Generalization of G_{δ}^* -diagonals and $w\Delta$ -spaces

A.M.Mohamad The University of Auckland Department of Mathematics Private Bag 92019, Auckland 1, New Zealand

Abstract

In this paper we introduce the concepts of a quasi- G_{δ}^* -diagonal and quasi- $w\Delta$ -space as generalizations of the concepts of G_{δ}^* -diagonal and $w\Delta$ -space respectively. It is shown that a quasi-Moore space may be characterised in terms of these concepts. As a consequence we obtain the following metrization theorems: every paracompact $w\Delta$ -space with quasi- G_{δ} -diagonal is metrizable and every collectionwise normal σ quasi- $w\Delta$ -space is metrizable.

1991 Math. Subject Classification: 54E30, 54E35.

Key words and phrases: Moore space, quasi- G_{δ}^* -diagonal, quasi- $w\Delta$ -space, perfect space, weak θ -refinable space.

1 Introduction

The concept of G_{δ} -diagonal [6] has been generalized by several topologists to a concept called quasi- G_{δ} -diagonal [5].

A countable family $\{\mathcal{G}_n : n \in \mathbb{N}\}$ of open covers of a space X is called a G_{δ}^* -diagonal, if for each $x \in X$ we have $\bigcap_{n \in \mathbb{N}} \overline{st(x, \mathcal{G}_n)} = \{x\}$. A space X is said to be a $w\Delta$ -space if there exists a countable family $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ of collections of open subsets of X such that for each x in X, each sequence $\{x_n\}_{n \in \mathbb{N}}$ for which $x_n \in st(x, \mathcal{G}_n)$ for each $n \in \mathbb{N}$ has a cluster point. A space X is **weakly** θ -refinable if every open cover \mathcal{U} of X has an open refinement $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \{\mathcal{V}_n\}$ such that, given $x \in X$, some \mathcal{V}_n has finite, positive order at x, which is

the cardinality of the collection $\{V \in \mathcal{V}_n : x \in V\}$. If, in addition, each \mathcal{V}_n is required to cover X, then we have the familiar concept of θ -refinability. A space with a σ -locally finite net is called a σ -space. A quasi-Moore space (Moore space) is a regular, quasi-developable space (developable space). Our main theorem characterises quasi-Moore space as those regular quasi- $w\Delta$ -spaces with quasi- G_{δ}^* -diagonal [see Definition2.1]. From this we can characterise developable spaces as those perfect quasi- $w\Delta$ -spaces with quasi- G_{δ}^* -diagonal.

In section2 we define a quasi- G_{δ} -diagonal and related properties. We then give connections between these properties; in particular we show that for perfect spaces the concepts of having a G_{δ}^* -diagonal and having a quasi- G_{δ}^* -diagonal are the same and quasi- $w\Delta$ -spaces are $w\Delta$ -spaces.

In section3 we state and prove the main results, including our characterisation of quasi-Moore spaces as those regular quasi- $w\Delta$ -spaces with quasi- G_{δ}^* -diagonal, and our metrization theorems: every paracompact $w\Delta$ -space with quasi- G_{δ} -diagonal is metrizable and every collectionwise normal σ quasi- $w\Delta$ -space is metrizable.

We use the following notation: \mathbb{N} = the set of natural numbers; \overline{A} = the closure of a set A; $st(x,\mathcal{G}) = \bigcup \{G : x \in G, G \in \mathcal{G}\}$, where \mathcal{G} is a collection of open subsets of a space; $\mathcal{G}^* = \bigcup \{G : G \in \mathcal{G}\}$; $ord(x,\mathcal{G})$ = the cardinality of the set of elements of \mathcal{G} containing x.

