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The growth rate of infinite planar 1–ended graphs is considered.
For those graphs which are also concentric a recurrence relation is
given which determines the growth rate. In the more general case
lower bounds on the growth rate are given. In both the concentric and
the general cases, the formulae involve the local condition of excess at
a vertex.

1 Introduction

Graphs considered in this paper are infinite, planar and of bounded degree

unless otherwise indicated. The symbols V (Γ) and E(Γ) will denote respec-

tively the vertex set and the edge set. We do not in general restrict to simple

graphs, but allow multiedges and loops. A loop contributes two to the degree

of the incident vertex while each multiedge contributes one to the degree of

each incident vertex. An infinite graph is 1–ended if the removal of a finite

set of vertices yields at most one infinite component.

Knowing the growth rate of the different classes of infinite planar graphs

is a key concept in a possible solution to the conjecture [2] that a charac-

terisation of infinite planar graphs can be obtained from the properties of

their infinite paths. Bonnington, Imrich and Seifter [1] have obtained such

a characterisation for infinite, locally finite, transitive, 1-ended graphs with

polynomial growth. In a previous paper [3] Brand and Morton showed that a

planar graph Γ having the properties assumed in [1] can be embedded nicely

in either the Euclidean plane or the hyperbolic plane. In the former case Γ

has quadratic growth and in the latter case it has exponential growth. In

this paper the growth of a planar graph is studied based on local information

from the embedding with no symmetry assumption.

Definition 1 A disc, (Γ, D), is a finite connected graph embedded in the

plane so that the union of its closed finite regions is a topological disc, D.

An annulus (Γ, D) is a disc with the interior of a set of regions removed. A

vertex is said to be exterior if it is incident with either the infinite region or
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a deleted region; otherwise it is said to be interior. We say that an annulus

is missing k regions if it is obtained from a disc by deleting the interiors of

k − 1 regions.

Recall that for a regular k-gon in the Euclidean plane an interior angle

has size (1 − 2
k
)π. Hence, for a simple graph, if there are deg(v) ≥ 3 regular

polygons incident to a vertex v and these polygons have ni edges respectively,

where 1 ≤ i ≤ deg(v), then the sum of the angles at v is
∑deg(v)

i=1 (1 − 2
ni

)π.

For convenience we omit the factor of π and define the excess of a vertex in

general as follows. (Loosely speaking the excess measures how far the sum

of the angles incident to a vertex deviates from the normal Euclidian sum of

2π.)

The excess of a vertex v in an annulus is given by

Ex(v) =

[∑
i

(1 − 2

ni

)

]
− 2 + bv,

where ni is the number of edges bounding the ith nondeleted region incident

with v and bv is the number of deleted regions incident with v. Intuitively,

the reason for adding 1 for each deleted region incident with v is that the

sum of the angles for the nondeleted regions should be less than 2π if some

incident regions were deleted. Both ni and bv are counted with multiplicity.

Furthermore, the same region is counted with multiplicity in the sum. In

Figure ?? the shaded regions are not deleted while the white regions (includ-

ing the infinite region) are deleted. Notice that the region labeled F counts

twice for bv and the edge labeled e counts twice to give ni = 6 for this re-

gion. In the disc on the right the excess at three vertices is −1
3
, the excess

at the center vertex is −4
3
, and the excess at the lower left vertex is +1

3
. For

an infinite graph Γ the excess of a vertex is treated as if it were an interior

vertex, that is, bv = 0.

The excess of an annulus (Γ, D) is defined to be
∑

v∈V (Γ) Ex(v). The

following result shows that every disc has excess −2.

Lemma 2 If (Γ, D) is a disc then
∑

v∈V (Γ) Ex(v) = −2.
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Figure 1: Region F is counted twice in bv and edge e is counted twice in ni

Proof. From the definition of excess we have∑
v∈V (Γ)

Ex(v)

=
∑

v∈Vint(Γ)

Ex(v) +
∑

v∈Vext(Γ)

Ex(v)

=
∑

v∈Vint(Γ)

⎛⎝⎡⎣deg(v)∑
i=1

(1 − 2

ni

)

⎤⎦ − 2

⎞⎠ +
∑

v∈Vext(Γ)

⎛⎝⎡⎣deg(v)−1∑
i=1

(1 − 2

ni

)

