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A B S T R A C T

Population receptive field (pRF) modelling is a common technique for estimating the stimulus-selectivity of
populations of neurons using neuroimaging. Here, we aimed to address if pRF properties estimated with this
method depend on the spatio-temporal structure and the predictability of the mapping stimulus. We mapped the
polar angle preference and tuning width of voxels in visual cortex (V1–V4) of healthy, adult volunteers. We
compared sequences sweeping orderly through the visual field or jumping from location to location employing
stimuli of different width (45� vs 6�) and cycles of variable duration (8s vs 60s). While we did not observe any
systematic influence of stimulus predictability, the temporal structure of the sequences significantly affected
tuning width estimates. Ordered designs with large wedges and short cycles produced systematically smaller
estimates than random sequences. Interestingly, when we used small wedges and long cycles, we obtained larger
tuning width estimates for ordered than random sequences. We suggest that ordered and random mapping
protocols show different susceptibility to other design choices such as stimulus type and duration of the mapping
cycle and can produce significantly different pRF results.
1. Introduction

Topographic organization is a fundamental principle of the human
sensory brain and the study of its properties plays a crucial role in un-
derstanding how the brain responds adaptively to properties of the
environment and current goals. Important progress in brain mapping was
encouraged by the introduction of population receptive field (pRF)
modelling by Dumoulin and Wandell (2008). This approach aims at
estimating the aggregate receptive field of all neurons within a voxel in
functional magnetic resonance imaging (fMRI) scans. Essentially, a pRF
identifies the location in sensory space that drives a voxel’s response, the
spread of the responsive region and its shape (Dumoulin and Wandell,
2008; Silson et al., 2018; Wandell and Winawer, 2015; Zeidman et al.,
2018; Zuiderbaan et al., 2012).

A flourishing literature in the past ten years has shown that pRF
modelling constitutes a powerful and sensitive approach for describing
the fundamental properties of human visual cortex. The pRF size in-
creases with increasing eccentricity and along the visual hierarchy
(Amano et al., 2009; Dumoulin and Wandell, 2008). Heterogeneities in
pRF properties have been revealed also between different portions of the
visual field (Moutsiana et al., 2016; Silson et al., 2018; Silva et al., 2018),
across individuals (Moutsiana et al., 2016) and across populations
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(Anderson et al., 2016; Schwarzkopf et al., 2014; Smittenaar et al., 2016).
Moreover, pRF properties have been used to investigate neural plasticity
of the visual system during development (Dekker et al., 2017, 2019;
Gomez et al., 2018) or evaluate adaptive changes in the human brain
resulting from diseases or trauma with pRF changes mirroring changes in
visual function (Dumoulin and Knapen, 2018).

Interestingly, recent studies have also shown that pRF properties
flexibly adapt to how observers engage with the stimulus. Changes in the
locus of attention induce shifts in pRFs preferred location in the direction
of the attended location across the entire visual field (Kay et al., 2015;
Klein et al., 2014; Sheremata and Silver, 2015; Vo et al., 2017). Such
global changes are larger in higher visual areas (Klein et al., 2014) along
both the ventral (Kay et al., 2015) and the dorsal stream (Sheremata and
Silver, 2015). Moreover, recent studies indicate that pRF size and ec-
centricity vary in concert when the task requires to move the focus of
attention from fixation to the mapping stimulus, suggesting that pro-
cessing resources are adaptively redistributed to optimize the sampling of
the visual stimulus according to task requirements (Kay et al., 2015; van
Es et al., 2018). Similarly, changes in spatial tuning of population
receptive field and in their eccentricity have been observed as a conse-
quence of changes in attentional load at fixation (de Haas et al., 2014).

One aspect this literature has mostly overlooked is the influence of
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spatial predictability of visual stimuli in mapping estimates. Phase-
encoded retinotopic mapping experiments (Engel et al., 1994; Sereno
et al., 1995) and most pRF studies (e.g. Dumoulin and Wandell, 2008;
Harvey and Dumoulin, 2011; Moutsiana et al., 2016; van Dijk et al.,
2016; Yildirim et al., 2018 with few exceptions, e.g. Binda et al., 2013;
Kay et al., 2015; Senden et al., 2014; Thomas et al., 2015) typically
employ ordered sequences that stimulate adjacent locations - such as
rotating wedges, contracting and expanding rings, or sweeping bars - to
map visual areas. In such designs, the orderly presentation of the stimulus
carries an inherent spatiotemporal regularity in the mapping sequence.
Such regularity has two main consequences: 1) the predictability of the
stimulus location, 2) the systematic consecutive stimulation of adjacent
spatial locations.

Both consequences could result in fMRI responses beyond the directly
stimulated voxels. Specifically, the position of a coherently moving
stimulus can be anticipated based on its current location and the direc-
tion of motion. The predictability of the stimulus location could induce
an anticipatory response in such locations (Ekman et al., 2017). More-
over, knowledge of the upcoming stimulus location can provide spatial
cues to direct attention to the relevant portion of the screen affecting pRF
estimates accordingly (Kastner et al., 1999). On the other hand, the
consecutive stimulation of adjacent locations in space can generate a
‘‘traveling wave’’ of activity across the cortical surface that would cause
the BOLD signal to spread across neighbouring voxels (Engel et al.,
1994). The permeability of pRF estimates to spatiotemporal properties of
the sequences has important implications also for the reliability of the
estimated parameters.

In a study aiming to minimize biases when measuring visual cortex
reorganization, Binda et al. (2013) compared pRF estimates using or-
dered sequences (i.e. sweeping bars) and m-sequences of multifocal
stimuli. The multifocal method consists in the presentation of multiple
visual stimuli presented at different locations designed to minimize the
spatiotemporal correlation of visual stimulation (Vanni et al., 2005).
They fitted a standard 2D-Gaussian model to voxel responses and
observed that pRF size estimates (σ) in areas V1–V3 were systematically
larger when ordered mapping sequence were employed. The authors
suggested that differences in the mapping sequence can lead to different
pRF estimates, but they did not directly address the distinctive impact of
expectations and spatiotemporal regularities. Moreover, in this study the
two mapping protocols differed not only in their spatiotemporal
sequence dependencies, but also in stimulus shape and size, field
coverage, and scanning protocol. In a following study, Senden and col-
leagues (Senden et al., 2014) compared ordered and random sequences
of either bar or wedge and ring mapping stimuli and recommended the
use of random bars interspersed with mean luminance periods as the
most precise and robust approach. While both works suggest the supe-
riority of random protocols, they do not explore what are themechanisms
driving such differences and what other aspects of the experimental
design could influence the advantage of one approach over the other.