2 Quasi- G_{δ} -diagonal, Quasi- G_{δ}^* -diagonal and Quasi- $w\Delta$ spaces

Let $\mathcal{G} = \{ \mathcal{G}_n : n \in \mathbb{N} \}$ be a countable family of collections of open subsets of a space X. Consider the following conditions on \mathcal{G} :

- (a) For each $x \in X$, $\{st(x, \mathcal{G}_n) : n \in \mathbb{N}, x \in \mathcal{G}_n^*\}$ is a local base at x;
- (b) Each \mathcal{G}_n is a covering of X;
- (c) For any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that

$$x \in st(x, \mathcal{G}_n) \subset X - \{y\};$$

(d) For any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that

$$x \in st(x, \mathcal{G}_n) \subset X - \{y\} \text{ and } ord(x, \mathcal{G}_n) < \omega;$$

(e) For any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that

$$x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\};$$

(f) For any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that

$$x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\} \text{ and } ord(x, \mathcal{G}_n) < \omega.$$

Definition 2.1 X has a quasi- G_{δ}^* -diagonal (θ -quasi- G_{δ}^* -diagonal) if there exists such a family \mathcal{G} satisfying (e)[(f)]. Recall that X has a quasi- G_{δ} -diagonal (θ -quasi- G_{δ} -diagonal) if there exists such a family \mathcal{G} satisfying (c)[(d)]; X is a quasi-developable space if there exists such a family \mathcal{G} satisfying (a); X is a developable space if there exists such a family \mathcal{G} satisfying (a) and (b).

¿From the definition it is clear that if the space X has a quasi- G_{δ}^* -diagonal (θ -quasi- G_{δ}^* -diagonal) then X has a quasi- G_{δ} -diagonal (θ -quasi- G_{δ} -diagonal). Relationships between quasi- G_{δ}^* -diagonal, θ -quasi- G_{δ}^* -diagonal and G_{δ}^* -diagonal are given by the following theorems.

Theorem 2.2 A perfect space X has a G^*_{δ} -diagonal if and only if it has a quasi- G^*_{δ} -diagonal.

Proof. Every G_{δ}^* -diagonal is a quasi- G_{δ}^* -diagonal. Conversely suppose that X has a quasi- G_{δ}^* -diagonal. Then there is a countable family $\mathcal{G} = \{\mathcal{G}_n\}_{n \in \mathbb{N}}$ of collections of open subsets of X such that, for any distinct points $x, y \in X$, there exists $n \in \mathbb{N}$ such that

$$x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\}.$$

For each $n \in \mathbb{N}$, the set \mathcal{G}_n^* is open and hence, since X is perfect, \mathcal{G}_n^* is an F_{σ} -set. Thus $\mathcal{G}_n^* = \bigcup_j F_{nj}$, where each F_{nj} is a closed subset of X, for each $j \in N$. For each ordered pair (n,j) of natural numbers, let

$$\mathcal{U}_{nj} = \mathcal{G}_n \cup \{X - F_{nj}\}.$$

Then $\{\mathcal{U}_{nj}: n, j \in \mathbb{N}\}$ is a countable family of open covers of X. For each $x \in X$ there is $n \in \mathbb{N}$ for which $x \in \mathcal{G}_n^*$. Then there is $j \in \mathbb{N}$ such that $x \in F_{nj}$. Thus $st(x, \mathcal{U}_{nj}) = st(x, \mathcal{G}_n)$ and hence $\bigcap_{n,j} \overline{st(x, \mathcal{U}_{nj})} = \{x\}$ so that X has a G_{δ}^* -diagonal. \square

Theorem 2.3 Every θ -refinable space with G_{δ}^* -diagonal has a θ - G_{δ}^* -diagonal.

Proof. Let X be a θ -refinable space and $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable family of open covers of X exhibiting the G_{δ}^* -diagonal property for X. For each $n\in\mathbb{N}$, let $\{\mathcal{V}_{nk}\}_{n,k\in\mathbb{N}}$ be a θ -refinement of \mathcal{U}_n . Then $\{\mathcal{V}_{nk}\}_{n,k\in\mathbb{N}}$ is a θ - G_{δ}^* -diagonal of X. \square

Theorem 2.4 Every hereditarily weak θ -refinable space with quasi- G_{δ}^* -diagonal has a θ -quasi- G_{δ}^* -diagonal.