⎤⎦ − 1

⎞⎠
=

∑
v∈Vint(Γ)

deg(v)∑
i=1

(1 − 2

ni

) − 2|Vint(Γ)| +
∑

v∈Vext(Γ)

deg(v)−1∑
i=1

(1 − 2

ni

) − |Vext(Γ)|

=
∑

all regions Rj

(1 − 2

nRj

)nRj
− 2|Vint(Γ)| − |Vext(Γ)|

=
∑

all regions Rj

nRj
− 2|Vint(Γ)| − |Vext(Γ)| − 2f

where nRj
is the number of edges of a region Rj and f is the number of

regions in G.

Let v be the number of vertices in Γ, vx be the number of external vertices,

vi be the number of internal vertices, and e be the number of edges. Then

clearly v = vx + vi and by Euler’s formula we have vx + vi − e+ f = 1. Since

ex = vx we have
∑

Rj
nRj

= 2e− vx. Thus∑
all regions Rj

nRj
− 2|Vint(Γ)| − |Vext(Γ)| − 2f
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=
∑

all regions Rj

nRj
− 2vi − vx − 2f

= 2e− vx − 2vi − vx − 2f

= 2e− 2v − 2f

= −2

Corollary 3 If (Γ, D) is an annulus missing k regions, then the excess of

(Γ, D) is 2(k − 2).

Proof. The proof is by induction on the number of deleted regions. The

case k = 1 is simply Lemma ??. So suppose that (Γ, D) is an annulus with

k > 1 missing regions. Let (Γ, D′) be the annulus obtained by filling in one

missing region R of D. To clarify which annulus we are using for excess

we write Ex(v,D) and Ex(v,D′) to denote the excess at the vertex v in

the annulus (Γ, D) and (Γ, D′) respectively. Let the vertices bounding R be

v1, v2, . . . , vr (listed without multiplicity). Furthermore we let the number of

edges in the ith nondeleted region (regions listed with multiplicity) incident

with vertex vj be denoted by ni,j for 1 ≤ i ≤ kj. For each vertex vj, the

ith nondeleted region is incident with the region R at least once. Let tj be

the multiplicity of the incidence of vj with R. We assume with no loss of

generality that ni,j = n for 1 ≤ i ≤ tj is the number of incident edges to R.

Note that t1 + t2 + . . . + tr = n.

Then∑
v∈V (Γ)

Ex(v,D) −
∑

v∈V (Γ)

Ex(v,D′)

=
r∑

j=1

[Ex(vj, D) − Ex(vj, D
′)]

=
r∑

j=1

⎡⎣ kj∑
i=tj+1

(
1 − 2

ni,j

)
− 2 + bvj −

⎛⎝ kj∑
i=1

(
1 − 2

ni,j

)
− 2 + b′vj

⎞⎠⎤⎦
=

r∑
j=1

tj

(
−

(
1 − 2

n

))
+

r∑
j=1

(bvj − b′vj)
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= −n + n
(

2

n

)
+ n

= 2

So the formula follows by induction.

Recall that an infinite graph is 1–ended if the removal of a finite set of

vertices yields at most one infinite component.

Definition 4 An embedding of an infinite graph Γ in the plane is nice if

the graph is 1–ended and connected and there is a number N such that each

region is bounded by at most N edges (counting multiplicity).

We will abuse notation and say Γ is nice to mean that we fix a nice

embedding of Γ in the plane.

Definition 5 Suppose that Γ is nice. Define a graph Γ′ so that V (Γ′) =

V (Γ), but for each pair of vertices v, w incident with a common region, vw

is an edge in Γ′. The regional distance between two vertices v and w in Γ is

the usual graph distance in the graph Γ′ and is denoted dR.

Definition 6 Let Γ be an infinite graph with a distance function d defined

on its vertex set and v0 ∈ V (Γ). The growth of the graph is

f(n) = |{v ∈ Γ : d(v, v0) < n}|.

Note that if all the regions are triangles then regional distance corresponds

to the usual definition of distance. In general, let dR be the regional distance

between two vertices and let d be the usual graph distance between the two

vertices. Then since in a nice embedding, all regions have at most N edges,

it follows that dR ≤ d ≤ �N
2
�dR where N is as in the definition of nice.