In this study, we aim to characterize to what extent spatiotemporal
regularities in the mapping sequence affect the pRF parameter estimates
in visual cortex, disentangling the role of spatial expectations and the
impact of non-linear summation of the BOLD signal when adjacent lo-
cations are stimulated over a short interval. We employed functional MRI
and a pRF mapping approach (Dumoulin and Wandell, 2008) to estimate
the polar angle preference and the tuning response of voxels in visual
cortex. We tested the same participants in three fMRI experiments using
mapping sequences that differed in the spatial contingencies of consec-
utive wedge stimuli and in their predictability: predictable ordered
(rotating clockwise or anticlockwise – henceforth, ordered), predictable
non-ordered, and unpredictable. In addition, we compared sequences
employing stimuli of different width (wedge angle of 45 deg vs 6 deg)
that covered the entire visual field in cycles of variable duration (9s vs
60s). Polar angle is an ideal dimension to map because participants can
easily discriminate and memorize different polar angle orientations
compared to bar locations, and especially 2D stimuli. Moreover, it is both
2

robust and straightforward to manipulate and model. We modelled pRFs
of polar angle as a circular Gaussian tuning function with two parame-
ters: the polar angle preferred response and its spread quantified as
full-width half-maximum (FWHM). We compared polar angle estimates
and tuning functions of pRFs in functionally defined occipital ROIs (V1,
V2, V3, V3A, V4) based on the individual maps obtained from an inde-
pendent mapping experiment using typical methods. Finally, we
compared empirical results and simulated data as an aid for under-
standing the biases and reliabilities of pRF estimates.

Results suggest that the spatiotemporal regularities in the mapping
protocol significantly affected pRF size (tuning width) estimates in
agreement with what was previously observed for pRF size in the visual
(Binda et al., 2013) and the auditory domain (Thomas et al., 2015).
Moreover, we observed that the direction of the effect depended on the
duration of the mapping cycle. Our results, however, do not indicate any
reliable influence of stimulus predictability on pRF properties. Finally,
we observed that while the ordered sequence led to the highest goodness
of fit, the parameters estimated in this condition were not superior to
those obtained with random conditions.

2. Experiment 1

Here we asked whether the spatiotemporal structure of mapping se-
quences used in retinotopic mapping experiments influences the result-
ing parameter estimates. In particular, we tested whether pRF parameters
depend on the subsequent stimulation of adjacent locations that char-
acterize ordered mapping protocols by contrasting an ordered rotating
condition with a random one. We further tested the hypothesis that such
effects on parameter estimates depend on the predictability of the stim-
ulus location by contrasting two predictable conditions, one ordered and
one non-ordered, with a random, unpredictable one.

2.1. Materials and methods

2.1.1. Participants
Five experienced participants took part in two sessions of the exper-

iment (1 author; age range: [24–35]; 4 females; one left-handed). All
participants had normal or corrected-to-normal visual acuity. Partici-
pants gave their written informed consent to take part in the study and
were financially compensated for their participation. All procedures were
approved by the University College London Research Ethics Committee.

2.1.2. Stimuli and task
Stimuli were presented using a custom MATLAB script (Mathworks

Inc., Massachusetts, USA) and the Psychophysics Toolbox 3.8 (Brainard,
1997; Pelli, 1997). They were projected on a screen (1920� 1080 pixels;
36.8 � 20.2 cm) at the back of the scanner bore and presented by means
of a mirror mounted on the head coil at a total viewing distance of
approximately 68 cm.

The mapping stimulus was a discretely moving wedge-shaped aper-
ture that showed coloured natural images (1080� 1080 pixels) depicting
landscapes, textures, animals, faces, or pieces of writing randomly
redrawn every 500 ms and presented on a mid-grey background. The
wedge aperture extended from 0.38 to 8.5 degrees of visual angle (dva)
in eccentricity. Each wedge aperture subtended 45� in terms of polar
angle and was centred at one of eight polar angles (0�, 45�, 90�, 135�,
180�, 225�, 270�, 315�) dividing the circle in 8 non-overlapping locations
(Fig. 1A). The centre of the wedges was shifted by 15� in separate runs in
order to increase the spatial granularity of the mapping.

Participants were instructed to continually maintain their gaze on a
central fixation dot with a diameter of 0.13� while covertly monitoring
the movement of the mapping stimuli in the surround. To ensure that
both requirements were met, we used a dual-detection task in which
participants had to report whether the colour of the fixation dot turned
red (fixation task) and whether an Anderson tartan pattern was presented
on the wedges (image detection task) (Moutsiana et al., 2016; van Dijk



Fig. 1. Stimuli and mapping sequences for Experi-
ments 1–3 and the standard 2D mapping experiment.
A) Large wedge mapping stimuli used in Experiments
1–2, B) thin wedge mapping stimulus used in Exper-
iment 3, and C) wedge-and-ring mapping stimulus
used in the Standard experiment. D) Example of
spatiotemporal structure for the sequences used in
Experiment 1: ordered (i.e. predictable ordered),
random (i.e. unpredictable) and predictable (i.e. pre-
dictable non-ordered). Each square represents 1 s and
the colour denotes the polar angle (see colour wheel).
E-F) Central cue used in predictable and random-cue
sequences in Experiment 2 and 3.
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et al., 2016). To aid participant’s compliance with fixation requirements,
a low contrast polar grid (line width of 0.02�; opacity of 10.2%)
composed of 10 circles (radii evenly spaced between 0.13� and 15.14�)
and 12 evenly spaced radial lines extended from fixation to the edges of
the screen was superimposed onto the grey foreground and stimuli at all
time. Eye movements were further monitored by means of an
MRI-compatible SR Research EyeLink 1000 eye tracker.