Remark 2.5 It is easy to check that part (e) in Definition 2.1 is equivalent to: for each $x \in X$, $\bigcap_{n \in c(x)} \overline{st(x, \mathcal{G}_n)} = \{x\}$, where $c(x) = \{n \in \mathbb{N} : x \in \mathcal{G}_n^*\}$.

The following theorem gives a relationship between having a quasi- G_{δ} -diagonal and having a quasi- G_{δ}^* -diagonal (moreover θ -quasi- G_{δ}^* -diagonal).

Theorem 2.6 Every regular hereditarily weakly θ -refinable space with quasi- G_{δ} -diagonal has a quasi- G_{δ}^* -diagonal (moreover has a θ -quasi- G_{δ}^* -diagonal).

Proof. Let X be a regular, hereditarily weakly θ -refinable space with a quasi- G_{δ} -diagonal. Then there is a countable family $\{\mathcal{G}_n : n \in \mathbb{N}\}$ of collections of open subsets of X such that for each distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that $x \in st(x, \mathcal{G}_n) \subset X - \{y\}$. For each $n \in \mathbb{N}$, \mathcal{G}_n is an open cover of \mathcal{G}_n^* , a subspace of X. By regularity there is an open cover \mathcal{U}_n of \mathcal{G}_n^* , such that $\overline{\mathcal{U}}_n = \{\overline{\mathcal{U}} : \mathcal{U} \in \mathcal{U}_n\}$ refines \mathcal{G}_n . Moreover, there exists an open refinement $\bigcup_j \mathcal{V}_{nj}$ of \mathcal{U}_n such that for each $x \in \mathcal{G}_n^*$, there exists a $j \in \mathbb{N}$ such that $\operatorname{ord}(x, \mathcal{V}_{nj}) < \omega$. Clearly $\bigcup_n \bigcup_j \mathcal{V}_{nj}$ is a σ -refinement of $\bigcup_n \mathcal{U}_n$, that is, $(\bigcup_j \mathcal{V}_{nj})^* = \mathcal{U}_n^*$ and \mathcal{V}_{nj} is a refinement of \mathcal{U}_n . Since

$$\overline{st(x, \mathcal{V}_{nj})} = \overline{\bigcup\{V : V \in \mathcal{V}_{nj}, x \in V\}} = \bigcup\{\overline{V} : V \in \mathcal{V}_{nj}, x \in V\}$$

$$\subset st(x, \overline{\mathcal{U}_n}) \subset st(x, \mathcal{G}_n),$$

it follows that $\{V_{nj}: n, j \in \mathbb{N}\}$ is a quasi- G_{δ}^* -diagonal of X (moreover it is a θ -quasi- G_{δ}^* -diagonal of X). \square

Bennett and Lutzer have shown that a quasi-developable space is hereditarily weakly θ -refinable [3, Proposition 7]. From this and Theorem 2.2 we have:

Corollary 2.7 Every regular quasi-developable space has a θ -quasi- G_{δ}^* -diagonal.

Another interesting consequence of Theorem 2.6 is the following:

Corollary 2.8 Every regular space which has a σ -point finite base, has a θ -quasi- G_{δ}^* -diagonal.

Proof. Bennett and Lutzer showed that if a space has a σ -point finite base then it is quasi-developable [3, Corollary 10]. Our corollary follows immediately from this and Corollary 2.7.

Theorem 2.9 A perfect manifold has a quasi- G_{δ}^* -diagonal if and only if it is a Moore manifold.