In particular, for a nicely embedded graph the growth using the usual

graph distance and the growth using the regional distance have the same

order. However, if the region size is allowed to be unbounded, then the
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Figure 2: The growth depends on which distance function is used.

two growths may be quite different. The graph in Figure ?? shows a graph

where the growth is exponential using regional distance while the usual graph

distance gives quadratic growth. For the rest of this paper we will consider

only nice graphs. Consequently, we use regional distance as either distance

gives the same order of growth.

Theorem 7 Let Γ be a nicely embedded simple graph where the excess at

every vertex in Γ is zero, then Γ has quadratic growth.

Proof. The proof of this theorem follows from the techniques used in

[3]. The idea is to replace each region with a regular polygon with edge

length one. The condition that the excess at each point is zero ensures that

the regions fit together to fill the plane. Since the area of a disc, πr2, is a

quadratic function of r it follows that Γ has quadratic growth. See [3] for

details.

Common examples of such graphs are the tessellations of the plane.
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Figure 3: A graph with linear growth, but average excess 0.

It is not sufficient to assume that the “average” excess of all vertices

within m of v0 is zero to have quadratic growth. Let Γ be the graph given in

Figure ?? where all vertices with the same label are identified and parallel

edges are replaced by a single edge. Note that for this planar 1–ended graph

the average degree of all vertices at distance m from v0 is six. Furthermore,

all regions are triangles. However, since for m ≥ 3 and odd, |Vm| = 12 and

for m ≥ 4 and even, |Vm| = 13, this graph has linear growth.

2 Concentric Graphs

For a nicely embedded graph Γ with specified vertex v0, we let Vm be the

set of vertices whose regional distance is exactly m from v0. We use Em to

denote the set of edges between vertices in Vm and Fm to denote the set of

edges having one incident vertex in Vm and the other in Vm+1. The set Rm

is defined to be the set of regions with all incident vertices in Vm ∪ Vm+1 and

at least one incident vertex in Vm.
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Definition 8 Let Γ be a nicely embedded graph. Γ is said to be concentric

if the subgraph of Γ induced by Vm is a cycle for each m ≥ 1.

In the case of concentric graphs, Proposition ?? gives a recurrence relation

that determines the exact growth of a graph in terms of the average degree

of vertices in Vm and the average number of sides in a region of Rm.

Proposition 9 Let Γ be a concentric graph. Let the average degree of ver-

tices in Vm be dm and the average number of edges bounding regions in Rm

be nm. Then for m ≥ 1

(dm − 2)|Vm| = |Rm| + |Rm−1|
(nm − 2)|Rm| = |Vm+1| + |Vm|.

Furthermore, |V0| = 1 and |R0| = deg(v0).

Proof. Let Cm, m ≥ 1, be the cycle containing the vertices in Vm and

the edges in Em. Note that |Em| = |Vm|. Consider the annulus bounded

by Cm and Cm+1. The number of regions in this annulus is equal to |Rm|,
consequently the average number of edges bounding one of these regions is

given by

nm =
|Vm| + |Vm+1| + 2|Rm|

|Rm|
,

and hence

(nm − 2)|Rm| = (|Vm| + |Vm+1|) .

The average degree of a vertex in Cm is determined by dividing the total

number of edges incident to vertices in Cm by the number of vertices in Cm.

dm =
|Rm| + |Rm−1| + 2|Em|

|Vm|
.

Since Γ is concentric, |Vm| = |Em|. Consequently,

(dm − 2)|Vm| = |Rm| + |Rm−1|.
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Corollary 10 Let Γ be a concentric graph. Then for m ≥ 1

0 =
1

nm − 2
|Vm+1|+

(
1

nm − 2
+

1

nm−1 − 2
+ 2 − dm

)
|Vm|+

1

nm−1 − 2
|Vm−1|

where dm is the average degree for all vertices in Vm and nm is the average

number of edges bounding a region Rm.

Proof. Substituting for |Rm| in Proposition ?? gives the required recurrence

relation.

Corollary 11 Suppose that Γ is a concentric graph and each region has n

incident edges. If xm is the average excess of vertices in Vm, then

0 = |Vm+1| − (2 + xmn)|Vm| + |Vm−1|

for all m ≥ 1.

