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Abstract.

The mathematical model of the 2D-system of electrons in the subsurface space of
the homogeneous narrow-gap semiconductor was developed for accumulation layers. The
calculation of the 2D-systems parameters was carried out by numerical self-consistent
integration of the Schrödinger and Poisson equations by using the Fermi and quasi-classical
(WKB) descriptions of the eigenfunctions of the continuous spectrum - the states of
electrons “in continuum”.

It is shown that the quasi-classical approximation is preferable in comparison with
the Fermi one for the description of the continuum for 2D-systems. The parameters of
the two-dimensional gas were computed in wide range of temperatures (200—300 K) and
potentials (0—0.2 V). There exists possibility of experimental observation of quantum
subbands in accumulation layers in the subsurface space of the narrow-gap semiconductor
at room temperature.
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1 Introduction.

The implementation of quantum gates remains one of the most actual theoretical and ex-
perimental problem of nanoelectronics. The design of quantum gates which would posess
necessary properties ( step-wise shape of voltage-current characteristics , temperature
stability ... ) requires profound mathematical analysis of the corresponding scattering
problem on quantum wire. On the other hand this analysis must be supported by math-
ematical modelling and experiment.

In [1,2,8] a new class of quantum gates was suggested. Theoretically this gate must
reveal stable performance at nitrogen temperatures. Using the dimensional quantization
in the subsurface layer of certain semiconducting materials one can rise the range of
stable performance to high nitrogen or even room temperatures. The implementation
of this gates requires a thorough investigation of dimensional quantization of electrons
in subsurface space of a sample of semiconductor shaped in form of a rectangular edge.
Our paper is aimed to the modelling of the properties of the two-dimensional electron
system in the subsurface space of the sample. Generally the investigation of distribution
of electrons or holes in the subsurface layer of a semiconductor in presence of an exterior
electrostatic field is a sophisticated few-body spectral problem, which can not be reduced
to the straightforward spectral analysis of one-body Schrödinger Operator. Nevertheless
a procedure can be developed, which permitts to describe the energy-level’s distribution
as a result of a sequence of selfconsistent calculations.

The exterior electric field can be considered on the first step as a perturbation of
the lattice potential of the solid. Thus it affects the Bloch-type eigen-functions of the
corresponding one-body Schrödinger operator. On the other hand the positive electric
potential applied at the surface of the semiconductor causes an increment of the density of
electrons in the sub-surface space. In turn this creates efficiently an additional electrostatic
potential which can be calculated as a solution of the Poisson equation with the proper
density.This density can be derived from the solution of the initial one-body spectral
problem on the first step. Inserting this additional potential into the Schrödinger equation,
we get a corrected spectral picture on the second step, which enables us to calculate the
corresponding charge density and the corrected electrostatic potential on the second step,
and so on.

One usually assumes that only the states of discrete spectrum contribute to the ef-
fective charge density. This point of view is obviously noncomplete for quantum gates,
in presence of the current, since the charge of conductivity electrons — the electrons in
the “continuum” — should be taken into account as well. The problem of the calculation
of the contribution of the states of the continuous spectrum into the effective density
requires the calculation of the eigenfunctions of the continuous spectrum on each step of
the procedure.

In this paper we compare two simplified version of incorporating the eigenfunctions of
the continuous spectrum:

a) replacing these eigenfunctions just by exponentials. This permits to reduce the
problem immediately to the use of the classical Fermi distribution, or

b) using a quasiclassical asymptotics for eigenfunstions of the continuous spectrum.
The second approach permitts to take into account the important fact of vanishing of
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wave functions of conductivity electrons in the surrounding vacuum and at the surface
of the semiconductor. Comparing results we get under these assumption we conclude,
that the second approach is essentially more informative, supplying the important data
on dependence of the additional density and the potential of the spatial coordinates.