2.1.3. Mapping sequences
Three mapping conditions were presented to each participant: or-

dered, predictable (non-ordered) and random (i.e. unpredictable) (Fig. 1D).
In the ordered runs, the wedge rotated around fixation either clockwise
or anticlockwise starting randomly at one of the 8 locations. The same
direction of motion and the same starting location was maintained within
each run such that the position of the wedge was always predictable. In
the predictable (but non-ordered) runs, the wedge rotated around fixa-
tion to cover following a predefined pseudorandomized order such that
no adjacent locations were stimulated one after the other. The sequence
started at a random location in different runs, but the same starting point
and the same order were maintained throughout the run. Six maximally
distinctive sequences were selected for each participant, three for each
session. In the unpredictable runs, wedges were presented at the 8 lo-
cations in pseudorandom order (no adjacent locations could be presented
in a row) and from a random starting point. A different, randomly
generated, sequence was presented in each cycle (Fig. 1D).

For all conditions, each step of the wedge was presented for 1 s such
that an entire cycle was completed in 8 s. The wedge completed 16 cycles
in each run. Cycles were separated by fixation intervals of variable
duration pseudo-randomized to range from 1 to 8 s in discrete steps of 1 s.

Before entering in the scanner, participants performed a 30-min task
to familiarize themselves with the predictable sequences that they would
encounter during the scanning session. Each sequence was presented in a
separate block. Each block started with a presentation of the 8-steps
sequence, presented for 7 times, after which we introduced a violation
of the location order in the sequence. The participant’s task was to detect
this violation of regularity and report it with a button press. Each
sequence was presented in 6 consecutive blocks and was presented 20
times per block (9 correct sequences and 11 sequences with violations).
In the scanner, a familiarization block preceded each mapping run in
3

order to familiarize participants with the sequence that they would
encounter during the following scanning run. Similar familiarization
blocks were repeated before each run of the ordered and random con-
ditions. For both the ordered and the predictable condition, participants
performed a sequence violation-detection task in which they reported
when a wedge appeared in an unexpected location according to the
learned sequence (predictable condition) or the direction of motion
(ordered condition). In the random condition, participants performed a
2-back task in which they reported when a stimulus was presented in a
location that was occupied 2 stimuli before.

Reference retinotopic maps were obtained for each participant in an
additional experiment using a combined wedge-and-ring aperture
(Fig. 1C) similar to what has been reported in previous studies (Alvarez
et al., 2015; Moutsiana et al., 2016; van Dijk et al., 2016). The wedge
aperture extended up to 8.5 degrees of visual angle in eccentricity and
subtended 12� rotating either clockwise or counter-clockwise in 60
discrete steps (1 step/s, 6� overlap between consecutive wedges). The
ring aperture expanded or contracted in 36 logarithmic steps while
keeping the radius of the inner circle 56–58% of that of the outer ring
(minimal radius of 0.48 dva, 1 step/s, ~90% overlap between consecu-
tive rings). The mapping stimulus showed coloured natural images or
phase-scrambled versions of them that changed every 500 ms and
appeared on a mid-grey background. The type of image (intact vs
phase-scrambled) alternated every 15 s. The images and the
wedge-and-ring aperture were centred on a central black fixation dot
(diameter: 0.13� in visual angle) which was superimposed onto central
disk (diameter: 0.38� in visual angle). Also, a low contrast polar grid was
superimposed on the stimulus. As for the previous experiments, partici-
pants performed a dual-detection task (fixation task and image detection
task) while maintaining fixation on the central fixation dot.

The experiment consisted of 3 runs. The wedge-and-ring aperture was
presented in four blocks of 90 s (1.5 cycles of wedge rotation; 2.5 cycles
of ring expansion/contraction) interleavedwith a 30 s blank interval. The
order of aperture movement in each run was first clockwise and
expanding, then clockwise and contracting, anticlockwise and expand-
ing, or anticlockwise and contracting.

2.1.4. Data acquisition
We acquired functional and anatomical scans using a Siemens Avanto



2 The R2 threshold was adjusted to 0.035 for the participant that performed a
smaller number of runs in Experiment 1.
3 Here we are not accounting for the degrees of freedom in the pRF model (the

E. Infanti, D.S. Schwarzkopf NeuroImage 211 (2020) 116636
1.5 T MRI scanner with a customized 32-channel head coil located at the
Birkbeck-UCL Centre for Neuroimaging. The two anterior channels were
removed from the front half of the coil to allow unrestricted field of view
leaving 30 effective channels.

Functional images were acquired using a T2*- weighted 2D echo-
planar images multi-band (Breuer et al., 2005) sequence (TR ¼ 1 s, TE
¼ 55 ms, 36 slices, flip angle ¼ 75�, acceleration ¼ 4, FOV ¼ 96 � 96
voxels) at a resolution of 2.3 mm isotropic voxels. Each functional scan
consisted of 222 acquisitions. Data were collected in two sessions (per-
formed on consecutive days or one day apart) of 9 runs each taking
approximately 90 min.1 Each condition was repeated in 3 separate runs
in each session. The order of runs was pseudo-randomized, with all
conditions repeated every 3 runs. The ring-and-wedge mapping proced-
ure was acquired in a separate session using the same protocol, for a total
of 3 runs and 490 vol per run.

A T1-weighted anatomical magnetization-prepared rapid acquisition
with gradient echo (MPRAGE) image was acquired in a separate session
(TR ¼ 2730 ms, TE ¼ 3.57 ms, 176 sagittal slices, FOV ¼ 256 � 256
voxels) at a resolution of 1 mm isotropic voxels.

2.1.5. fMRI pre-processing
The data were pre-processed using SPM12 (www.fil.ion.ucl.ac.

uk/spm, Wellcome Centre for Human Neuroimaging, London, UK).
The first 10 vol of each run were discarded to allow the signal to reach
equilibrium. Functional images were intensity bias-corrected, realigned
to the mean image of each run and then co-registered to the structural
scan. All further analyses were performed using custom MATLAB code.
The time series for each voxel in each run were linearly de-trended and
z-score normalized. Finally, all runs belonging to the same condition
were concatenated before further analyses whereas in the wedge-and-
ring standard mapping experiment, the time series were averaged
before the fitting analysis to increase signal to noise ratio. Functional
data of each participant were projected on a surface reconstruction of
the grey white matter surface estimated with FreeSurfer (Dale et al.,
1999; Fischl et al., 1999) by finding the voxel at the medial position
between the grey-white matter boundary and the pial surface for each
vertex in the mesh (using custom made Matlab scripts and SamSrf
toolbox). All the following analyses were performed at the surface level.
The same procedures were adopted for Experiment 2 and 3.