Proof. This follows from the definition of average excess and Corollary ??.

Fix a vertex v0 in a nicely embedded graph Γ. For a cycle C a dividing

path P is a path which intersects C only in the end points of P . Let Γ[C] be

the graph obtained from Γ by deleting all vertices in the same component as

v0 of the plane with C removed. A dividing path is external if it is contained

in Γ[C], otherwise it is internal.

Theorem 12 Let Γ be a nicely embedded graph, where each region is a tri-

angle, and the excess of every vertex is non-negative. For each integer m ≥ 1

let Qm be the conjunction of the following four statements.

[Qm(i)] Each vertex in Vm is incident with one or two edges in Fm−1.

[Qm(ii)] There is a cycle Cm in Γ with vertex set Vm.

[Qm(iii)] Cm has no external path P in Γ − Cm with |E(P )| = 1.
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[Qm(iv)] Cm has no external path P in Γ − Cm with |E(P )| = 2, unless

the two edges of P form a triangle with an edge of Cm.

Then Qm holds for every m ≥ 1.

Proof. Induction is used. First we show that for any m ≥ 1 Qm(i)

and Qm(ii) together imply Qm(iii) and Qm(iv), and then that Qm(iii) and

Qm(iv) together imply Qm+1(i) and Qm+1(ii).

If Q1(i) or Q1(ii) does not hold then there is a 1- or 2-edge circuit bound-

ing a finite subgraph of Γ. But each internal vertex has non-negative excess

and each external vertex has excess at least −2/3, contradicting Lemma ??.

Therefore, Q1(i) and Q1(ii) hold.

Suppose for some m ≥ 1, Qm(i) and Qm(ii) hold but Qm(iii) and Qm(iv)

do not both hold. By Qm(ii) there is a cycle Cm with vertex set Vm. Suppose

that P is an external path of Cm which contradicts Qm(iii) or Qm(iv). Clearly

P is in the graph Γ[Cm]. Let Cm, C ′
m and C ′′

m be the three distinct cycles of

Γ|(E(Cm)∪E(P )). Since Γ is 1-ended, one of Γ[C ′
m] and Γ[C ′′

m] is finite and

hence forms with its finite regions a disc. Without loss of generality suppose

that Γ[C ′
m] is finite. Since the excess of every vertex in Γ is non-negative

every internal vertex of Γ[C ′
m] has non-negative excess. By Qm(i), every

external vertex of Γ[C ′
m] has non-negative excess, except possibly the two

or three vertices in V (P ) which have excess at least −2/3. Since the total

excess for Γ[C ′
m] must be −2 it follows that |V (C ′

m)| = 3, and that Γ[C ′
m] has

no internal vertices and its only external vertices are on P . Thus for every

m ≥ 1, Qm(i) and Qm(ii) imply Qm(iii) and Qm(iv).

Now we show that Qm implies Qm+1(i) and Qm+1(ii). Clearly |V (Cm)| >
3. If some vertex in |Vm+1| is incident with at least three edges in Fm,

then there is a 2-edge external path which contradicts Qm(iv), thus Qm+1(i)

holds. Clearly H, the subgraph of Γ induced by Vm, is outerplanar as there

is a path P ′ from v0 to v for every v ∈ Vm such that P ′ only contains vertices

in V0 ∪ V1 ∪ . . .∪ Vm ∪ {v}. To show Qm+1(ii) it is sufficient to show that H

is two connected. (If a graph is outerplanar and 2-connected then it has a
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Hamiltonian cycle.) It is routine to check that if H is not two connected then,

since Γ is a triangulation, there is a path contradicting Qm(iii) or Qm(iv).

Thus Qm(ii) holds and the result follows.

Theorem 13 Let Γ be a nicely embedded graph, where each region is a

quadrilateral, and the excess of every vertex is non-negative. For each in-

teger m ≥ 1 let Qm be the conjunction of the following four statements.

[Qm(i)] Each vertex in Vm is incident with zero or one edges in Fm−1.

[Qm(ii)] There is a cycle Cm with vertex set Vm.

[Qm(iii)] Cm has no dividing path P in Γ − Cm with |E(P )| = 1.

[Qm(iv)] Cm has no external path P in Γ − Cm with |E(P )| = 2 or 3,

unless P forms three sides of a quadrilateral with an edge in Em.

