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1. Introduction

Let B and θ be the inner functions in the unit disk D and KB = H2
+�BH2

+ and
Kθ = H2

+ � θH2
+ be the corresponding coinvariant subspaces. Then the orthogonal

projection PKθ
KB from KB onto Kθ is an isomorphism if and only if (see, for

example [1, 2, 3, 4]) the ratio B/θ can be represented in a following form

B

θ
=

h̄

h
,

where h ∈ H2
+ is the so-called Helson-Segö outer function, that is for which the

angle in L2(|h|2dϕ) on the unit circle between
∨

n<0{zn} and
∨

n≥0{zn} is nonzero.
The equivalent conditions on the function h are

(1) The norm of Hankel operator Hh
h

= P−
h
h |H2

+ is strictly less then one.
(2) Function h satisfies A2(T) Muckenhoupt condition on the unit circle T

sup
λ∈D

2π∫
0

1 − |λ|2
|1 − λ̄eiϕ|2 |h|

2dϕ ·
2π∫
0

1 − |λ|2
|1 − λ̄eiϕ|2

1
|h|2 dϕ < ∞. (A2(T))

If, in particular, B is a Blaschke product with simple zeroes, the above condition
on h together with the fact that zeroes of B satisfy Carleson condition gives the
answer to the question when the projections on Kθ of reproducing kernels in the
zeroes of B form the Riesz basis in Kθ.
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In the present paper we continue to study the harmonic analysis on a multiply
connected domain, started in [5, 6, 7, 8] and are dealing with the similar problems
in the character-automorphic Hardy spaces on finitely ( g + 1 ) connected domain
Ω. The simplest problem similar to those in the unit disk is the following:

When do the projections of the normalized reproducing kernels in H2
+(Ω) at the

points zj ∈ Ω, j = 1, 2 . . . , form a Riesz basis in the linear hull of reproducing
kernels corresponding to another sequence of points t1, t2, · · · ∈ Ω?

The first and essential difference of the case under consideration from that one
in the unit disk is that as opposed to the case of the unit disk, where L2(T) = H2

+⊕
H2

− in our case we have the whole g-dimensional torus of similar decompositions:
L2(∂Ω) = H2

+,κ⊕H2
−,κ⊕Mκ, where H2

+,κ, H
2
−,κ are so-called character-automorphic

Hardy spaces on Ω, corresponding to character κ ∈ Rg/Zg and Mκ is g-dimensional
κ-automorphic defect space. All this spaces for different characters are of the equal
importance and for each particular character the above problem on the projection
from one system of reproducing kernels onto another can be posed.

More general ”character-automorphic” setting of this problem is as follows:
Let Bμ and Θλ be the character-automorphic inner functions1) in the domain Ω.

and Kκ
Bμ

= H2
+,κ �BμH

2
+,κ−μ and Kκ

Θλ
= H2

+,κ �ΘλH
2
+,κ−λ be the corresponding

co-invariant subspaces of H2
+,κ.

When is the orthogonal projection PKκ
Θλ

Kκ
Bμ

from Kκ
Bμ

onto Kκ
Θλ

an an isomor-
phism?

It was natural to suspect that just as above, in this case as well particular results
on the angles between subspaces in weighted L2 space on Γ = ∂Ω, would play an
essential role.

The first steps towards the solution of this problem were given by the author in
[7], where all the positive weights w on Γ, for which the angle in L2(Γ, w) between
L2(Γ, w) ∩ {H2

−,κ + Mκ} and L2(Γ, w) ∩H2
+,κ was nonzero, were described. These

weights should satisfy the Muckenhoupt condition, which in this case has the same
form as the classical one and the corresponding angles are nonzero for all characters
simultaneously.

But it so happens that this description is not enough to to answer the question of
the invertibility of the corresponding projection, namely,as it will be shown below
the problem can be reduced to the problem of the description (in terms of necessary
and sufficient conditions) of those weights w on Γ for which the angle in L2(Γ, w)
between L2(Γ, w) ∩H2

−,κ and L2(Γ, w) ∩H2
+,κ is nonzero. The last mentioned de-

scription was obtained in [8] and the answer has a form similar to the Muckenhoupt
condition, but essentially depends on a character. Namely it may happen that for
one and the same weight w on Γ for one character the corresponding angle is zero
and for another character it is nonzero. Our solution is essentially based on the
results of the papers [6, 7, 8].

2. Preliminaries

In what follows we consider a planar domain as a half of its Schottky double -
the compact Riemann surface, and essentially use the function theory on it.

1)For precise definitions see next section
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2.1. We consider our g+1 connected domain Ω = Ω+ with nondegenerate boundary
components Γ0, . . . ,Γg as a bordered Riemann surface and denote by Ω̂ its Schottky
double - the compact Riemann surface of genus g, which is obtained topologically
from two copies Ω+ and Ω− of the domain Ω by the identification of the points

of ∂Ω±
def
= Γ (gluing a second copy Ω− of Ω to Ω+ along ∂Ω+) with the complex

structure obtained by ”reflecting” the complex structure from Ω+ ∪ ∂Ω+ to Ω−.
The involution J : Ω̂ −→ Ω̂ which fixes the points of Γ and interchanges the same
points on Ω+ and Ω− is antiholomorphic.

Fix a point P0 ∈ Γ0 and let γ1, . . . , γg be oriented crosscuts from P0 to the
boundary components Γ1, . . . ,Γg respectively, which except for their end points
lie in Ω+ and intersect each other only in the point P0. We define the homology
basis on the compact Riemann surface Ω̂ of genus g in the following way: the b-
cycles are the boundary components, bj = Γj , j = 1, . . . , g and the a-cycles are
constructed from the crosscuts γj and their antiholomorphic reflections J(γj) on
Ω−, aj = γj − J(γj), j = 1, . . . , g.

We consider the g-dimensional vector space N of holomorphic differentials on Ω̂
and the normalized basis ω1, . . . , ωg in this space which is dual to the homology
basis ∫

aj

ωk = δj,k

where δj,k is the Kronecker symbol. The differentials ωj are purely imaginary on Γ

and are antisymmetric with respect to the antiholomorphic involution J , J∗ω
def
=

ωj(J(z)) = −ωj(z). Consequently the matrix of b-periods τ =
{∫

bj
ωk

}g

j,k=1
has

the form τ = iP where P is a real positive definite matrix.
We denote by dηP,Q, P,Q ∈ Ω̂, P 	= Q, the normalized differential of the

third kind with only simple poles in the points P,Q with residues 1
2πi and − 1

2πi

respectively and
∫
aj

dηP,Q = 0, j = 1, . . . , g.
Note that for the point P ∈ Ω+ the restriction of the differential dηP,J(P ) on Γ

determines exactly the harmonic measure dηP .
There is a close relation between the harmonic measure of Ω+ with respect to

the point P and the Green function G(z, P ) of the domain Ω+ with singularity at
the point P ,

2π

z∫

P0

dηP,J(P ) = G(z, P ) or 2πdηP,J(P ) = 2i
∂G(z, P )

∂z
dz.

