the lakuna and real values on the band. In
particular this gives due to the Theorem 2 the following expressions for the
conductivity inside the lacuna :

σ(k) ≈ 4
e2

h̄
e
−N

√
aQδk
πl (sinΔk)

2,

where

(sinΔk)
2 =

(δk)
2

(δk)2 +
√

aQδk
πl

− (δk)2

Example 2 Periodic Kronig - Penny potential. Consider the Sturm -
Liouvilles problem with the potential

∑l=+∞
l=−∞Q(x− la), where

Q(x) =

{
H, if x ∈ (0, d), d < a,
0, if x elsewhere.

Then the Lyapunov function has the form

l(k) ≡ θ(2π, k) + ϕ′(2π, k)

2
=

cosk(a− d) cosd
√
k2 −Hd−

sink(a− d) sin
√
k2 −Hd

H

2k
√
k2 −H

.

The quasimomentum inside the spectral band is the solution of the equa-
tion l(k) = cos ap and in the spectral lacuna it fulfills the equation l(k) =
cosh ap. In particular the second equation can be solved approximately as-
suming, that k2

H
is large enough and taking into account only linear and

quadratic term in respect to k2

H
in the following exact expression:

coshpa = cos[ka− Hd

k +
√
k2 −H

] −

sin d
√
k2 −H sin k(a− d)

(
1 − H

2k
√
k2 −H

)

Basing on the quasimomentum found from the previous equation and the
general formulas (see theorem 2) one can easily calculate the conductivity of
the quantum wire with a finite Kronig - Penny inlet ρN(x) =

∑l=N
l=0 Q(x− la).
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Remark. When considering the conductivity of the real quantum con-
ductor we have the Schrödinger equation

− h̄2

2m

d2u

dx2
+ ρ(x)u = Eu,

where E is the energy and m is the effective mass of the electron in the given
medium. This equation can be easily reduced to the previous one by the
obvious change of scale x → h̄x√

2m
.
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