The vanishing of the wave functions at the surface of semiconductor is related to
the fact, that the lattice potential has a jump at the surface. It was noticed in [2],
that this jump is determined by the electron’s output-work function. In semiconductors
the output-work exceeds significantly a characteristic energy of electron at the bottom of
the conductivity band. Therefore the wave function of the conductivity electron can be
assumed equal to zero outside the solid, thus it should have a knot at the surface. In
particular it means, that the electron density decreases in the nearest subsurface layer,
the width of it approximately equal to the typical de-Broglie wavelength. In turn it
results in broadening of the corresponding potential well and growing the density of bound
states which reveals in course of more precise description of the corresponding dimension
quantization picture (see below).

In actual work we formulate the principles of the mathematical modelling of the system
of electrons and charge density in the subsurface space and present the algorithm and the
results of calculation of electron properties of the 2D-system in the subsurface space of
the antimonide indium. The spectra of bound states and charge densities calculated with
use of classical Fermi distribution and quasi-classical (WKB) method are compared.

2 The principles of mathematical modeling of charge
density in the subsurface space of the semiconduc-
tor.

At present the most efficient approach to the description of multielectron system in a
subsurface domain of a semiconductor is the Hartree approximation [1]. It means, that
the multielectron system is considered as a one-electrone system in the proper mean
electrostatic potential, formed by the initial potential U and the additional potential V
caused by the charge density , defined by the spectral picture of the same one-electron
system. In this approximation the one-particle Schrödinger equation can be written in
the form: (

− h̄2

2m∗
e

�∇2 + qU(�r) + qV (�r)

)
Ψ(�r) = EΨ(�r) (1)

with the boundary conditions on the surface Ψ = 0. Here m∗
e is the effective mass of

the electron in the semiconductor, �r = (x, y, z). h̄ is the Plank constant (we use the
International System of Units (SI) hereafter). In parabolic approximation the law of
dispersion reads:

E(�k) =
�k2
r h̄

2

2m∗ . (2)

where �kr is the momentum vector and m∗ = (mx,my,mz) is effective mass of free charge
carriers.
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Let us consider a semi-infinite 2D crystal with an ideal (up to the surface x = 0)

periodic crystal lattice in x > 0. The exterior electrostatic field is applied orthogonaly
to the surface, forming a potential well in the subsurface space for electrons with the
potential qU + qV (x) defined by the sum of the exterior potential and the potential of
the corresponding mean field caused by the induced density. Conversely , for holes the
resulting potential has a form of a potential barrier which can be formally incorporated in
V . The bound states of electrons with energies εn (n = 1, 2, . . .) appear in this well. The
movement of electrons in this states along x-axis is prohibited and the motion of electrons
along the YZ-plane is free, so that the one-electron’s wave function Ψ can be represented
as:

Ψ(�r) = ei(kyy+kzz)ϕn(x), (3)

The “envelope” wave function ϕn is found from the one-dimensional Schrödinger equation:(
− h̄2

2m∗
e

∂2

∂x2
+ qU(x) + qV (x)

)
ϕn(x) = εnϕn(x) (4)

with the boundary conditions ϕn(0) = ϕn(∞) = 0. The total energy of the electron can
be represented in the form:

E = εn +
k2
yh̄

2

2m∗
y

+
k2
z h̄

2

2m∗
z

. (5)

In what follows we assume for the sake of simplicity that all effective masses are the same:
m∗

x = m∗
y = m∗

z ≡ m∗
e. If the eigenfunctions of the Schrd̈inger operator (4) are found,

then the corresponding charges densities can be calculated, see below (12, 18). Then the
additional potential energy qV (x) in the equation (4) should satisfy the Poisson equation:

∂2V (x)

∂x2
= −ρe(x) + ρh(x)

ε0εsc
, (6)

where ρe(x) and ρh(x) are the charge densities of electrons and holes, respectively, which
depend only on the x, and ε0, εsc are the permittivity vacuum and semiconductor.

The boundary conditions for the potential in (6) read as V (0) = Vs, V (∞) = 0.
The problem of the construction of the solution of the pair of equations (4,6) is a

nonlinear one. The important part of it is the construction of the eigenfunctions of
the Schrd̈inger operator with the potential U + V and the subsequent calculation of the
electron’s densities.