2.1.6. pRF estimates
The data from the different protocols were used to obtain indepen-

dent estimates of the population receptive fields (pRFs) using a custom
MATLAB toolbox for pRF analysis (SamSrf v5.84, https://doi.org/10.60
84/m9.figshare.1344765.v24). For all mapping sequences, we com-
bined a binary aperture describing the position of the mapping stimuli
within each scanning volume with a model of the underlying neuronal
population and convolved this with a canonical haemodynamic response
function (HRF) to predict the BOLD signal in each experimental condi-
tion. For the standard wedge and ring mapping sequence, the binary
aperture was a two-dimensional mask (100 � 100) corresponding to the
stimulus location on the screen at each time point. For the main experi-
ment, the binary aperture was a vector mask (1 � 360) indicating the
polar angle coordinates corresponding to the mapping stimulus at each
time point.

For the standard wedge and ring mapping sequence, we estimated the
position and size of pRFs using a two-dimensional Gaussian function
(Dumoulin and Wandell, 2008). For the polar mapping experiments, we
modelled pRFs using a von Mises distribution, with μ indicating the
preferred polar angle of the voxel and k corresponding to the concen-
tration of the response (for clarity k values were transformed into full
width half maximum (FWHM) as an indicator of the spread of the
response of each voxel). We used a coarse-to-fine approach to determine
1 One participant performed 15 runs in one single session in Experiment 1.
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the pRF parameters to obtain the best possible fit of the predicted time
series with the observed data (Alvarez et al., 2015; Dumoulin and
Wandell, 2008; Moutsiana et al., 2016; van Dijk et al., 2016). The final
fine fitting also included a β parameter for the response amplitude.

2.1.7. Analyses
We only analysed the fitted parameters of those vertices for which we

obtained realistic estimates (k > 0) and that had a goodness of fit, R2,
higher than a critical value based on a fixed p-value (p ¼ 10�8). This
corresponds to R2 > 0.0262 in Experiment 1, and R2 > 0.067 in the
wedge-and-ring experiment depending on the different degrees of
freedom in the two experiments.3

The pRF estimated coordinates from the standard wedge and ring
mapping experiment were used to compute polar angle and eccentricity.
Using the Delineation toolbox in SamSrf, we manually delineated the
regions of interest using mirror reversals in the polar angle map, and
guided by the eccentricity and field-sign map (Sereno et al., 1994). The
region of interests included in our analyses were V1, V2, V3, V3A and V4.
We performed all the following analyses separately for each visual ROI in
each individual participant. Given the small number of participants, we
did not report group statistics in the main text, but we summarized the
results for single subject statistics instead.

We compared the quality of the fits across the different spatiotem-
poral sequences. We compared the number of responsive vertices and
the median goodness of fit for each individual by means of repeated
paired t-tests and Wilcoxon tests. We also used a correlation analyses to
evaluate the correspondence between the observed time series for each
condition and the predicted response given the stimulus location and
the parameter estimates for each vertex obtained with each of the
mapping protocols, convolved with an HRF. To further explore the
coherence of the maps obtained with different mapping conditions, we
computed the vertex-wise circular correlation of polar angle estimates
and the Pearson correlation of FWHM and beta estimates between
conditions, separately for each visual ROI and participant. Because
vertices within a ROI are not statistically independent, we calculated
the inter-correlation between the time series of all ROI vertices and
used this information to correct the degrees of freedom of the correla-
tion. Specifically, we calculated all unique pair-wise correlations be-
tween vertices (note that we treated pairs of vertices that were
negatively correlated as independent, i.e. r ¼ 0). We then calculated a
weight for each vertex by subtracting these correlations from 1 and
averaging the values for all pair-wise comparisons of a given vertex.
Thus, in theory, if the time series of all vertices were completely in-
dependent from one another, each vertex would be weighted as 1.
Conversely, if all vertices were identical, they would all be weighted as
0. The sum across these weights plus 1 is therefore a weighted estimate
of the sample size which we used to determine the degrees of freedom.

Moreover, we correlated the observed time courses for each condition
with the predicted time course given the estimated pRF parameters for
each vertex in each experimental condition. Finally, we compared the
mean FWHM across conditions and ROIs using paired t-tests at the sub-
ject level (with degrees of freedom corrected for inter-correlation be-
tween time series as described above). In these analyses, we averaged
FWHM across vertices encompassing different eccentricities, as our
mapping stimulus did not allow differentiating responses at different
eccentricities (i.e. each wedge had a fixed radius that covered the entire
visual field mapped).
p-value would only be marginally different) but the purpose of this procedure is
simply to define an objective threshold for the data rather than accurately
estimating p-values.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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2.2. Results

We obtained reliable polar angle maps with all mapping conditions
for our ROIs (Fig. 2).

Ordered sequences provided better fits and a larger proportion of
responsive vertices than the other mapping sequences in all ROIs (Mean
of median R2 across ROIs:Mord ¼ 0.10,Mpred ¼ .08,Mrnd ¼ 0.08; Mean of
responsive vertices across ROIs: Mord ¼ 35%, Mpred ¼ 25%, Mrnd ¼ 28%).
Moreover, we observed better fits for higher visual areas (Figure S 1A, D).
The relatively low goodness of fit obtained with this paradigm is not
surprising given the high number of degrees of freedom in our paradigm
(due to concatenated time series rather than averaging experimental
runs) and the simplified model used for fitting. Importantly, all vertices
considered for comparisons provided a fitting that met our fixed p-value
criterion of 10�8 in all the mapping conditions. Interestingly, parameter
estimates obtained with different mapping sequences performed simi-
larly well in predicting the observed time series for all mapping pro-
tocols, with generally more robust predictions of the ordered sequences
regardless of the mapping protocol used for the estimates (Figure S 1A).
Consistently, correlation analyses of model fitting results (polar angle,
FWHM, beta, and R2) revealed substantial consistency across different
mapping conditions in all experiments and all visual areas tested. We
observed high significant vertex-wise correlation between R2 (Mord-rand
¼ 0.79, Mord-pred ¼ .77, Mrand-pred ¼ .82; Fig. 3A) in different conditions
for all participants and ROIs (p < .05, Bonferroni corrected for multiple
comparisons). The polar angle estimates were highly robust across con-
ditions but showed a decrease in coherence moving up in the visual hi-
erarchy for the predictable condition (Mord-rand ¼ .86, Mord-pred ¼ .56,
Mrand-pred ¼ .68; Fig. 3B).