Proof. Immediate from [6, Theorem 2.15] and Theorem 2.6. \square

Definition 2.10 Let X be a space and $\mathcal{G} = \{ \mathcal{G}_n : n \in \mathbb{N} \}$ a countable family of collections of open subsets of a space X. Then $\mathcal{G} = \{ \mathcal{G}_n : n \in \mathbb{N} \}$ is called a quasi-w Δ -sequence for X if and only if :

- (1) for all x, $c(x) = c_{g_n}(x) = \{ n \in \mathbb{N} : x \in \mathcal{G}_n^* \}$ is infinite.
- (2) if $\{x_n\}_{n\in\mathbb{N}}$ is a sequence with $x_n \in st(x, \mathcal{G}_n)$ for all $n \in c(x)$ then $\{x_n\}_{n\in\mathbb{N}}$ has a cluster point.

If the space X has a such countable family then it said to be a quasi- $w\Delta$ -space.

It is clear that if X is a $w\Delta$ -space then it is a quasi- $w\Delta$ -space and every quasi-developable space is a quasi- $w\Delta$ -space.

We now state and prove a relationship between quasi- $w\Delta$ -spaces and $w\Delta$ -spaces.

Theorem 2.11 Every perfect quasi- $w\Delta$ -space is a $w\Delta$ -space.

Proof. Let X be a perfect space and let $\mathcal{G} = \{\mathcal{G}_n : n \in \mathbb{N}\}$ be a countable family of collections of open subsets of a space X exhibiting the quasi- $w\Delta$ -property for X. Then $\mathcal{G}_n^* = \bigcup_{j \in \mathbb{N}} F_{nj}$, where each F_{nj} is a closed subset of X. Let the countable family of open covers $\{\mathcal{U}_{nj}\}_{nj\in\mathbb{N}}$ be defined as in the proof of Theorem 2.2, so that $st(x,\mathcal{U}_{nj}) = st(x,\mathcal{G}_n)$. Suppose that $\{x_{nj}\}_{nj\in\mathbb{N}}$ is a sequence such that $x_{nj} \in st(x,\mathcal{U}_{nj})$ for each $n, j \in \mathbb{N}$. For each $n \in c(x)$ choose j_n such that $x \in F_{nj_n}$. Let $y_n = x_{nj_n} \in st(x,\mathcal{U}_{nj_n}) = st(x,\mathcal{G}_n)$. Then we have $y_n \in st(x,\mathcal{G}_n)$, for each $n \in c(x)$, so $\{y_n\}_{n \in c(x)}$ has a cluster point. Since $\{y_n\}_{n \in c(x)} \subset \{x_{nj}\}_{n,j \in \mathbb{N}}$ it follows that the sequence $\{x_{nj}\}_{n,j \in \mathbb{N}}$ has a cluster point. \square

3 The main results

Hodel's theorem states that a space is developable if and only if it is a $w\Delta$ -space with a G_{δ}^* -diagonal [4]. We now extend Hodel's theorem.

Theorem 3.1 A space is a quasi-Moore space if and only if it is a regular quasi-w Δ -space with quasi- G_{δ}^* -diagonal.

Proof. Since the proof of the 'only if' part is evident, we prove the 'if' part. Let X be a space, $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a quasi- $w\Delta$ -sequence for X, and $\{\mathcal{V}_n\}_{n\in\mathbb{N}}$ be a quasi- G_{δ}^* -diagonal sequence for X.

