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Abstract 15 

The development of low-cost sensors and novel calibration algorithms offer new opportunities 16 

to supplement existing regulatory networks to measure air pollutants at a high spatial resolution 17 

and at hourly and sub-hourly timescales. We use a random forest model on data from a network 18 

of low-cost sensors to describe the effect of land use features on local-scale air quality, extend 19 

this model to describe the hourly-scale variation of air quality at high spatial resolution, and 20 

show that deviations from the model can be used to identify particular conditions and locations 21 
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where air quality differs from the expected land-use effect. The conditions and locations under 22 

which deviations were detected conform to expectations based on general experience. 23 
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Introduction 28 

The South Coast Air Basin is one of the most polluted air basins in the United States (Epstein 29 

et al., 2017). The pollution problem in this region is driven by high emissions, unfavourable 30 

meteorological conditions (low wind speed, strong temperature inversions, abundant sunshine, 31 

infrequent rainfall), sea breezes and complex terrain that limits pollutant dispersion (South 32 

Coast AQMD, 2016). Spatially and temporally dense information about local scale air pollution 33 

is necessary to mitigate air pollution effectively (Vizcaino and Lavalle, 2018). While regulatory 34 

air quality monitoring networks offer important insights about long-term air quality trends, the 35 

data must be supplemented with additional measurements and models to obtain geographically 36 

more detailed air pollution information (Li et al., 2019a). This is of importance given that air 37 

pollutant concentrations can vary considerably over small distances (Kumar et al., 2015; 38 

Weissert et al., 2019a).  39 

Association of average pollutant concentration with land use variables (e.g. distance to major 40 

roads, length of major roads within different buffers, bus stops) is a frequently used approach 41 

to model time-averaged pollutant concentrations with high spatial resolution (Hoek et al., 42 

2008). A limitation of land use regression (LUR) models is the risk of overfitting the data when 43 

only few measurement sites are used to train the model. Further, LUR modelling is based on 44 

the assumption that relationships between air pollution and predictor variables are linear and 45 

that there are no interaction effects between different predictors. Other algorithms that remove 46 

some of these limitations (e.g. Generalized Additive Model (GAM), Least Absolute Shrinkage 47 

and Selection Operator (LASSO)) have been used to fit a land use model to pollutant 48 

concentrations (Chen et al., 2019). Some studies have also used machine learning algorithms 49 

such as Random Forest (RF) (Brokamp et al., 2017; Hu et al., 2017; Zhan et al., 2018). LUR 50 

models are usually developed from dense diffusion tube monitoring over a few weeks during 51 

different seasons and lack temporal resolution at the hourly or sub-hourly scale. To overcome 52 
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this, LUR models have been combined with temporally variable predictors to obtain hourly 53 

models (Masiol et al., 2018; Miskell et al., 2018b; Son et al., 2018; Yeganeh et al., 2018).  54 

The development of low-cost sensors has created new opportunities for air quality 55 

measurements and modelling. If deployed in dense networks, low-cost sensors have the 56 

potential to provide near real-time measurements of pollutants at a spatial resolution 57 

representative of the neighbourhood scale. They can offer insights into the influence of local 58 

pollution sources at different temporal and spatial scales that may not be detected by the usually 59 

sparsely distributed regulatory monitoring networks (Feinberg et al., 2019; Li et al., 2019b; 60 

Popoola et al., 2018; Weissert et al., 2019a).  Hence, the increasingly available data from low-61 

cost sensor networks has led to new research aimed at combining continuous measurements 62 

obtained from a low-cost sensor network with land use data to get spatially and temporally 63 

dense air pollution information (Deville Cavellin et al., 2016; Lim et al., 2019; Masiol et al., 64 

2019; Miskell et al., 2018b; Schneider et al., 2017). In Montreal and Vancouver, Canada, 65 

mobile measurements with low-cost sensors were used to map air pollutants during different 66 

seasons (Deville Cavellin et al., 2016) and times of the day (Miskell et al., 2018b).. Schneider 67 

et al. (2017) combined air quality data obtained from a low-cost sensor network (24 units) with 68 

an urban-scale air quality dispersion model to map nitrogen dioxide (NO2) concentrations at 69 

near real-time. A network of ten low-cost sensors was used in New York to develop 24 LUR 70 

models representative of each hour of the day (Masiol et al., 2019). In a recently published 71 

pilot study, we presented another approach to combine NO2 concentrations obtained from a 72 

microscale low-cost sensor network (eight sensors along a 2 km length of a heavily-trafficked 73 

road with mixed commercial and residential land use) with land use information to identify site 74 

and time specific effects of urban design features that disproportionately contribute to 75 

population exposure (Weissert et al., 2019a).  76 
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Such attempts to fuse land-use and sensor network data face the challenge of demonstrating 77 

plausibility of data from low-cost sensor networks (Williams, 2019). A considerable amount 78 

of research has focused on sensor performance. A specific issue is drift of sensor signals over 79 

time (Clements et al., 2017). Thus, an increasing number of researchers are focusing on 80 

developing procedures that allow remote sensor calibrations (Delaine et al., 2019), which is 81 

critical for the long-term deployment of large low-cost sensor networks.  In our recent work, 82 

we developed calibration and remote drift detection procedures for ozone (O3) and NO2 sensors 83 

deployed in hierarchical networks consisting of a few well-maintained regulatory sites and a 84 

large number of low-cost sensors, distributed across a region. The approaches were tested with 85 

success for networks installed in the Lower Fraser Valley, Canada, and in Southern California 86 

(Miskell et al., 2019; Miskell et al., 2016; Miskell et al., 2018a; Weissert et al., 2019a) .  87 