One can suggest two approaches to this problem. The first (classical one) is based on
the standard Fermi description of the distribution of charge carriers and exponential form
of the corresponding eigenfunctions. This approach is not compatible with the boundary
condition at the plane x = 0. Another possible approach involves the quasiclassical
description of wave functions of the continuous spectrum , which permits to incorporate
the boundary condition as well as the shape of the total potential on the previous step
in explicite form. This approximation for the wave functions is valid if both exterior field
U and induced field V are varying slowly on intervals comparable with the De-Broghlie
wave length of the charge carriers, that is when the quantum objects can be considered
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as particles, not waves. This is certainly true for hole, which has in our case rather large
effective mass. For this reason we use for holes just the classical Fermi description of
induced density, when the eigenfunctions are represented by exponentials. For electrons
we use slightly more precise quasiclassical description.

Thus, the total density of electron charge on the surface of semiconductor is calculated
by two method:

— in the first one the electron density of charge in the continuum (ρfermi
c (x)), which is

constant in the whole volume of the crystal, combines with the electron density in bound
states (ρq(x))

ρfermi
e (x) = ρfermi

c (x) + ρq(x), (7)

— in the second one the total electron density consists of the electron charge density
in the continuum (ρwkb

c (x)) calculated by the quasi-classical approximation (WKB) ( see
below (18) ) and the contribution from the discrete spectrum

ρwkb
e (x) = ρwkb

c (x) + ρq(x). (8)

The classical representation for the charge density of electrons and holes (in both
methods) in the continuum reads [1]:

ρfermi
c (x) = qNcF1/2

(
Ef

kT

)
, (9)

ρh(x) = qNvF1/2

(
−Ef − Eg + qU + qV (x)

kT

)
, (10)

where

Nc = 2

(
2m∗

eπkT

h2

)3/2

, Nv = 2

(
2m∗

hπkT

h2

)3/2

, F1/2(x) =
2√
π

∞∫
0

ε1/2 dε

1 + eε−x
,

and m∗
h is the effective mass of the hole, Nc, Nv are the effective densities of the states of

the conductivity and valence bands, respectively, and F1/2(x) is the integral Fermi. The
position of the Fermi level (Ef ) can be determined from the electroneutrality equation
for the total charge in the space of the semiconductor:

NcF1/2

(
Ef

kT

)
−NvF1/2

(−Eg − Ef

kT

)
= 0. (11)

The charge density of electrons in the discrete spectrum of bound states is calculated
via the eigenfunctions in the following form:

ρq(x) = q
∑
n

Γ(εn)|ϕn(x)|2, (12)

Γ(ε) = 2
∫

f(E)
dkydkz
(2π)2

=
m∗

ekT

πh̄2 ln
(
1 + exp

(
Ef − ε

kT

))
. (13)

The function Γ(ε) describes the population of levels with energy ε (the factor of 2 takes into
account the spin degeneracy of the states) and is related to the Fermi electron distribution
function f(E):

f(E) =
1

1 + exp
(
E−Ef

kT

) . (14)
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The contribution of the continuum to the induced charge density is generally repre-

sented as:

ρwkb(x) = q

∞∫
−∞

dkx
2π

Γ(ε) |ϕε(x)|2, (15)

or after substituting the dispersion law as in (2) can be rewritten in form:

ρwkb(x) = q

√
2m∗

e

2πh̄

∞∫
0

dε√
ε

Γ(ε)|ϕε(x)|2. (16)

Here the eigenfunctions of the continuous spectrum are normalized by the asymptotics at
x → ∞:

〈|ϕ2
ε|〉

x→∞−→ 1, (17)

where 〈〉 denotes averaging over the period of the wave functions oscillations (18).
Now we can insert here the quasi–classical approximation [2] for the solution of the

equation (4) which fulfills the zero boundary condition on the surface:

ϕwkb
ε (x) =

√
2

(2m∗
eε)

1/4√
pε(x)

sin

⎛⎝1

h̄

x∫
0

pε(x
′)dx′

⎞⎠, (18)

pε(x) =
√

2m∗
e (ε− qV (x) − qU(x)).