We observed positive but substantially weaker correlations for FWHM
estimated, particularly in lower visual areas, V1–V2 (Mord-rand ¼ 0.24,
Mord-pred ¼ .17, Mrand-pred ¼ .35; Fig. 3C).

We further explored potential biases and differences across mapping
conditions and ROIs. As expected, FWHM estimates increased in the vi-
sual hierarchy. Interestingly, FWHM was also systematically influenced
by the mapping sequence and a general pattern emerges for all visual
areas (with the exception of V1 that shows noisier results) with results
highly consistent across participants (Fig. 4; significant results are re-
ported for p < .05, Bonferroni corrected for multiple comparisons). The
ordered sequence lead to significantly smaller FWHM estimates than the
random sequence for most of the participants and ROIs (Fig. 4B). We
found similar differences between ordered and predictable sequences,
although one participant showed a significant difference in the opposite
direction. Interestingly, we measured smaller FWHM for predictable than
random sequences (results are clearer for V2, V3 and V4).

3. Experiment 2

Experiment 1 revealed systematic differences in polar angle tuning
functions estimated with different mapping protocols. This suggests that
Fig. 2. Smoothed polar angle maps for all conditions ordered (i.e. predictable ordered
Experiment 1. In this and the following figures, images display an inflated spherical
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predictability might influence the tuning response of population of
neurons in visual cortex. However, the predictability of our mapping
sequences depended on the repetition of fixed spatiotemporal structure
throughout each run. Such idiosyncrasies in the predictable sequences
could have been responsible for relatively narrow tuning width estimates
(Fig. 4) and the poorer agreement in polar angle estimates of this
sequence with the ordered and the random one (Fig. 3B).

To address whether the fixed spatiotemporal structure of the pre-
dictable sequence was responsible for the observed results, we repeated
Experiment 1, but this time creating a predictable sequence that was
structurally indistinguishable from the random one. Rather than using a
repeated sequence, we rendered the sequence predictable by the use of a
small visual cue. We then compared the tuning width response of this
sequence with the random, non-predictable one.
3.1. Materials and methods

3.1.1. Participants
Four of the original subjects took part in the two sessions of Experi-

ment 2 (one author; age range: [24–35]; 3 females). All participants had
normal or corrected-to-normal visual acuity and gave their written
informed consent to participate to the experiment as in Experiment 1.

3.1.2. Stimuli and mapping sequences
Experiment 2 was set up with the same apparatus and mapping stimuli

used in Experiment 1 (Fig. 1A). We compared four mapping sequences -
ordered, predictable and two random ones. Crucially, we changed how we
induced the predictability of the wedge location in the predictable con-
dition. The predictable and random sequences were generated using the
same algorithm, i.e. wedges were presented at different locations in
pseudorandom order with no adjacent locations presented in a row. In
contrast to Experiment 1, we generated a different sequence in each cycle
thus completely matching the spatiotemporal structure of random and
predictable sequences. We maintained the difference in predictability of
the wedge locations by means of a centrally presented oriented line that
cued the location of the wedges (Fig. 1E). The cue (0.33 � 0.07� in visual
angle) extended from the centre of the screen. It appeared 200 ms before
the onset of each wedge stimulus and remained on the screen for 200 ms
(Fig. 1C). In the ordered and the predictable conditions, the cue pointed
towards the centre of the upcoming wedge. The two random conditions
were both unpredictable but differed for the presence or absence of the
central cue. In the random conditionwith non-predictive cue (random-cue),
the cue pointed to the location of the previous wedge. In the random
condition without cue (random-no cue), no cue was presented. Thus,
neither of the random conditions contained any information about the
location of the upcoming wedge.

For all conditions, each step of the wedge was presented for 1 s such
that an entire cycle was completed in 8 s. Cycles were separated by fix-
ation intervals of variable duration ranging from 1 to 8 s in steps of 1 s.
Each functional scan consisted of 303 acquisitions. Data were collected in
), random (i.e. unpredictable) and predictable (i.e. predictable non-ordered) - in
model of the left hemisphere of participant 4 (S4).



Fig. 3. Group mean correlation matrices for A) the model goodness of fit (R2), B) polar angle estimates), and C) FWHM estimates in Experiment 1. In this and the
following figures, inset numbers in each cell of the correlation matrix indicate the value of the average correlation and the proportion of participants that showed a
significant correlation for each pair of conditions. Moreover, the labels on rows and columns correspond to the following: ord ¼ predictable ordered sequence; rand ¼
random unpredictable sequence; pred ¼ predictable non-ordered sequence.
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two sessions (performed on consecutive days or one day apart) of 12 runs
each taking approximately 90 min. Each condition was repeated in 3
separate runs in each session. All conditions were presented in ran-
domized order every 4 runs.

3.1.3. Analyses
As in Experiment 1, we only analysed the fitted parameters of those

vertices for which we obtained realistic estimates (k > 0) and that had a
goodness of fit, R2, higher than a critical value based on a fixed p-value
(p ¼ 10�8). This corresponds to R2 > 0.019 in Experiment 2.

3.2. Results

Experiment 2 mostly replicated the results of Experiment 1 with even
clearer polar angle maps (Fig. 5) and higher consistencies between
parameter estimates (Fig. 6), possibly due to the higher number of vol-
umes collected.

Ordered sequences provided better fits to the data than predictable
and random sequences (Figure S 1B, E; Mean of median R2 across ROIs:
Mord ¼ 0.09, Mpred ¼ .08, MrandNC ¼ 0.08, MrandC ¼ 0.08; Mean of
responsive vertices across ROIs:Mord¼ 43%,Mpred¼ 41%,MrandC¼ 40%,
MrandNC ¼ 37%). However, our analyses confirmed that the parameters
estimated in the different conditions performed equally well in predict-
ing the time series data (Figure S 2B).