2.2. The divisor on Ω̂ is the finite formal sum

a =
k∑

j=1

njPj , nj ∈ Z, Pj ∈ Ω̂.

The divisor a is called positive (a ≥ 0) if nj ≥ 0 for all j.The order of a divisor is
defined as

ord(a) =
k∑

j=1

nj
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The divisor of a meromorphic on Ω̂ function f is called a principal divisor and is
denoted by (f). Obviously ord(f) = 0. Let us denote by L(Ω̂) the field of meromor-

phic functions on Ω̂ and by L(a) the vector space
{
f ∈ L(Ω̂) : (f) ≥ a

}
, r(a)

def
=

dimL(a).
The divisors a, b are equivalent (a ∼ b) if their difference is the principal divisor.
The divisor of a meromorphic differential ω on Ω̂ is called a canonical divisor and

is also denoted by (ω), the corresponding vector space of meromorphic differentials

on Ω̂ is denoted by N(Ω̂) and N(a)
def
=

{
ω ∈ N(Ω̂) : (ω) ≥ a

}
, i(a)

def
= dimN(a).

Any two canonical divisors are equivalent and the order of any canonical divisor is
equal to 2g − 2. The action of the antiholomorphic involution J can be obviously
extended to divisors.

The Riemann-Roch theorem asserts that

r(−a) = ord(a) − g + 1 + i(a).

The period lattice of the holomorphic differentials is the lattice Zg + τZg in Cg.
The complex torus Jac(Ω̂) = Cg/Zg + τZg is called the Jacobian variety of the
Riemann surface Ω̂. The Abel-Jacobi mapping based at the point P0 (recall that
we chose P0 on Γ0 = b0) is defined by

ϕ(P ) =

P∫
P0

ω, P ∈ Ω̂.

The mapping ϕ : Ω̂ −→ Cg is multi-valued and, hence, is not correctly defined, but
it is a correctly defined mapping from Ω̂ to J(Ω̂). ϕ is a one to one conformal map
of Ω̂ onto its image in Jac(Ω̂). The mapping ϕ can be extended on D0(Ω̂) - the
divisors of order 0 on Ω̂. If

a =
k∑

j=1

njPj ,
k∑

j=1

nj = 0

we define

ϕ(a) =
k∑

j=1

njϕ(Pj).

Abel’s theorem asserts that for a ∈ D0(Ω̂) ϕ(a) = 0 if and only if a is a principal
divisor.

The divisor of zeros of ηP,J(P ) has an order 2g and is symmetric with respect to J
and has the form Z∗ +J(Z∗) where Z∗ ⊂ Ω+, Z

∗ = z∗1 + · · ·+ z∗g ,z
∗
1 , . . . , z

∗
g are the

critical points of the Green function G(z, P ). That’s why the divisor Z∗ = Z∗(P ) is
often referred to as the critical Green’s divisor. The ϕ-image of the divisor Z∗−gP0

in Jac(Ω̂) is well determined in terms of Riemann theta functions on Jac(Ω̂) (see
[9,10]).
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2.3. For any divisor a of order 0, a =
∑k

j=1 Qj −
∑k

j=1 Pj and any vector c =
(c1, . . . , cg) ∈ Cg the function

fa,�c = e
2πi

P∫
P0

ω(a,�c)
, ω(a,c) =

k∑
j=1

ηQj ,Pj
+

g∑
l=1

clωl (1)

is the so-called multiplicative meromorphic function on Ω̂ corresponding to the
divisor a and vector c ∈ Cg. That is, fa,�c(P ) is a locally meromorphic multivalued
function on Ω̂, whose multivalued behavior is determined by the 2g-dimensional
vector

χ = (
∫
a1

ω(a,c), . . . ,
∫
ag

ω(a,c) :
∫
b1

ω(a,c), . . . ,
∫
bg

ω(a,c))

of a and b periods of the differential ω(a,c) which due to (1) is equal to (c : τc+ϕ(a))
modulo Z2g. The values f1, f2 of fa,�c at the point P corresponding to two different
paths of integration l1, l2 from P0 to P , for which the cycle l = l2− l1 is homologous
to

∑g
j=1 njaj +

∑g
j=1 mjbj , are connected by the equality f2 = e2πi<χ, �nl>f1 where

< χ, nl >=
∑g

j=1 njχj +
∑g

j=1 mjχg+j . The inverse statement is also true (see for
example [11]), any meromorphic multiplicative function on Ω̂ has the form (1).

We will consider the vector space Hκ, κ ∈ Rg/Zg of functions f , locally analytic
on Ω+, with single-valued modulus and such that the analytic continuation of any
functional element of f along a closed curve homologous to

∑g
j=1 mjbj leads to

multiplication of the initial value by the unimodular factor (character)

e2πi
∑g

j=1 mjκj , κ = (κ1, . . . , κg).

From now on we fix the term character for the elements κ ∈ Rg/Zg, this means
that in place of usual multiplicative representation of the fundamental group of Ω̂
in Tg we use the (equivalent ) additive one.

The functions from the space Hκ are called modulus automorphic or char-
acter automorphic corresponding to the character κ, or simply κ-automorphic.
These functions can be considered as single-valued analytic functions f in the
simply connected domain Ω′

+ = Ω+ \ ⋃g
j=1 γj with |f | continuous in Ω+ and

such that the limits f(P±) = limz→P± f(z) exist on
⋃g

j=1 γj ∩ Ω+and satisfy
f(P+) = e2πiλjf(P−), P ∈ γj , j = 1, . . . , g. Here the limits as z → P+, z → P−
on γj are respectively from the left and from the right side of γj .

It should be noted that the unit disk D is the universal covering π : D −→ Ω+ for
the domain Ω+. The group of covering transformations Σ (the Fuchsian group of
the second kind) is isomorphic to the fundamental group π1(Ω+, P0) of the domain
and any element f ∈ Hκ is lifted to a single valued holomorphic function f̃ on D
such that |f̃ ◦ σ| = |f̃ |, σ ∈ Σ and f̃ ◦ σj = e2πiλj f̃ , where σj ∈ Σ corresponds to
the element γj

−1bjγj in π1(Ω+, P0). The corresponding lifted space Hκ = Hκ(D)
will be also called the space of character automorphic functions.

From now on we fix the universal covering mapping π : D −→ Ω+ by the
condition π(0) = a for some fixed point a ∈ Ω+ and consider the harmonic measure
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dηa as a basic measure on Γ. By Lp(Γ), p ≥ 1, we denote the the usual Lp space
on Γ with respect to measure dηa.