We see, that the charge density has to be found from the solution of the system,
consisting of the one-body Schrd̈inger equation, the Poisson equation and the electroneu-
trality condition. This system is highly nolinear. Usually the solution of it is constructed
by the sequence of the selfconsistant calculations, as described above.

Using the above-mentioned relations one can calculate the total charge (Q) and dif-
ferential capacity (C) of the 2D-accumulation layer:

Q =

∞∫
0

[ρe(x) + ρh(x)]dx =

∞∫
0

[ρwkb
c (x) + ρq(x) + ρh(x)]dx = Qwkb + Qq + Qp, (19)

C =
dQ

dVs

= Cwkb +
∑
i

Ci + Ch = Cwkb + Cq + Ch (20)

where Cwkb, Ci, Ch are the contributions, in the capacitance of the electrons in the
continuous spectrum on the i-band states and holes, respectively.

3 Methods of calculation and numerical methods.

We rewrite the Schrödinger (4) and Poisson (6) equations in dimensionless variables:

d2 v(x̃)

d x̃2
= −

[
(ρwkb

e (x̃) + ρq(x̃))/q −Nv(x̃)F1/2(−εf − εg − vs(x̃))
]
/(n0 + p0), (21)

d2 ϕ(x̃)

d x̃2
+

2m∗
eL

2
DkT

h̄2 (ε + v(x̃))ϕ(x̃) = 0, (22)
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here ε = E/(kT ) is the dimensionless energy, v = qU+V

kT
is the dimensionless potential,

n0, p0 are the equilibrium concentrations of electrons and holes in the space respectively,

x̃ = x/LD is the length normed to the Debye length LD =
√
ε0εsckT/(q2(n0 + p0), and

the normalization of the wave function is choosen as∫ ∞

0
|ϕ(x̃)|2 dx̃ = 1/LD.

All dimensionless constants are chosen so that the real properties of antimonid Indium
are taken into account.

The wave function of electrons in the continuum is represented by WKB approxima-
tion:

ϕwkb
ε (x̃) =

√
2

(
ε

ε + v(x̃)

)1/4

sin

⎛⎝
√

2πm∗
ekTLD

h̄

x̃∫
0

√
ε + v(x̃′)dx̃′

⎞⎠.

In what follows we omit the bar over x, but sill keep in mind, that x is a dimensionless
variable. The equations (21) and (22) are connected via v(x), ε, ϕ(x) and are solved in
traditional self-consistent way [1]. The iterative procedure of the self-consistent solution of
the Poisson and Schrödinger equations is formed in the following way. As an initial input
potential v1

in(x) ≡ U(x) in (22), we substitute the solution of the Poisson equation in (26)
for the classical case and find the values εn, the wave functions ϕn(x), the populations
Γn and, as a final result, the charge density of electrons in the discrete spectrum ρq(x).
Further we calculate the charge density in the continuum ρwkb

c (x). Now solving the right
side of the Poisson equation, we determine a new additional potential in the semiconductor
space v1

out(x). The condition of electroneutrality is used to calculate the Fermi lavel of
the semiconductor.

For the following iterations we set the next effective input potential

vk+1
in (x) = αvkout(x) + (1 − α)vkin(x).

The coefficient is selected the α = 0.5 [1]. The iterative process is taken for completed
when

max
xj , j=0,N−1

|vkout − vkin| < 10−5.

The Poisson equation are solved by the grid method. We choose the grid as ω = {xj =
jΔl, j = 0, N − 1} (N is equal to 2048, and l = 50). The grid approximation (6) is
formed as follows:

v(xj−1) − 2v(xj) + v(xj+1)

Δl2
= −

[
(ρwkb

e (xj) + ρq(xj))/q −Nv(xj)F1/2(−εf − εg − vs)
]

(n0 + p0)
(23)

with the boundary conditions v(x0) = vs, v(xN−1) = 0. This system of nonlinear algebraic
equations is solved by the iterative method with respect to the three-layer implicit scheme
[6]. The accuracy of the solution (23) is not worse than 10−10.