We also replicated differences in FWHM estimates with different
sequence structures with ordered sequences leading to systematically
smaller FWHM estimates than random and predictable sequences (p <

.05 corrected, for all participants and ROIs but one comparison for S2
V3A as illustrated in Fig. 7). Importantly, we did not observe any sys-
tematic differences between predictable and random sequences with the
exception of V2, where FWHM were systematically smaller for predict-
able than random sequences as shown in Experiment 1 (significant
6

difference for all participants in the comparison with the random-no cue
condition and with all participants but one in the random-cue condition).

4. Experiment 3

Experiment 2 suggested that the spatiotemporal structure of the
mapping sequence, rather than its predictability is responsible for the
differences in FWHM estimates. The finding that ordered sequences
yielded narrower tuning widths than random sequences in both Experi-
ment 1 and 2 contrasts with previous studies. A comparison of orderly
moving bars and multifocal stimuli revealed the opposite pattern of re-
sults, with the largest pRF estimates obtained with ordered sequences
(Binda et al., 2013). However, it is not clear whether pRF size estimates
might have been affected by surround suppression of response in the
multifocal stimuli (Pihlaja et al., 2008). Moreover, our results might be
affected by the short mapping sequences we adopted. To address this
hypothesis, we replicated Experiment 2 with the same mapping condi-
tions and the same participants, but we varied the size of the mapping
stimulus as well as the duration of the mapping cycle.

4.1. Materials and methods

4.1.1. Participants
The same four participants (including one author) that took part in

Experiment 1 and 2 participated also in both sessions of Experiment 3. All
participants gave their written informed consent to participate to the
experiment.

4.1.2. Stimuli and mapping sequences
The mapping stimulus in Experiment 3 was a discretely moving

wedge aperture subtending 6� and dividing the circle in 60 non-
overlapping locations, no shifts were introduced across runs (Fig. 1B).



Fig. 4. Polar angle tuning width estimates in Experiment 1 (measured as Full-Width Half-Maximum). A) Individual and group mean FWHM estimates for different
mapping sequences and visual areas. In this and the following figures, error bars in both the individual and group plots represent bootstrapped 95% confidence
intervals. B) Visualisation of single subject statistics (p < .05 corrected for multiple comparisons).

Fig. 5. Smoothed polar angle maps for all conditions - ordered, (i.e. predictable ordered), random with or without uninformative cue (i.e. unpredictable) and pre-
dictable (i.e. predictable non-ordered) - in Experiment 2.
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The mapping sequences used in Experiment 3 were generated in the same
way as those in Experiment 2 resulting in four experimental conditions:
ordered, predictable, random-no cue, and random-no cue (Fig. 1F). The
distinctive difference between Experiment 2 and 3 is only the aperture
size and, consequently, the duration of the mapping cycle. For all con-
ditions, each step of the wedge was presented for 1 s such that an entire
cycle was completed in 60 s (60 wedges of 6�, 4 cycles). Cycles were
separated by fixation intervals of variable duration ranging from 1 to 8 s
in steps of 1 s. Each functional scan consisted of 295 acquisitions whilst
other scanning details remained identical to Experiment 2.

4.1.3. Analyses
As in the previous experiments, we only analysed the fitted
7

parameters of those vertices with k > 0 and goodness of fit, R2 > 0.019
(based on fixed p-value p ¼ 10�8).
4.2. Results

Parameter estimates were consistent across mapping sequences
(Fig. 8, Fig. 9; Figure S 2C).

Ordered sequences provided much better fits to the data than pre-
dictable and random sequences (Mean of median R2: Mord ¼ 0.14, Mpred
¼ .06, MrandNC ¼ 0.06,MrandC ¼ 0.06; Mean of responsive vertices across
ROIs: Mord ¼ 61%, Mpred ¼ 37%, MrandC ¼ 38%, MrandNC ¼ 38%; Figure S
1C, F). However, the parameters estimated in the different conditions
performed equally well in predicting the time series data and they all



Fig. 6. Mean correlation matrices for A) goodness of fit (R2), B) polar angle, and C) FWHM estimates in Experiment 2.
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yielded the best results when predicting the ordered sequence (Figure S
2C).

Experiment 3 produced an interesting inversion of the pattern of
results in terms of FWHM estimates (Fig. 10) compared to the previous
experiments. Although there was no consistent pattern in the contrast
between predictable and random sequences, FWHM estimates were
systematically larger for ordered than random or predictable sequences
for V3, V3A and V4. Similar results were found for V2 but with less
consistent results across participants. Results for V1 were less clear but
seem to suggest the opposite: FWHM were smaller for estimates ob-
tained with an ordered rather than a random or predictable sequence.

5. Comparison across experiments

In order to understand how tuning width varied across experiments as
a function of changes in the mapping sequence structure, duration and
stimulus size, we compared FWHM with the estimates obtained in the
standard mapping experiment. We first selected the vertices that pro-
vided a reliable fit for all the experiments (according to the criteria
described in the Analyses section). For each of the participants that took
part in all three experiments (N ¼ 4), we computed the log ratio of the
FWHM estimate each condition and the FWHM estimated for the same
vertices in the standard experiment. We averaged the log ratio for the
vertices residing in one visual area and compared it across experiments,
conditions and ROIs.

The random condition proved relatively stable across experiments,
suggesting that it is robust to the changes in cycle duration and stimulus
size introduced across experiments (Fig. 11). On the other hand, the
ordered condition showed the clearest changes across experiments. The
tuning width estimates obtained with the short ordered cycles (Experi-
ments 1 and 2) in particular were systematically smaller than the ones
obtained with a longer cycle (as in Experiment 3) or an equally short
cycle employing a non-ordered sequence.
8

6. Simulations

With the following simulations, we addressed the hypothesis that the
discrepancies in tuning width observed for the different mapping se-
quences in the previous experiments were caused by the spatiotemporal
properties of the haemodynamic response (Aquino et al., 2012; Krie-
geskorte et al., 2010). To test this possibility, we simulated the BOLD
response for Experiments 1 and 3 using the stimBOLD toolbox (https://gi
thub.com/KevinAquino/stimBOLD, Aquino et al., 2015). This toolbox
integrates multiple existingmodels: from the neural analyses of the visual
stimulus to the simulation of the hemodynamic BOLD response. It takes a
visual input, predicts the cortical neural response that it evokes in early
visual cortex (areas V1–V3) and simulates the BOLD response taking into
account both the temporal dynamics of the HRF and the spatial in-
teractions between neighbouring voxels adopting the poroelastic prop-
erties of the brain tissue (Aquino et al., 2014; Aquino et al., 2012).