Then Qm holds for any m ≥ 1

Proof. The same techniques are used in this proof as are used in Theo-

rem ??, so we omit the details.

Note that a similar proof for n-gons, n ≥ 5 is hopeless since a critical

part of the induction argument is that each vertex on the cycle has (exterior)

excess of no more than 0. Even two pentagons incident with a vertex on a

cycle would make the (exterior) excess positive at v.

Corollary 14 Let Γ be nicely embedded planar graph with non–negative ex-

cess at each vertex. Furthermore assume that either each region is a triangle

or each region is a quadrilateral. Then Γ is concentric.

Proof. This follows imediately from Theorems ?? and ??.

Corollary 15 Let Γ be nicely embedded planar graph with all regions tri-

angles or else all regions quadrilaterals. Furthermore, suppose the excess at

each vertex is non-negative. If the average excess x = xm of all vertices in Vm

is independent of m, then Γ has quadratic growth if x = 0 and exponential

growth otherwise.
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Proof. In the case where the average excess is 0, Theorem ?? states the

growth is quadratic. By Corollary ?? we have the reccurence relation

0 = |Vm+1| − (2 + xn)|Vm| + |Vm−1|

where n, the number of edges bounding each region, is either 3 or 4. If x > 0,

then the polynomial in t,

t2 − (2 + xn)t + 1

has a real root larger than 1. Consequently |Vm| grows exponentially.

3 Non–concentric Graphs

For a planar graph Γ, the radial graph Γ′ is obtained by adding a vertex

in each region, adding an edge from the vertex in a region to each vertex

incident with the region, and deleting all the original edges. Note that each

region in Γ′ is a quadrilateral. Furthermore, regional distance between two

vertices in Γ is double the usual graph distance in Γ′ between the same two

vertices. Consequently, we can conclude from Corollary ?? that a graph

where each region has at least five sides and every vertex has degree at least

four (or every region has at least four sides and every vertex has degree at

least 5) grows exponentially. This is a special case of Corollary ?? below.

The example in Figure ?? shows that if we allow regions of triangles and

hexagons, then we do not have a concentric graph even though the excess

at each vertex is 0. Vertices in Figure ?? are labeled by their distance away

from v0 using regional distance. Theorems ?? and ?? give a lower bound on

the growth of a graph when Theorems ?? and ?? are not satisfied.

The recursion formulae of the last section give neither an upper bound

nor a lower bound on the growth rate of a graph which is not concentric. To

see this consider the graphs in Figure ??.

Figure ?? shows a graph Γ consisting of cycles Cm with the mth cycle

having length cm = 2m for each m > 0. Between cycles m and m + 1
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Figure 4: V3 does not form a cycle.

Figure 5: Non-concentric graphs not satisfying recurrences.
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there are sm = 2m parallel edges and qm = 2m edges with one vertex on

the cycle Cm and the other vertex of degree 1 for each m > 0. Furthermore

there are lm = 2m loops based on cycle Cm between Cm and Cm−1 for each

m > 0. Note that the growth of Γ is on the order of 2n. Also, dm − 2 =
2cm+2lm+qm−1+qm+sm−1+sm

cm+qm−1
− 2 = 8

3
, and nm − 2 = 2sm+2qm+lm+lm+1+cm+cm+1

sm+lm
−

2 = 3 for every m. If we solve the recurrence in Corollary ?? using dm−2 = 8
3

and nm − 2 = 3, we get a growth rate of
(
3 + 2

√
2
)n

, which is much larger

than the actual growth of Γ.

On the other hand, Figure ?? also shows a graph Γ′ where the recurrence

relation in Corollary ?? underpredicts the actual value of |Vm|. In Γ′, there

is exactly one vertex at each possible regional distance from v0 except that

there are 11 vertices at regional distance m + 1 from v0. Also at the vertex

m from v0 there are two loops instead of just one. In this graph we have

|Vm| = |Rm−1| = 1, dm = 6, dm+1 = 24
11

, nm = 8, nm+1 = 14, and dk = nk = 4

for all other values of k. If we were to use the formulae of Propositon ?? to

predict values of |Rk| and |Vk| for these parameters we would get |Rm| = 3,

|Vm+1| = 17, |Rm+1| = 1
11

and |Vm+2| = −1510
11

. In this example we are

underestimating the growth of the graph.