The Schrödinger equation (22) is solved on each step by finite-difference method, the
second derivative is represented by the three-point scheme (ϕ(xj) = ϕj)

d2 ϕ

dx2
|x=xj

=
ϕj−1 − 2ϕj + ϕj+1

Δl2
.
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This way the equation (22) is reduced to the linear algebraic equations system:

ϕj−1 − 2ϕj + ϕj+1 + D(εn + v(xj)ϕj = 0, (24)

ϕ0 = 0, ϕN = 0, j = 1, 2, . . . , N,

D =
2m∗

eL
2
DΔl2kT

h̄2 ,

which is described by the symmetrical three-diagonal matrix:⎡⎢⎢⎢⎣
−(2 + Dv(x1)) 1 0 . . . 0 0

1 −(2 + Dv(x2)) 1 . . . 0 0
. . . . . . . . .. . .. . . . . .
0 0 0 . . . 1 −(2 + Dv(xN−2))

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎣
ϕ1

ϕ2
...
ϕN−2

⎤⎥⎥⎥⎥⎦ = Dε

⎡⎢⎢⎢⎢⎣
ϕ1

ϕ2
...
ϕN−2

⎤⎥⎥⎥⎥⎦
or

A�ϕ = εD�ϕ. (25)

Thus we’ve reduced the original problem to the problem of the construction of the eigen-
values and eigenfunctions [7].

For calculating ρwkb
e the numerical integration [7] is produced twice. The integral

in (18) is calculated by the Sympson rule, and the integral in (16) is computed by the
midpoint rule with the change of variable τ = − ln t, since the integral function decreases
exponentially: ∫ τ=∞

τ=a
f(τ) dτ =

∫ t=exp(−a)

t=0
f(− ln t)/t dt.

4 Results of calculations.

The comparison of spectra of bound states obtained by the traditional Fermi and quasi–
classical description of the continuum is represented in Fig.1. One can see from the Figure
that for any of two selected values of the exterior (“surface”) potential the position of
quantum subbands are distinguished with respect to energies and their number. The
presence of larger number of bound states and their deepening when using the WKB–
description in comparison with the traditional one is caused by the effective broadening
of the potential well. This broadening is a natural result of the assumption that the wave
function of electrons in the continuum has a knot at the surface of semiconductor.

Figs.2 and 3 show the dependence of electrostatic potential in the semiconductor
space,the energy levels of quantum subbands, the position of the Fermi level and wave
functions of bound states for two values of the surface potential. It appeares,that the
distance between the first and second quantum subbands exceed the value of the thermal
fuzzifying (kT=0.025 eV) for the narrow–gap semiconductor InSb at room temperature .

Fig.4 represents distributions of electron densities on quantum subbands (1) in the
continuous spectrum (2) and the total density (3). As usual [5], the step-wise singularities
are present on the curve 1. These steps reveal singularities of charge distribution and
localization in the quantum subbands. We can see from the curve 2 that the charge density
of electrons in the continuum is minimal just over the potential well and tends to the
equilibrium value of the concentration of electrons at infinity inside of the semiconductor.
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The number of the peaks of charge density disposed over the potential seems to be equal
to the number of bound states inside the well, and their amplitudes and the period of
oscillations decrease with growing x. The correlated behaviour of charge density “over”
the potential well and “inside” of it ( in a sence of corresponding values of energy) testifies
on a smooth dependence of the total charge density of electrons in the two-dimensional
accumulation layer on coordinates.

The calculation of energy dependence of quantum subbands at T = 300 K is presented
in Fig.5. As it is seen from the Figure, the number of bound states growths when the
value of surface potential is growing . It is caused by the deepening and broadening of the
potential well. One can determine the range of change Vs, in which the distance between
the first and second subbands is greater then kT .

The dependence of the number of levels and their positions on temperature for the fixed
value of surface potential is shown in Fig.6. It is seen that, when decreasing temperature,
the number of states in the potential well increases (first six levels are indicated only).
One can see, that the number of energy levels in the potential well is growing when
decreasing temperature. It is possible caused by the decreasing of the screening depth at
low temperatures, when the number of free charge carriers is relatively small. Thus the
effective width of the potential well increases and the number of the energy levels inside
of it increases as well. Practically it might impede spectroscopic distinguishing them.
Surprisingly these levels will be more easily observed for higher temperatures.