6.1. Materials and methods

6.1.1. Stimuli and mapping
We used stimBOLD to simulate the BOLD response in visual areas

V1–V3 for the left hemisphere of FreeSurfer average brain (fsaverage)
(Benson et al., 2012; Dale et al., 1999; Fischl et al., 1999). We simulated
the responses for all the conditions that differed in terms of spatiotem-
poral structure and stimulus size in the previous experiments. In partic-
ular, we selected the ordered, random, and predictable conditions in
Experiment 1 – Simulation A – and the ordered and random conditions of
Experiment 3 – Simulation B (in both cases we employed the mapping
sequences used for participant 4).

The mapping stimulus had the same physical properties adopted in
our empirical experiments (max eccentricity¼ 8.5 dva; wedge size of 45�

for Experiment 1 and 6� for Experiment 3). Each location of the visual
field was stimulated for 1s, before moving to the next location in the

https://github.com/KevinAquino/stimBOLD
https://github.com/KevinAquino/stimBOLD


Fig. 7. Polar angle tuning width estimates in Experiment 2. A) Individual and group mean FWHM estimates. B) Visualisation of single subject statistics (p < .05
corrected for multiple comparisons).
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sequence. Two images, selected from the original dataset of natural
pictures, alternated every 500 ms.

Six runs for each condition were simulated separately, then Gaussian
noise was added to the signal. Gaussian noise was adjusted in order to
produce approximately the same signal-to-noise ratio (SNR) across
Simulation A and B (Simulation A, SNRord ¼ 0.21; SNRpred ¼ .17; SNRran

¼ 0.17. Simulation B: SNRord ¼ 0.21; SNRran ¼ 0.11. We computed the
SNR as the ratio between the standard deviation of the signal and the
standard deviation of the residuals). The following analyses were per-
formed for the simulated data with and without Gaussian noise.

6.1.2. Analyses
The signal was z-score normalized and the runs concatenated before
Fig. 8. Smoothed polar angle maps for all conditions - ordered, (i.e. predictable ord
dictable (i.e. predictable non-ordered) - in Experiment 3.
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modelling the pRF profiles following the same approach used for the
empirical data. We focused our analyses on the comparison of FWHM in
the different conditions for Simulation A and B considering only those
vertices with goodness of fit higher than a critical value based on a fixed
p-value (p ¼ 10�8, R2 > 0.026 for Simulation A and R2 > 0.019 for
simulation B). We averaged FWHM across eccentricities and ROIs (V1,
V2, and V3) separately for each condition and tested their difference with
paired t-tests (degrees of freedom corrected for time series correlation).
6.2. Results

The results qualitatively replicated the difference across conditions
observed in the empirical data (Fig. 12). In Simulation A, the ordered
ered), random with or without uninformative cue (i.e. unpredictable) and pre-



Fig. 9. Mean correlation matrices for A) goodness of fit (R2), B) polar angle, and C) FWHM estimates in Experiment 3.
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condition resulted in significantly lower estimates of FWHM than the
random condition (V1–V3ord-rand: t(196.8) ¼ �7.05, p < .001). The
predictable condition lead to intermediate results (V1–V3ord-pred:
t(205.8) ¼ �2.98, p ¼ .003; V1–V3rand-pred: t(200.0) ¼ 2.97, p ¼ .003).
Crucially, the pattern of results reversed for Simulation B with the or-
dered condition leading to the significantly higher FWHM estimates than
the random one (V1–V3ord-rand: t(263.7) ¼ 5.04, p < .001). The analyses
of the predicted BOLD response without addition of Gaussian noise
produces an inversion of the pattern of results for the ordered and pre-
dictable conditions in Simulation A (V1–V3ord-pred: t(618.0)¼ 10.72, p<

.001; V1–V3rand-pred: t(593.0) ¼ 10.72, p < .001). However, the crucial
difference between ordered and random conditions is replicated in both
simulations (Simulation A. V1–V3ord-rand: t(569.8) ¼ �5.06, p < .001.
Simulation B. V1–V3ord-rand: t(1150.7) ¼ 5.51, p < .001) (Fig. 12).

7. Discussion

In this series of experiments, we investigated the reliability and biases
of pRF modelling while disambiguating the impact of predictability and
spatiotemporal regularities when mapping the visual cortex. We adopted
a modified version of the pRF modelling approach (Dumoulin and
Wandell, 2008) to estimate the polar angle preference of neural pop-
ulations in visual cortex and designed mapping sequences characterized
by different spatiotemporal structure and different duration.

As reported in previous studies, polar angle estimates were robust
across mapping sequences while estimates of pRF size were more volatile
(van Dijk et al., 2016). Despite their general robustness, the polar angle
estimates in visual areas with larger receptive fields (V3, V3A, V4) were
more sensitive to the structure of the mapping sequence when short
mapping cycles were adopted. This was particularly evident for the
predictable condition in Experiment 1 in which the same short sequence
was repeated throughout one run introducing systematic deviations in
the measured polar angle estimates. This observation agrees with pre-
vious reports suggesting that pRF position measures are, to a certain
10
degree, sensitive to spatio-temporal properties of the sequence. In
particular, it has been shown that ordered protocols may induce biases in
specific circumstances, for example in the presence of visual defects or
when mapping the periphery of the sensory space (Binda et al., 2013;
Thomas et al., 2015).