We now derive lower bounds on the growth rate of graphs which are not

necessarily concentric.

Lemma 16 Let Γ be a nice graph and let m ≥ 1. There is a cycle Cm

consisting of vertices from Vm and edges from Em such that a connected

component of the complement of Cm in the plane contains an infinite number

of vertices of Γ, but none from V0 ∪ V1 ∪ . . . ∪ Vm.

Proof. We partition the closed regions of Γ as follows. For each integer

m, all regions R such that, either all the vertices incident with R are in Vm,

or else some of the vertices are in Vm and some are in Vm+1 are placed in

Pm. We order the regions of Γ in such a way that if Ri ∈ Pr and Rj ∈ Ps

with r < s, then Ri < Rj and so that Dj = ∪j
i=1Ri is connected for each

j. It is easy to see by induction that for each j, Dj is bounded by a finite
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union of cycles. Now take Dj to be the union of all the regions through Pm

(but not containing any region from Pm+1). One of the bounding cycles of

Dj separates the infinite component of Γ − Vm from v0. This is the desired

cycle.

Definition 17 Let Γ be an infinite planar graph and v0 ∈ Γ. The average

excess of Γ is the function A(m) which gives the average excess among all

the vertices in Γ whose regional distance from v0 is less than m.

Theorem 18 Let Γ be a nice graph where the excess at every vertex in Γ is

at least 0. Then |Vm| ≥ 3 + 3
2
A(m) (|V0 ∪ V1 ∪ . . . ∪ Vm−1|) for m ≥ 1.

Proof. Let V ′
m = V0 ∪ V1 ∪ . . . ∪ Vm for each m. Let C be the cycle as

in Lemma ??. Consider the finite graph Γ′ induced by all the vertices of

Γ not in the infinite component of Γ − Vm. This graph, together with its

finite regions, forms a disc. For each vertex v in the cycle C, Ex(v) ≥ −2
3

since each vertex is incident with a region containing at least three sides.

Therefore, by Lemma ??,∑
v∈V (C)

Ex(v) = −2 −
∑

v∈V (Γ′)−Vm

Ex(v)

2

3
|V (C)| ≥ 2 +

∑
v∈V ′

m−1

Ex(v)

|Vm| ≥ 3 +
3

2
A(m) (|V0 ∪ V1 ∪ . . . ∪ Vm−1|)

An easy consequence of Theorem ?? is

Corollary 19 Let Γ be a nice graph and ε > 0. If the excess at each vertex

in Γ is at least 0 and the average excess A(m) > ε for all m, then the growth

of Γ is exponential.

Theorem ?? requires the condition that excess is at least zero at each

vertex. Theorem ?? drops this asumption at the price of assuming that the

graph is simple and obtains a smaller lower bound.
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Theorem 20 Let Γ be a nice simple graph. Then

|Vm| ≥ 3 +
3

5
A(m)|V0 ∪ V1 ∪ . . . ∪ Vm−1|.

Proof. Note that the graph Γ′ induced by vertices in V ′
m = V0∪V1∪ . . .∪Vm

together with the regions incident only with vertices in V ′
m is an annulus. Let

k be the number of deleted regions in this annulus and let Sj be the set of

vertices in Vm with bv = j. (Recall that bv is the number of deleted regions

incident with v.) Then by Corollary ?? and the fact that for a vertex in Sj

its excess is at least −5
3

+ j we have

k∑
j=1

(
−5

3
+ j

)
|Sj| ≤ 2(k − 2) − A(m)|V ′

m−1|

−5

3
|Vm| +

k∑
j=1

j|Sj| ≤ 2(k − 2) − A(m)|V ′
m−1|

−5

3
|Vm| + 3k ≤ 2k − 4 − A(m)|V ′

m−1|

−5

3
|Vm| ≤ −k − 4 − A(m)|V ′

m−1|

|Vm| ≥ 3 +
3

5
A(m)|V0 ∪ V1 ∪ . . . ∪ Vm−1|

Corollary 21 Let Γ be a nice simple graph and ε > 0. If for each m A(m) >

ε, then Γ has exponential growth.

Proof. This follows easily from Theorem ??.
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