The spaces Hp
+,κ, 1 ≤ p ≤ ∞, mentioned in the previous section are the spaces

of functions f from Hκ which have non-tangential limits on Γ a.e. dηa belonging to
Lp(Γ). The function f from Hp

+,κ is lifted to the universal covering as a function f̃

from Hκ(D)∩Hp
+(D), where Hp

+(D) is the usual Hardy space in the unit disk. For
the lifted space we will use the same abbreviation as for the space in the domain.

The multiplicative meromorphic functions on Ω̂ of the form (1) with Pj =
J(Qj), Qj ∈ Ω+,�cj = 0, j = 1, . . . , g for the point P and the path of inte-
gration from P0 to P contained in Ω+ give important examples of the character-
automorphic functions. Thus, the function

bQ
def
= fQ−J(Q),�0, Q ∈ Ω+

is a character-automorphic function with κ = κ(Q) = �ϕ(Q − J(Q)), contractive
in Ω+, unimodular on Γ, with only one simple zero at the point Q (and only one
simple pole at J(Q)). We will call this function an elementary Blaschke factor.
By character automorphic Blaschke product we will mean the product (finite or
infinite) of elementary Blaschke factors (for conditions on the zero set of Blaschke
factors which are necessary and sufficient for the uniform convergence of Blaschke
product see for example [5]). The lifting of bQ on the universal covering is the
ordinary Blaschke product in the unit disk with the zero set π−1(Q).

In what follows we will denote by BZ the Blaschke product with the divisor of
zeros Z and the corresponding character by κ(Z). Thus BZ∗ is the finite Blaschke
product corresponding to the critical Green’s divisor Z∗ (with the zeros at the
critical points of the Green function G(z, a)) with character κ∗ = κZ∗ = �ϕ(Z∗ −
J(Z∗)) = 2�ϕ(Z∗).

By analogy with the theory in the unit disk we also consider the space

H2
−,κ =

{
f̄ : f ∈ H2

+,−κ, f(a) = 0
}
.

The spaces H2
+,κ and H2

−,κ are orthogonal since < f, ḡ >=
∫
Γ
fgdηa = f(a)g(a) for

f ∈ H2
+,κ, g ∈ H2

+,−κ. The space H2
−,κ also can be treated as a Hardy space on

the second ”sheet” Ω− of the double Ω̂.
The space H2

+,κ is a functional Hilbert space and for any t ∈ Ω+ there exists
the reproducing kernel k(·, t, κ) = kκt , < f, kκt >= f(t), for any f ∈ H2

+,κ (for
expression of kκt in terms of Riemann theta-functions on Jac(Ω̂) see [12]).

For any κ ∈ Rg/Zg and any inner function B in Ω+, with character κB let us
consider the co-invariant subspaces

Kκ
B = H2

+,κ �BH2
+,κ−κB

, K̄κ
B = H2

−,κ � 1
B
H2

,κ+κB

For the critical Green’s divisor Z∗ = z∗1 + · · ·+ z∗g we consider the g-dimensional
space Kκ

Z∗ = H2
+,κ�BZ∗H2

+,κ−κ∗ , κ∗ = κ(Z∗) = �ϕ(Z∗−J(Z∗)), which is spanned
by the reproducing kernels at the points z∗j , j = 1, . . . , g. Then

L2(Γ) = H2
−,κ ⊕ Mκ ⊕H2

+,κ, Mκ =
1

BZ∗
Kκ+κ∗

Z∗ = BZ∗K̄κ−κ∗

Z∗ ,

where Mκ is the so-called κ-automorphic defect space, dimMκ = g.
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2.4. More generally by character automorphic meromorphic function on Ω̂ we mean
the function of the form (1) with c ∈ Zg and ϕ(a) = κ ∈ Rg/Zg modulo Zg + τZg.
Clearly such a function corresponds exactly to the character κ. The analog of Abel’s
theorem (see for example [11]) asserts that a divisor a of degree zero, is a divisor of
a character-automorphic function if and only if ϕ(a) = κ ∈ Rg/Zg, and κ is exactly
the character of this function. The divisor of a character-automorphic function f
will be also denoted by (f) (clearly ord(f) = 0). We denote by Lκ(Ω̂) the vector
space of κ-automorphic meromorphic functions on Ω̂ and by Lκ(a) the vector space{
f ∈ Lκ(Ω̂) : (f) ≥ a

}
, rκ[a] = dimLκ(a). We can also consider the character-

automorphic meromorphic differentials on Ω̂. Actually all such differentials are
obtained by multiplication of meromorphic differentials by character-automorphic
functions on Ω̂. The vector space of κ-automorphic meromorphic differentials will
be denoted by Nκ and Nκ(a) = {ω ∈ Nκ : (ω) ≥ a} , iκ[a] = dimNκ(a), where by
(ω) we again denote the divisor of ω. The version of Riemann-Roch theorem for
character-automorphic functions and differentials asserts that for any divisor a on
Ω̂

rκ[a] = −ord(a) − g + 1 + i−κ[−a].

In these notations we clearly have

Mκ = Lκ(J(a) − Z∗ − J(Z∗)),

and consequently rκ[J(a) − J(Z∗)] = 0, since otherwise the nonzero function from
Lκ(J(a) − J(Z∗)) would have been from Mκ and H2

+,κ simultaneously.
We will use below two following technical results prooved in [8].

Lemma 2.1. For any positive divisor Z of order g on Ω̂, ϕ(Z) = μ + τν, μ, ν ∈
Rg/Zg, there exists the positive divisor T of order g, T = t1 + · · · + tg, t1 ∈
Γ1, . . . , tg ∈ Γg, such that ϕ(T ) = (1, 1, . . . , 1)t+τν. That is 
ϕ(T−Z) = 0 and, by
Abel’s theorem for character-automorphic function, there exists the ((1, . . . , 1)−μ)-
automorphic function with the divisor T − Z.

Lemma 2.2. For any positive divisor Z of order g on Ω̂, ϕ(Z) = μZ + τνZ ,
μZ , νZ ∈ Rg/Zg, there exists the positive divisor T of order g, which is contained
totally inside Ω+ and for which ϕ(T ) = μT + τνZ . That is 
ϕ(T − Z) = 0 and,
by Abel’s theorem for character-automorphic function, there exists the (μT − μZ)-
automorphic function with the divisor T − Z.

2.5. Let L,M be the subspaces of the Hilbert space H and L ∩M = {0}. Then
on the sum L + M we can define the operator

PL‖M : l + m −→ l, l ∈ L, m ∈ M,

Which is the so-called skew projection onto L parallel to M . By the closed graph
theorem the boundedness of this operator is equivalent to the fact that L + M =
clos(L + M). The angle between L and M is defined as follows:

< (L,M) ∈ [0, π/2], cos(L,M) = sup
x∈L,y∈M

< x, y >

‖x‖‖y‖ .
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It is easy to see that

cos(L,M) = sup
x∈L

‖PMx‖
‖x‖ = |PMPL|, sin(L,M) = inf

x∈L

‖(I − PM )x‖
‖x‖ = |PL‖M |−1,

where PL, PM are orthogonal projections on L and M respectively.