The conclusion is found to be paradoxical, namely, the raised (room) temperatures
prove to be more preferable for observing of bound states in the narrow-gap semiconduc-
tor. It is known that for observing quantum effects on the surface of semiconductor the
following conditions are necessary:

— the number of bound states has to be minimal;
— the distance between quantum subbands exceeds the value of thermal fuzzifying

(kT ) and collisional broadening.
Indeed, in our case at room temperature T ∼ 300 K the number of bound states in

the potential well is minimal (Fig.6) and the distance between them exceeds the value
of thermal fuzzifying. Moreover, the collisional broadening of quantum subbands is very
small due to high mobility of electrons in antimonid indium.

The dependence of the total charge in the 2D-accumulation layer Q (curve 1) and the
total charge of electrons in quantum subbands Qq (curve 2) on the surface potential and
temperature, respectively, (see, formula (19)) is represented in Figs.7 and 8. One can see
from the Figures (curve 1) that the total charge growths monotonically with increasing
surface potential and temperature. At the same time the charge variation in quantum
subbands is growing in step-wise fashion. We can see from the Fig.7 that this step-wise
growing with growth of surface potential is correlated with the birth of new discrete levels
from the continuum and their occupation.

The dependence of charge in quantum subbands on temperature (Fig.6, curve 2) has
a specific form. Peaks at the curve 2 are connected with moments of transition of levels
from the discrete spectrum in the potential well to the continuous one over the well with
growing temperature.

The dependence of the total differential capacitance (C) and the contribution to it of
charge carriers in bound states (Ci) and in the continuum (Cwkb) on surface potential are
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represented in Fig.9. The similar dependence of differential capacitance Ccls calculated
for accumulation layers InSb with no account of the dimensional quantization are shown
to compare with. The value of the surface potential in which the new levels appear, is
marked by gray bands in the Figure. The correct calculation of capacitance at these
potentials is extremely difficult because of instability of the computations at these places.

The nontrivial behaviour of the capacitance near the potential of plane bands should
be noticed. Its decreasing up to the moment of birth of the second quantum subband C2

is correlated with sharp dropping Cwkb at weak variation of charge at the first quantum
level (see Fig.7, curve 2). Decreasing of total capacitance can be explained by the fact
that the centroid of total charge is always smaller (see Fig.10) for quantum description
than for classical one (without dimensional quantization)

5 Conclusion.

In frames of the present work the following results were obtained:

• the mathematical model of the 2D system based on the InSb surface was developed
for accumulation layers;

• the calculation of the 2D system parameters was carried out by numerical self-
consistent integration of the Schrödinger and Poisson equations by using the Fermi
and quasi-classical (WKB) descriptions of the continuum of electrons;

• it was shown that the quasi-classical approximation is more preferable in comparison
with the Fermi one for the selfconsistant calculations of electron density in the states
of continuous spectrum;
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Subscript to Figures.

Fig.1. Spectra of bound states at the Fermi and quasi-classical description of the
continuous spectrum.

Fig.2.Behaviour of electrostatical potential and energies of quantum subbands.
Fig.3. Wave functions of bound states.
Fig.4. Distribution of electron charge density: 1 — in the continuous spectrum; 2 —

in the discrete spectrum; 3 — total electron charge density.
Fig.5. Dependence of position of quantum subbands on surface potential.
Fig.6. Dependence of position of quantum subbands on temperature.
Fig.7. Dependence of charge in the 2D-layer on surface potential: 1 — total charge;

2 — charge in subbands.
Fig.8. Dependence of charge in the 2D-layer on temperature: 1 — total charge; 2 —

charge in subbands.
Fig.9. Dependence of differential capacitance of the 2D-layer on surface potential.
Fig.10. Dependence of charge centroid on surface potential: Fermi (1) and quasi–

classical (2) description of charge in the continuum spectrum.
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