In all experiments, we observed striking differences in pRF size for
ordered and random sequences across the visual areas tested. Interest-
ingly, in Experiment 1 we observed the narrowest tuning widths for or-
dered mapping sequences, intermediate results for the regular and
predictable sequences and the widest tuning width for random se-
quences. These results are in contrast with previous reports of larger pRF
size estimates for ordered sequences (Binda et al., 2013). To test whether
such results were a consequence of the anticipation of the attended
stimulus, we ran Experiments 2 and 3 where we used a spatial cue to
orient attention and matched the spatiotemporal properties of predict-
able and random sequences. We replicated the findings for ordered and
random sequences when a short mapping cycle was employed but we
found the opposite pattern of results for slower designs. Moreover, we
obtained different results for the predictable sequences when the
spatiotemporal structure of the sequence was matched to the random
one. Such results argue against an impact of expectations in pRF esti-
mates and suggest that other factors may contribute to these changes in
tuning width. When comparing tuning width across experiments, we
observed that the random condition proved relatively stable while the
ordered sequence showed the largest changes when we varied the cycle
duration in Experiment 3 (Fig. 11).

One possibility is that fast-paced designs are more susceptible to
nonlinear spatiotemporal interactions of responses. For example, centre-
surround suppression mechanisms have been suggested to modulate
response amplitude when multiple stimuli are presented during map-
ping, as happens in multi-focal designs (Pihlaja et al., 2008). Alterna-
tively, the rapid stimulation of adjacent regions might induce
hemodynamic stealing (Harel et al., 2002), or induce adaptation phe-
nomena (Krekelberg et al., 2006) hence reduced BOLD signal. Such



Fig. 10. Polar angle tuning width estimates in Experiment 3. A) Individual and group mean FWHM estimates. B) Visualisation of single subject statistics (p < .05
corrected for multiple comparisons).
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phenomena could influence pRF size estimates with greater impact on
ordered protocols. While these possibilities are intriguing, they cannot
easily explain the inversion of the pattern of results observed in our last
experiment. Finally, it is possible that active changes in cortical vascu-
lature might be responsible for spatiotemporal nonlinearities in the BOLD
response and significantly affect the pRF estimates, particularly with
small voxel sizes (Aquino et al., 2012; Kriegeskorte et al., 2010). Our
simulations found general support for the last hypothesis indicating a
possible mechanism by which the interplay of stimulus properties and
mapping sequence can have a measurable impact on pRF estimates. The
interaction between the spatial proximity of voxels and the cycle dura-
tion could account for the differences observed across different condi-
tions and experiments. By integrating the use of comprehensive models
of BOLD response in the experimental design procedures, one might be
able to identify the sequence duration and stimulus properties that are
the least susceptible to distortions due to spatio-temporal non-linearities
in the BOLD response. Moreover, this spatio-temporal approach can be
used to deconvolve the fMRI signal (i.e. using a spatiotemporal HRF,
Aquino et al., 2014; Pang et al., 2018) before pRF modelling, strongly
benefiting the precision and reliability of mapping estimates.

In our study, we did not find any clear evidence that the predictability
of stimulus location can significantly bias polar angle or tuning width
estimates. This result contradicts previous studies that showed attention
can cause both a shift of the preferred location towards the attended
location and an increase in pRF size (Kay et al., 2015; Klein et al., 2014;
Sheremata and Silver, 2015; van Es et al., 2018; Vo et al., 2017). Such
11
modulation had initially reported only been in the ventral cortex, higher
up in the visual cortex (Kay et al., 2015) while more recent evidence
suggest that both feature-based and spatial-based spatial attention can
induce significant shifts in the response of neurons in areas as early as
V1–V3 (van Es et al., 2018). It has been suggested that these changes are
functional to increase the precision of the representation of the target at
the attended location (Kay et al., 2015). While our design was not
tailored to detect systematic changes in polar angle preferences, we hy-
pothesized that the predictability of the mapping sequence would affect
the tuning of neuronal responses. The discrepancy between our results
and recent observations of attentional effects can be explained by a dif-
ference in task requirements among the studies. All former studies
manipulated the focus of attention by varying the location at which
participants were performing a perceptual task, either at fixation or on
the mapping stimulus (Kay et al., 2015; Sheremata and Silver, 2015; van
Es et al., 2018). Such demanding tasks required a redistribution of re-
sources at the attended location. On the contrary, in our experiments, our
task did not require a fine discrimination and the predictability of stim-
ulus location was not strategically relevant for performing the task. Thus,
expectations alone may not dynamically change pRF properties in early
visual cortex to a significant extent, unless there is a computational
requirement imposed by the task.

Irrespective of the specific sequence, the fitting results described in
the current study produced weaker fits than standard mapping ap-
proaches (Dumoulin and Wandell, 2008). Several reasons could
contribute to these results. First, R2 depends considerably on the degrees



Fig. 11. Single subject (dotted line) and group mean (solid line) log ratio between FWHM estimated in each condition and FWHM estimated in the standard
experiment. A log ratio smaller than 0 indicates that the estimated tuning width is smaller than the one estimated with the standard experiment. A flat line indicates
that the tuning width estimates are robust to the changes in cycle duration and stimulus size introduced across experiments (E1: Experiment 1; E2: Experiment 2; E3:
experiment 3).
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of freedom. In our experiments, we concatenated the BOLD response in
separate runs of the same condition leading to a large number of time
points per condition (up to 1818 in Experiment 2) massively increasing
the degrees of freedom and generally reducing R2 estimates of goodness
of fit. Second, in order to facilitate learning of the predictable sequences,
we designed protocols with unusually short cycles in Experiment 1 while
long cycles but thin mapping stimuli were employed in the last study.
Despite these limitations, we obtained reliable maps in all conditions
(Figs. 2, 5 and 8).

Our study shows that pRF estimates are susceptible to the spatio-
temporal properties of the mapping sequence. In particular, ordered and
random mapping protocols show different susceptibility to other design
choices such as stimulus type and duration of the mapping cycle and can
produce significantly different pRF results. Finally, it is worth noting that
while ordered sequences are typically preferred for their higher goodness
of fit, this is not a guarantee of their robustness. More specifically, the
Fig. 12. Polar angle tuning width estimates for simulated BOLD responses with and w
interval. A) Simulation A replicating the sequence structure and stimulus properties o
properties of Experiment 3.
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pRF estimates obtained with different sequences, both ordered and
random, performed comparably well in predicting the response to
different mapping stimuli. Moreover, the relative consistency of esti-
mates across experiments suggests that random protocols may provide
more robust estimates that are less susceptible to other design choices, in
agreement with previous literature (Senden et al., 2014). To conclude,
depending on other design constraints, one should consider which pro-
tocol is more suitable for the experimental purposes.
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