3. Reduction to the estimation of the norms of Hankel operators

3.1. Let B and Θ be two character-automorphic inner functions on Ω+, corre-
sponding to the characters κB and κΘ respectively.

We fix character κ ∈ Rg/Zg and consider the coresponding to these inner
functions co-invariant subspaces in H2

+,κ, Kκ
B = H2

+,κ � BH2
+,κ−κB

and Kκ
Θ =

H2
+,κ � ΘH2

+,κ−κΘ
.

The question we are interested in is when (in terms of necessary and sufficient
conditions) the orthogonal projection PKκ

Θ
|Kκ

B in L2(Γ) from Kκ
B onto Kκ

Θ is iso-
morphism?(2)

We use the following statement from Lemma on close subspaces from [2].

Lemma on Close Subspaces. Let H be a Hilbert space and L,M be its closed
subspaces. The following assertions are equivalent

(1) PL|M is isomorphism from M onto L.
(2) PML = M, L ∩M⊥ = {0}.
(3) H = M⊥ + L, Clos(M + L⊥) = H.
(4) |PL⊥PM | < 1, |PM⊥PL| < 1.

Therefore, by statement (4) of the last Lemma PKκ
Θ
|Kκ

B is isomorphism from
Kκ

B onto Kκ
Θ iff

|P(Kκ
Θ)⊥PKκ

B
| < 1, |P(Kκ

B)⊥PKκ
Θ
| < 1.

Now, since for any inner function S, corresponding to the character κS , we have
the equality PSH2

+,κ−κS
= SPκ−κS

+ S, the last to inequalities are equivalent to

|P(Kκ
Θ)⊥PKκ

B
| = |ΘPκ−κΘ

+ Θ|Kκ
B | = |Pκ−κΘ

+ Θ|Kκ
B | < 1,

|P(Kκ
B)⊥PKκ

Θ
| = |BPκ−κB

+ B|Kκ
Θ| = |Pκ−κB

+ B|Kκ
Θ| < 1.

(2)

3.2. Following the ideas from [1, 2], we would like to reduce these two operator
norm inequalities to equivalent pair of inequalities for the norms of corresponding
character-automorphic Hankel operators.

To begin with let us recall the definitions of character-automorphic Hankel and
Teoplitz operators. As above P ν

+, ν ∈ Rg/Zg is a ”Riesz” orthogonal projection
from L2(Γ) onto H2

+,ν and let P ν
− = I − P ν

+, be the orthogonal projection from
L2(Γ) onto H2

−,ν + Mν . Recall that (see for example [6]) for any f ∈ L∞(Γ) and
μ, ν ∈ Rg/Zg the Hankel operator Hν,μ

f with a symbol is an operator acting from
H2

+,ν into H2
−,ν+μ + Mν+μ according to the formula

Hν,μ
f g = P ν+μ

− fg, ∀g ∈ H2
+,ν .

(2)Here by PM we denote the orthogonal projection in L2 on a closed subspace M .
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The character-automorphic Teoplitz operator Tν,μ
f with a symbol f is acting from

H2
+,ν into H2

+,ν+μ,

Tν,μ
f g = fg − Hν,μ

f g = P ν+μ
+ fg, ∀g ∈ H2

+,ν .

Here character ν describes the Hardy space, on which the operators act, and char-
acter μ prescribes the character to the symbol f ∈ L∞(Γ)3)

If f is unimodular on Γ function then clearly for any g ∈ H2
+,ν

‖Hν,μ
f g‖2

2 + ‖Tν,μ
f g‖2

2 = ‖g‖2
2, (3)

and the adjoint operator
(
Tν,μ

f

)∗
is a Teoplitz operator Tν+μ,−μ

f̄
.

In what follows, to simplify the formulae, we will omit the upper indices for Han-
kel and Teoplitz operators and the reader should keep in mind that the characters
of the symbols, which would be the products or quotients of character-automorphic
functions, could be restored from these expressions, and the characters of the Hardy
spaces could be restored from the context. For example, as above, the character
of the symbol B/Θ is the difference of the characters of B and Θ, i.e. is equal to
κB − κΘ.

Lemma 3.1. The inequalities (2) are equivalent to

|HB
Θ
| < 1 on H2

+,κ̂, |HΘ
B
| < 1 on H2

+,κ̂−κΘ+κB
, (4)

where κ̂ = κ∗ + κΘ − κ− κa.

Proof. By [6, Corollary 3.1], the space Kκ
Θ

BZ∗Θ is a co-invariant subspace of the space

H2
−,κ−κ∗−κΘ

, corresponding to an inner function Θ and Kκ
B

BZ∗B is a co-invariant
subspace of the space H2

−,κ−κ∗−κB
, corresponding to an inner function B. Thus

Kκ
Θba

BZ∗Θ
= Kκ∗+κΘ−κ−κa

Θ and
Kκ

Bba
BZ∗B

= Kκ∗+κB−κ−κa

B .

Using, say, the second inequality from (2) we get

1 > |Pκ−κB
+ B|Kκ

Θ| = |Pκ−κB
+

Θ
B
|K

κ
Θ

Θ
| = |Pκ−κB

+

Θ
B
|Kκ∗+κΘ−κ−κa

Θ

BZ∗

ba
|

Now, since H2
+,κ−κB

= baH
2
−,κB−κ−κa

= ba
BZ∗ {H2

−,κB−κ−κa+κ∗ ⊕ MκB−κ−κa+κ∗},
we can continue the last chain of equalities in a following way,

1 > |PbaH2
−,κB−κ−κa

Bba
ΘBZ∗

|Kκ∗+κΘ−κ−κa

Θ | =

|P ba
BZ∗ {H2

+,κB−κ−κa+κ∗}⊥
Bba

ΘBZ∗
|Kκ∗+κΘ−κ−κa

Θ | = |PκB−κ−κa+κ∗

−
B

Θ
|Kκ∗+κΘ−κ−κa

Θ |

= |PκB−κ−κa+κ∗

−
B

Θ
|H2

+,κ∗+κΘ−κ−κa
|

But the last expression is exactly equal to the norm of Hankel operator HB
Θ

on a
space H2

+,κ∗+κΘ−κ−κa
. Finaly, applying the same procedure to the first inequality

from (2) and denoting κ̂ = κ∗ + κΘ − κ− κa, we get

|HB
Θ
| < 1 on H2

+,κ̂, |HΘ
B
| < 1 on H2

+,κ̂−κΘ+κB
.