For each $n \in \mathbb{N}$, let $\mathcal{G}_n = \{G : G = U \cap V, \text{ for some } U \in \mathcal{U}_n, V \in \mathcal{V}_m, m \geq n\}$. Then $\mathcal{G}_n^* \subseteq \mathcal{U}_n^*$ for all $n \in \mathbb{N}$. Suppose that $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ is not a quasi-development for X. Then there is a point $x \in \mathcal{G}_n^*$, a neighborhood M of x and a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that, for all $n \in c(x)$, $x_n \in st(x, \mathcal{G}_n) - M$. Since $\{\mathcal{U}_n\}_{n \in \mathbb{N}}$ is a quasi- $w\Delta$ -sequence, it follows that $\{x_n : n \in c_u(x)\}$ has a cluster point p. Now $p \notin M$, since otherwise $x_n \in M$ for all but finitely many $n \in c_u(x)$. Thus $p \neq x$. Choose n large enough such that $p \notin \overline{st(x, \mathcal{V}_n)}$; there is no loss of generality if we assume that $st(x, \mathcal{V}_m) \subset st(x, \mathcal{V}_n)$, for all $m \geq n$. This implies that $\bigcup_{m \geq n} st(x, \mathcal{G}_m) \subset \overline{st(x, \mathcal{G}_n)}$, and $x_k \notin V = X - \overline{st(x, \mathcal{G}_n)}$ for all $k \geq n$. Now we have $p \in V$ and V open, which contradicts the fact that p is a cluster point of $\{x_n\}_{n \in \mathbb{N}}$. Thus $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ is a quasi-development for X. \square

Corollary 3.2 A space is a developable if and only if it is a perfect, quasi- $w\Delta$ -space with a quasi- G_{δ}^* -diagonal.

The following theorem weakens the conditions of result 3.5 of [2]. By using Theorems 2.2 and 2.11 we obtain:

Theorem 3.3 A regular hereditarily weakly θ -refinable space with quasi- G_{δ} -diagonal is a quasi-Moore space if it is a quasi- ω -space.

Corollary 3.4 Every paracompact $w\Delta$ -space with quasi- G_{δ} -diagonal is metrizable.

From [2, Corollary 3.2] and Theorems 2.2 and 2.11 we have the following result:

Corollary 3.5 A regular hereditarily θ -refinable $w\Delta$ -space with quasi- G_{δ} -diagonal is a Moore space.

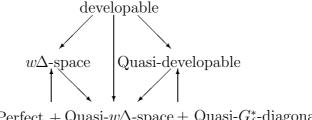
Theorem 3.6 Every collectionwise normal σ quasi-w Δ -space is metrizable.

Proof. Siwiec-Nagata [7], proved that a collectionwise normal σ $w\Delta$ -space is metrizable. Since σ -spaces are perfect, the result follows using Theorem 2.11. \Box

Example 3.7

- (1) Let M be the Michael line [5], the LOTS M^* constructed from the generalized ordered (GO) space M has a quasi- G_{δ} -diagonal, but does not have a G_{δ} -diagonal, therefore has no G_{δ}^* -diagonal. From remark [5] and Theorem 2.2 M^* has a quasi- G_{δ}^* -diagonal.
- (2) Since the space X in example 2.6 [1] is quasi-developable, θ -refinable, regular, but not developable, it follows that X is a quasi- $w\Delta$ -space and from [2, Corollary 3.2], it is not a $w\Delta$ -space.

The relationship between some of the classes of spaces considered in this paper can be summarized in a diagram as follows.



Perfect + Quasi- $w\Delta$ -space + Quasi- G_{δ}^* -diagonal

Acknowledgement: The author would like to thank Prof. David Gauld and Dr. David McIntyre for their kind help, many enlightening remarks and valuable suggestions on these topics.

References

- [1] H.Bennett, On Quasi-developable spaces, Gen. Topology Appl. 1 (1971), 253-262.
- [2] H.Bennett and E.Berney, On certain generalizations of developable spaces, Gen. Topology Appl. 4 (1974), 43-50.
- [3] H.Bennett and D.Lutzer, A note on weak θ -refinability, Gen. Topology Appl. 2 (1972), 49-54.
- [4] R.Hodel, Moore spaces and $w\Delta$ -spaces, Pacific J. Math. 38 (1971), 641-652.
- [5] M.Hosobuche, On spaces with a θ -Quasi- G_{δ} -diagonal, J. Tokyo Kasei Gakain Univ. 32 (1992), 109-113.
- [6] G.Gruenhage, Generalized metric spaces, Handbook of Set-theoretic Topology (1984), 423-501.
- [7] F.Siwiec and J.Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968) 623-627.
- [8] H.Wicke and J.Worrell, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830.