�
3)Note that (see [6]) L∞(Γ) can be identified with L∞

μ (Γ) for all characters μ.
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4. Reduction to the estimation of an angle between

subspaces in a weighted L2 on the boundary

Let us denote the unimodular on Γ function B/Θ by ψ and let κψ = κB − κΘ.
Following the approach in [1, 2] we consider the properties of the corresponding
Teoplitz operators

Tψ = Tκψ,κ̂
ψ = P

κ̂+κψ

+ ψ|H2
+,κ̂

Tψ̄ = (Tψ)∗ = P κ̂
+ψ|H2

+,κ̂+κψ
.

The main goal of this section is to prove the following

Proposition 4.1. If (4) holds then
(1) There exist two character-automorphic outer functions h0, χ0, such that

B

Θ
= ψ =

h0

h0

BZ∗

v0v′0
=

χ0

χ0

w0w
′
0

BZ∗
,

where v0, v
′
0, w0, w

′
0 are finite character-automorphic Blaschke products with

the divisors of zeros V0, V
′
0 ,W0,W

′
0 respectively, ordV0+ordV ′

0 ≤ g, ordW0+
ordW ′

0 ≤ g.
(2) The function h0χ0 is a character-automorphic meromorphic on Ω̂ function

from the space L2κ̂+κψ−κ∗(V0 + J(V ′
0) + W0 + J(W ′

0) − Z∗ − J(Z∗)) and
there exist two nonnegative divisors UH , UX , contained totally in Γ, such
that ordV0+ordV ′

0 +ordUH = g, ordW0+ordW ′
0+ordUX = g and (h0χ0) =

V0 + J(V ′
0) + UH + W0 + J(W ′

0) + UX − Z∗ − J(Z∗).
(3) For any point u ∈ Γ the expressions

(z − u)ku

h0
,

h0

(z − u)ku
,

(z − u)k
′
u

χ0
,

χ0

(z − u)k′
u

are locally square summable at u, where ku = ordUH |u, k′u = ordUX |u.

Proof. From (3) and (4) we see that KerTψ = KerTψ̄ = {0}. But this means that

RanTψ = Tψ(H2
+,κ̂) = H2

+,κ̂+κψ
, RanTψ̄ = Tψ̄(H2

+,κ̂+κψ
) = H2

+,κ̂.

Therefore the operators Tψ and Tψ̄ are invertible and for any elementary Blaschke
factor bt, t ∈ Ω+,

dimKerT ψ
bt

= 1, KerT ψ
bt

= (Tψ)−1k
κ̂+κψ

t = {htvt ∈ H2
+,κ̂| Tψhtvt = k

κ̂+κψ

t }

dimKerT ψ̄
bt

= 1, KerT ψ̄
bt

= (Tψ̄)−1kκ̂t = {χtwt ∈ H2
+,κ̂+κψ

| Tψ̄χtwt = kκ̂t }.
(5)

Here htvt and χtwt are character-automorphic inner-outer factorizations of func-
tions (Tψ)−1k

κ̂+κψ

t and (Tψ̄)−1kκ̂t respectively, with outer functions ht, χt and inner
functions vt, wt. Now, since P

κ̂+κψ

+ ψhtvt = 0 and P κ̂
+ψ̄χtwt = 0,

ψhtvt ∈ H2
−,κ̂+κψ

⊕ Mκ̂+κψ
= BZ∗H2

−,κ̂+κψ−κ∗ ,

ψ̄χtwt ∈ H2
−,κ̂ ⊕ Mκ̂ = BZ∗H2

−,κ̂−κ∗ ,
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and the absolute values of these functions on Γ are equal to |ht| and |χt| respectively.
Thus, using the inner-outer factorization for Hardy spaces on Ω−, we see that there
exist inner functions v′t, w

′
t, such that

BZ∗

ba
htv′t =

ψ

bt
htvt

BZ∗

ba
χtw′

t =
ψ̄

bt
χtwt.

(6)

Let us use the above reasoning for t equal to a, z∗1 , . . . , z
∗
g and denote ha =

h0, va = v0, v
′
a = v′0, χa = χ0, wa = w0, w

′
a = w′

0, hz∗
j

= hj , χz∗
j

= χj , vz∗
j

=
vj , v

′
z∗
j

= v′j , wz∗
j

= wj , w
′
z∗
j

= w′
j . Then for the finite Blaschke product BZ∗ba

dimKerT ψ
BZ∗ ba

= g + 1, KerT ψ
BZ∗ ba

=
g∨

j=0

{hjvj}

dimKerT ψ̄
BZ∗ ba

= g + 1, KerT ψ̄
BZ∗ ba

=
g∨

j=0

{χjwj}

and (6) may be rewriten in the following form

BZ∗

ba
hjv′j =

ψ

bz∗
j

hjvj ,
BZ∗

ba
χjw′

j =
ψ̄

bz∗
j

χjwj , j = 0, . . . , g (6′)

here for j = 0 we set z∗0 = a. Multiplying the right-hand side and left-hand side
expressions from (6′)for j=0, we get

BZ∗h0χ0v′0w
′
0 =

h0χ0v0w0

BZ∗
= ϕ00. (7)

On one hand ϕ00 ∈ BZ∗H1
+,2κ̂+κψ

= H1
+,2κ̂+κψ−κ∗ + M2κ̂+κψ−κ∗ and on the other

hand ϕ00 ∈ baBZ∗H1
−,2κ̂+κψ−κa−2κ∗ = H1

−,2κ̂+κψ−κ∗ + M2κ̂+κψ−κ∗ + k
2κ̂+κψ−κ∗

a .
Thus, by the analog of Riesz brothers theorem (see for example [6]), ϕ00 is an-
nihilated by all functions from H∞

−,2κ̂+κψ−κ∗ + baH
∞
+,2κ̂+κψ−κ∗−κa

. That is, again

by analog of Riesz brothers theorem, ϕ00 ∈ M2κ̂+κψ−κ∗ + k
2κ̂+κψ−κ∗

a . There-
fore, ϕ00 is a character-automorphic meromorphic on Ω̂ function and since h0

and χ0 are outer functions, the divisor of ϕ00 on Ω̂ satisfy the condition (ϕ00) >
V0 +W0 + J(V ′

0) + J(W ′
0)−Z∗ − J(Z∗), where V0,W0, V

′
0 ,W

′
0 are respectively the

divisors of zeros of inner functions v0, w0, v
′
0, w

′
0. therefore all this inner functions

are finite Blashke products and ordV0 + ordW0 + ordV ′
0 + ordW ′

0 ≤ 2g. Thus,
ϕ00 ∈ L2κ̂+κψ−κ∗(V0 + W0 + J(V ′

0) + J(W ′
0) − Z∗ − J(Z∗)).

Moreover we can definitely state that (ϕ00)|Ω+ = V0 +W0 −Z∗ and (ϕ00)|Ω− =
J(V ′

0) + J(W ′
0) − J(Z∗).

In the same way from (6′) we obtain that for j = 1, . . . , g, inner functions
vj , v

′
j , wj , w

′
j are finite Blaschke products with the divisors of zeros respectively
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Vj , V
′
j ,Wj ,W

′
j and

ϕ0j =
BZ∗bz∗

j

ba
h0χjv′0w

′
j =

h0χjv0wj

BZ∗

∈ L2κ̂+κψ−κ∗(V0 + Wj + J(V ′
0) + J(W ′

j) + J(a) − Z∗ − J(Z∗) − J(z∗j ))

⊂ M2κ̂+κψ−κ∗ + k
2κ̂+κψ−κ∗

z∗
j

,

ϕj0 =
BZ∗bz∗

j

ba
hjχ0v′jw

′
0 =

hjχ0vjw0

BZ∗

∈ L2κ̂+κψ−κ∗(Vj + W0 + J(V ′
j ) + J(W ′

0) + J(a) − Z∗ − J(Z∗) − J(z∗j ))

⊂ M2κ̂+κψ−κ∗ + k
2κ̂+κψ−κ∗

z∗
j

.

(7′)

Now let us consider the finite dimensional spaces

H =
g∨

j=0

{ϕ0j} =
h0v0

BZ∗
KerT ψ̄

BZ∗ ba

⊂ L2κ̂+κψ−κ∗(V0 + J(V ′
0) − Z∗ − 2J(Z∗)), dimH = g + 1,

X =
g∨

j=0

{ϕj0} =
χ0w0

BZ∗
KerT ψ

BZ∗ ba

⊂ L2κ̂+κψ−κ∗(W0 + J(W ′
0) − Z∗ − 2J(Z∗)), dimX = g + 1.

(8)

Let us consider the greatest common divisors DH and DX of all functions from
H and X respectively. Obviously, by (8), DH = V0 + J(V ′

0) − Z∗ − 2J(Z∗) +
UH , UH ≥ 0 and DX = W0 + J(W ′

0) − Z∗ − 2J(Z∗) + UX , UX ≥ 0. Now for sure
H ⊂ L2κ̂+κψ−κ∗(DH), X ⊂ L2κ̂+κψ−κ∗(DX).

Let us show that in place of set inclusions in the last two expressions we actually
have the set equalities. Let take arbitrary element k ∈ L2κ̂+κψ−κ∗(DH) and let
us show that k ∈ H. Note that all the functions from L2κ̂+κψ−κ∗(DH) are locally
analytic on Γ and for any ϕ ∈ H the function ϕ/h0 is square summable on Γ. This
means that at any point u ∈ Γ the expression (z − u)ku/h0, ku = ordDH |u =
ordUH |u, is locally square summable at u. But since for any u ∈ Ω̂, ord(k)|u ≥
ordDH |u, we conclude that function k/h0 is square summable on Γ and moreover,
by the same reason, BZ∗k/(h0v0) ∈ H2

+,κ̂+κψ
and k/(BZ∗bah0v′0) ∈ H2

−,κ̂−κa−κ∗ ⊕
Mκ̂−κa−κ∗ . But, by (6′), ψ̄ = h0v0/(h0v′0BZ∗). Hence,

T ψ̄
BZ∗ ba

kBZ∗

h0v0
= P κ̂−κa−κ∗

+

h0v0

h0v′0B
2
Z∗ba

kBZ∗

h0v0
= P κ̂−κa−κ∗

+

k

h0v′0BZ∗ba
= 0.

Thus kBZ∗
h0v0

∈ KerT ψ̄
BZ∗ ba

and, therefore k ∈ H, which means that

H = L2κ̂+κψ−κ∗(DH).

In the same way we can show that X = L2κ̂+κψ−κ∗(DX).
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Note that (6′) implies that the divisors UH and UX are contained in Γ. Let us
show that

ordV0 + ordV ′
0 + ordUH ≥ g,

ordW0 + ordW ′
0 + ordUX ≥ g.

(9)

Indeed, using the Riemann-Roch theorem we see that if ordV0+ordV ′
0 +ordUH < g

then ord(−DH) > 2g and hence i−2κ̂−κψ+κ∗
(−DH) = 0. Therefore, again by

Riemann-Roch theorem,

g + 1 = dimH = r2κ̂+κψ−κ∗
(DH) =

3g − ord(V0 + J(V ′
) ) + UH) − g + 1 + i−2κ̂−κψ+κ∗

(−DH) =

2g + 1 − ord(V0 + J(V ′
0) + UH) > g + 1.

Similarly the second inequality from (9) also holds.
Let us show now that the both inequalities in (9) are actually equalities. Suppose,

for example, that ordV0 + ordV ′
0 + ordUH > g and let U ′ be a positive subdivisor

of V0 + J(V ′
0) + UH of order g + 1, i.e. 0 < U ′ ≤ V0 + J(V ′

0) + UH , ordU ′ = g + 1.
Then i−2κ̂−κψ+κ∗

(Z∗ + 2J(Z∗) − U ′) = 0 and, by Riemann Roch theorem

g + 1 = dimH = r2κ̂+κψ−κ∗
(DH) ≤ r2κ̂+κψ−κ∗

(U ′ − Z∗ − 2J(Z∗)) =

g + i−2κ̂−κψ+κ∗
(Z∗ + 2J(Z∗) − U ′) = g.

This contradiction shows that ordV0 + ordV ′
0 + ordUH = g. Similarly ordW0 +

ordW ′
0 + ordUX = g.

Note now that ϕ00 = h0v0χ0w0
BZ∗ ∈ H ∩ X and therefore ϕ00 ∈ L2κ̂+κψ−κ∗(V0 +

V ′
0 + UH − Z∗ − J(Z∗)) ∩ L2κ̂+κψ−κ∗(W0 + W ′

0 + UX − Z∗ − J(Z∗)). Recall that
we already know that (ϕ00) ≥ V0 + V ′

0 + W0 + W ′
0 − Z∗ − J(Z∗), that is (ϕ00) =

V0 + V ′
0 + W0 + W ′

0 − Z∗ − J(Z∗) + Ũ , where Ũ is nonnegative divisor contained
totally in Γ, Ũ ≥ UH , Ũ ≥ UX . Thus if the greatest common divisor of UH and UX

is zero then definitely

(ϕ00) = V0 + V ′
0 + UH + W0 + W ′

0 + UX − Z∗ − J(Z∗). (10)

Let us show that (10) is still valid even if this greatest common divisor of UH

and UX is greater then zero. We can represent (ϕ00) in the following form

(ϕ00) = V0 + V ′
0 + W0 + W ′

0 − Z∗ − J(Z∗) + UH + UX − U1 + U2,

where U1 is some nonnegative common divisor of UH and UX , and U2 some non-
negative divisor, contained totally in Γ, ordU1 = ordU2. To prove (10) we need to
show that U1 = U2.

Since, by (6′), for any ϕH ∈ H, ϕH/h0 ∈ L2(Γ) and any ϕX ∈ X, ϕX/χ0 ∈
L2(Γ), for any measurable set Y ⊂ Γ

∫
Y

∣∣∣∣ϕHϕX

ϕ00

∣∣∣∣ dηa =
∫
Y

∣∣∣∣ϕX

χ0

ϕH

h0

∣∣∣∣ dηa ≤
{∫

Y

∣∣∣∣ϕX

χ0

∣∣∣∣2 dηa
}1/2

·
{∫

Y

∣∣∣∣ϕH

h0

∣∣∣∣2 dηa
}1/2

,
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which means that at any u ∈ Γ
ord((ϕH) + (ϕX))|u ≥ ord(ϕ00)|u = ord(UH + UX − U1 + U2)|u. (11)

Since (11) holds for any ϕH ∈ H,ϕX ∈ X, we get
ord(UH + UX)|u = ord(UH + UX − U1 + U2)|u, (11′)

which means that U1 ≥ U2. But since ordU1 = ordU2, we finally proved that
U1 = U2. Therefore (10) is true.

From (10) we conclude that at any point u ∈ Γ
(z − u)ku

h0
∼ χ0

(z − u)k′
u
,

where ku = ordUH |u, k′u = ordUX |u, and that the expressions

(z − u)ku

h0
,

h0

(z − u)ku
,

χ0

(z − u)k′
u
,

(z − u)k
′
u

χ0

are locally square summable at u. �
Now we are able to reduce our problem to the problem from [8] on the estimation

of an angle between subspaces in a weighted L2 space on Γ.

Proposition 4.2. If (4) holds then there exists a character-automorphic outer
function h∗ ∈ H2

+,ν∗ for some character ν∗, such that

B

Θ
= ψ =

h∗

h∗BZ∗ .

That is
|Hh∗

h∗ BZ∗
| < 1 on H2

+,κ̂

or, equivalently, the angle in the space L2(|h∗|2dηa) on Γ between the subspaces
ClosL2(|h∗|2dηa)H

∞
−,κ̂−ν∗ and ClosL2(|h∗|2dηa)H

∞
+,κ̂−ν∗ is nonzero.

Proof. By by Lemma 2.1, there exist the character-automorphic meromorphic on
Ω̂ functions ψH and ψX with the divisors

(ψH) = J(V0) + J(V ′
0) + UH − U∗, (ψX) = J(W0) + J(W ′

0) + UX − U∗∗,

where U∗ = u∗
1+· · ·+u∗

g, U
∗∗ = u∗∗

1 +· · ·+u∗∗
g u∗

j , u
∗∗
j ∈ Γj , j = 1, . . . , g. Therefore,

(ψH/ψH) = V0 − J(V0) + V ′
0 − J(V ′

0) and (ψX/ψX) = W0 − J(W0) +W ′
0 − J(W ′

0),
which means that ψH/ψH = v0v

′
0 and ψX/ψX = w0w

′
0. Now the functions h∗ =

h0/ψH and χ∗ = χ0/ψX are square summable on Γ and, moreover are the character-
automorphic outer functions in Ω+. By (7) we get

B

Θ
= ψ =

h0

h0

BZ∗

v0v′0
=

h∗

h∗BZ∗ ,

Θ
B

= ψ =
χ0

χ0

BZ∗

w0w′
0

=
χ∗

χ∗BZ∗ .

(12)

If we rewrite (4) using (12) we get
|Hh∗

h∗ BZ∗
| < 1 on H2

+,κ̂, |Hχ∗
χ∗ BZ∗

| < 1 on H2
+,κ̂+κB−κΘ

. (13)

If h∗ corresponds to the character ν∗ then the first inequality from (13) is equivalent
to the nonzero angle in L2(|h∗|2dηa) between the subspaces ClosL2(|h∗|2dηa

H∞
−,κ̂−ν∗

and ClosL2(|h∗|2dηa
H∞

+,κ̂−ν∗ . �
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5. Necessary and sufficient conditions

Note that, by construction of the function h∗, the expressions (z − u)k/h∗ and
h∗/(z− u)k, k = ordU∗|u, are locally square summable at u ∈ Γ, which means that
the function 1/h∗ may be not locally square summable only at points u∗

1, . . . , u
∗
g on

Γ. Moreover, since for any measurable set Y on Γ, by Hölder inequality,∫
Y

∣∣∣∣ 1
z − u

∣∣∣∣ dηa =
∫
Y

∣∣∣∣ h∗

z − u

1
h∗

∣∣∣∣ dηa ≤
{∫

Y

∣∣∣∣ h∗

z − u

∣∣∣∣2 dηa
} 1

2

·
{∫

Y

∣∣∣∣ 1
h∗

∣∣∣∣2 dηa
} 1

2

,

we see that 1/h∗ definitely is not locally square summable at the points u∗
1, . . . , u

∗
g.

Thus the weight w = |h∗|2 is exactly the weight from part (2) of [8, Proposition 4.2]
with the divisor of ”bad behaviour” on Γ exactly equal to U∗. By [8, Proposition
5.3],

|Hh∗
h∗ BZ∗ | < 1 on H2

+,κ̂−2ν∗+κ∗ = H2
+,κ̂+κB−κΘ

.

But since
h∗

h∗BZ∗ =
Θ
B

=
χ∗

χ∗BZ∗ ,

we see that the first inequality from (13) implies the second one.
By [8, Theorem 6.1] the first inequality from (13) holds iff for any character-

automorphic meromorphic on Ω̂ function φ with (φ)|Γ = U∗,

sup
λ∈Ω+

∫
Γ

∣∣∣∣h∗

φ

∣∣∣∣2 dηλ ·
∫

Γ

∣∣∣∣ φh∗

∣∣∣∣2 dηλ < ∞.

and

rκ̂−ν∗
[J(a) −

g∑
j=1

u∗
j ] = dimLκ̂−ν∗(J(a) −

g∑
j=1

u∗
j ) = 0.

Thus we proved the following

Proposition 5.1. If the orthogonal projection PKκ
Θ
|Kκ

B from the the coinvariant
subspace Kκ

B = H2
+,κ � BH2

+,κ−κB
onto the coinvariant subspace Kκ

Θ = H2
+,κ �

ΘH2
+,κ−κΘ

is an isomorphism then

B

Θ
=

h∗

h∗BZ∗ ,

where h∗ is an outer function from H2
+,ν∗ for some character ν∗ ∈ Rg/Zg, which

satisfy the following conditions
(1) Function 1/h∗ is locally square summable at any point on Γ except of g

points u∗
1 ∈ Γ1, . . . , u

∗
g ∈ Γg, and at each of this points u∗

j the expressions
(z − u∗

j )/h
∗ and h∗/(z − u∗

j ) are locally square summable.
(2) For any character-automorphic meromorphic on Ω̂ function φ with (φ)|Γ =

u∗
1 + · · · + u∗

g,

sup
λ∈Ω+

∫
Γ

∣∣∣∣h∗

φ

∣∣∣∣2 dηλ ·
∫

Γ

∣∣∣∣ φh∗

∣∣∣∣2 dηλ < ∞.
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(3)

rκ̂−ν∗
[J(a) −

g∑
j=1

u∗
j ] = dimLκ̂−ν∗(J(a) −

g∑
j=1

u∗
j ) = 0,

where κ̂ = k∗ − κΘ − κ− κa.

Let us show that the statement of the last proposition could be reversed, i.e.
that the following necessary and sufficient conditions are true

Theorem 5.1. Let B and Θ be the inner functions corresponding respectively to
the characters κB and κΘ. Then the orthogonal projection PKκ

Θ
|Kκ

B from the the
coinvariant subspace Kκ

B = H2
+,κ�BH2

+,κ−κB
onto the coinvariant subspace Kκ

Θ =
H2

+,κ � ΘH2
+,κ−κΘ

is an isomorphism if and only if

(1)
B

Θ
=

h∗

h∗BZ∗ ,

where h∗ is an outer function from H2
+,ν∗ for some character ν∗ ∈ Rg/Zg.

(2) Function 1/h∗ is locally square summable at any point on Γ except of g
points u∗

1 ∈ Γ1, . . . , u
∗
g ∈ Γg, and at each of this points u∗

j the expressions
(z − u∗

j )/h
∗ and h∗/(z − u∗

j ) are locally square summable.
(3) For any character-automorphic meromorphic on Ω̂ function φ with (φ)|Γ =

u∗
1 + · · · + u∗

g,

sup
λ∈Ω+

∫
Γ

∣∣∣∣h∗

φ

∣∣∣∣2 dηλ ·
∫

Γ

∣∣∣∣ φh∗

∣∣∣∣2 dηλ < ∞.

(4)

rκ̂−ν∗
[J(a) −

g∑
j=1

u∗
j ] = dimLκ̂−ν∗(J(a) −

g∑
j=1

u∗
j ) = 0,

where κ̂ = k∗ − κΘ − κ− κa,

Proof. The implication =⇒ is contained in Proposition 5.1. Let us prove the im-
plication ⇐=.

By [8, Theorem 6.1] the angle in the space L2(|h∗|2dηa) between the subspaces
ClosL2(|h∗|2dηa)H

∞
−,κ̂−ν∗ and ClosL2(|h∗|2dηa)H

∞
+,κ̂−ν∗ is nonzero. Thus, by [8, Pro-

position 5.3], not only
|Hh∗

h∗ BZ∗
| < 1 on H2

+,κ̂,

but also
|Hh∗

h∗ BZ∗ | < 1 on H2
+,κ̂−2ν∗+κ∗ = H2

+,κ̂+κB−κΘ
.

Now by reversing the way we used to get (4) from (2), we see that conditions
(2) hold, which means that the desired projection is an isomorphism. �
Remark 5.1. By Lemma 2.1 we have reduced our problem to that one from [8] for the
weight |h∗|2, where the divisor U∗ = of ”bed behaviour” on Γ of the outer function
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h∗ has the maximal possible order g. Therefore the condition (4) of Theorem 5.1
could be replaced by condition

rκ̂−ν∗
[

g∑
j=1

u∗
j + J(a) − Z∗ − J(Z∗)] = 0, (14)

which means that in Mκ̂−ν∗ there are no functions with the divisor of zeros greater
then U∗. To obtain (14) we should first observe that

0 = rκ̂−ν∗
[J(a)−

g∑
j=1

u∗
j ] = r−κ̂+ν∗

[a−
g∑

j=1

u∗
j ] = i−κ̂+ν∗

[Z∗+J(Z∗)−J(a)−
g∑

j=1

u∗
j ].

The second equality in the last chain of equalities is obtained by using the reflec-
tion by means of antiholomorphic involution J . The third one is valid since the

multiplication of any function from L−κ̂+ν∗(a −
g∑

j=1

u∗
j ) by the harmonic measure

dηa, which is a meromorphic (0-automorphic) differential on Ω̂ with the divisor
(dηa) = Z∗ + J(Z∗) − a − J(a), will give us a differential from N−κ̂ + ν∗(Z∗ +

J(Z∗)−
g∑

j=1

u∗
j − J(a)) and vice versa any such differential is obtained in this way.

After that one should simply use the charcter-automorphic version of Riemann-
Roch theorem.

On the other hand, now we can use Lemma 2.2 to find the character-automorphic
meromorphic on Ω̂ function φ with the divisor (φ) = U∗−J(Q), where Q is positive
divisor of order g contained totally in Ω+. Since φ/φ = BQ, where as above BQ

is a finite Blaschke product with divisor of zeros equal to Q, by introducing the
function h = h∗/φ, we can rewrite Theorem 5.1 in the following way.

Theorem 5.2. Let B and Θ be the inner functions corresponding respectively to
the characters κB and κΘ. Then the orthogonal projection PKκ

Θ
|Kκ

B from the the
coinvariant subspace Kκ

B = H2
+,κ�BH2

+,κ−κB
onto the coinvariant subspace Kκ

Θ =
H2

+,κ � ΘH2
+,κ−κΘ

is an isomorphism if and only if
(1)

B

Θ
=

h

h

BZ∗

BQ
,

where h is an outer function from H2
+,ν for some character ν ∈ Rg/Zg, and

BQ is a finite Blaschke product with divisor of zeros equal to Q, ordQ = g.
(2) Function h satisfies the Muckenhoupt condition

sup
λ∈Ω+

∫
Γ

|h|2 dηλ ·
∫

Γ

∣∣∣∣ 1h
∣∣∣∣2 dηλ < ∞.

(3)

rκ̂−ν [Q + J(a) − Z∗ − J(Z∗)] = dimLκ̂−ν(Q + J(a) − Z∗ − J(Z∗)) = 0,

that is there are no functions from Mκ̂−ν with the divisor greater or equal
to Q + J(a) − Z∗ − J(Z∗). where κ̂ = k∗ − κΘ − κ− κa,
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Remark 5.2. It is possible to give an equivalent statement even when the order of
divisor Q from Theorem 5.2 is an integer between 0 and g, but then the divisor of
”bad behaviour” on Γ of function h will have the order g − ordQ, and statement
would be a combination of statements of Theorems 5.1 and 5.2. We leave this
simple exercise to the reader.
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