Correction of sensor drift over time, and of offset errors, has been comprehensively 88 

demonstrated. The corrected sensor data for Southern California provide a spatially and 89 

temporally dense data set of O3 and NO2 concentrations that can claim reliability with a root 90 

mean-square error (RMSE) of 5.4 and 7.4 ppb, respectively, over the several months of the 91 

study.  Here, first we use this dataset to develop a land-use model for concentrations averaged 92 

over two months, and then apply the simple approach described by Weissert et al. (2019a) to 93 

model concentrations on an hourly time-scale, both for O3 and NO2. Then, we use an analysis 94 

of differences between measured and modelled concentrations to identify local urban 95 

conditions that are poorly captured by the static land use model.  We show that these deviations 96 

have reasonable explanations which in turn reinforces confidence in the original dataset 97 

(Williams, 2019). 98 

 99 

Methods 100 
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Sensor network 101 

We used the micro air quality monitoring instruments (model AQY) from Aeroqual Ltd., 102 

Auckland, New Zealand, which are described in detail in Weissert et al. (2019a). The data 103 

correction procedures for electrochemical NO2 sensors to account for interference by ozone 104 

and for offset errors have been comprehensively described elsewhere (Miskell et al., 2019; 105 

Miskell et al., 2018a, Weissert et al., 2019b, c).  The cross-sensitivity to NO of electrochemical 106 

NO2 sensors is small and can be ignored (Mead et al., 2013; Popoola et al., 2018). The low-107 

cost sensor network was deployed in the Inland Empire in Southern California (Fig. 1).   108 

 109 

Figure 1. Low-cost sensor sites used for this study (n = 31).  110 

For the model building, we used data from 31 low-cost sensor sites during April and May 2018, 111 

when most data were available. Pollutant concentrations (O3 and NO2) were averaged across 112 

the two months to develop the ‘average’ model.  113 
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 114 

Predictor variables 115 

Publicly accessible land use data from Open Street Map and traffic data (Caltrans, 2019) were 116 

used as predictor variables. Altitude data was extracted from the Shuttle Radar Topography 117 

Mission (SRTM) 90m Digital Elevation data (http://srtm.csi.cgiar.org/). We used three variable 118 

selection methods to assess the effect of different predictor numbers offered to the model. First, 119 

we used all available predictors (Chen et al., 2019), second we optimized buffer distances (Su 120 

et al., 2009; Vizcaino and Lavalle, 2018) and third, we removed variables that did not follow 121 

the expected direction of effect (Beelen et al., 2013; Vizcaino and Lavalle, 2018). To optimize 122 

buffer distances, the correlations between the pollutant concentrations and the predictor 123 

variable at each buffer distance were calculated and the one with the highest value of 124 

correlation was used in the model.  125 

Table 1. Predictor variables used in the model. Buffer size refers to the radius around the study 126 

site.  127 

Predictor variables Variable code Unit Buffer size (m) 
Altitude Elevation m  
Coordinates of the low-cost 
instrument site Lat/Long  -  
Length of all main roads 
within the buffer circle MAJORROADLENGTH  m  

24, 50, 100, 200, 
300, 500, 1000 

Length of all roads within 
the buffer circle ROADLENGTH  m 

24, 50, 100, 200, 
300, 500, 1000 

Inverse distance to the 
nearest main road DISTINVNEAR1  m-1   
Truck traffic TRUCK_AADT veh day-1  
Vehicle traffic VEH_AADT veh day-1  

 128 

Model building and validation 129 
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We used a random forest (RF) model. RF models have successfully been used in previous 130 

studies aiming to predict NO2 concentrations using land use (Araki et al., 2018; Chen et al., 131 

2019; Hu et al., 2017; Zhan et al., 2018). This approach was chosen to minimise the risk of 132 

overfitting given that there are relatively few monitoring sites and also to capture non-linear 133 

relationships observed between air pollutant concentrations and predictor variables (Araki et 134 

al., 2018; Chen et al., 2019; Vizcaino and Lavalle, 2018). RF models are bagged decision tree 135 

models, where each tree consists of a random subset of predictor variables from the training 136 

dataset and where the final output is the average of multiple decision trees (Breiman, 2001; 137 

Grange et al., 2018; Vizcaino and Lavalle, 2018).  138 

We used the caret package in R (v3.5.3) to develop the RF (Kuhn, 2019). Ideally, the data 139 

would be split into a training (80%) set, which is used to develop the model, and a test (20%) 140 

set, which is used to evaluate the performance of the model (hold-out validation). However, 141 

given the small sample size of sites, we decided to use all sites to develop the model. Thus, we 142 

could not verify the performance of the model on held-out test data. Therefore, the model 143 

developed for the monitoring sites may not be representative of other sites. However, the focus 144 

of this paper is to assess local effects that result in deviations from the average modelled 145 

concentrations, which would not be as affected by the lack of test data. The model is evaluated 146 

using a 10-fold cross-validation for resampling where the root mean square error (RMSE) is 147 

taken as the metric to measure model performance.  148 

 149 

Fusion of the RF model with hourly-averaged data 150 

To build the model for the temporal variation at the hourly-averaged time-scale, we used the 151 

approach described in Weissert et al. (2019a). In brief, we assume that the modelled 152 
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concentrations (𝐶𝐶𝑅̅𝑅𝑅𝑅,𝑘𝑘) are linearly related to the hourly-averaged low-cost instrument data (𝑦𝑦𝑘𝑘)  153 

for any given hour on any given day (𝑙𝑙).  154 

𝑦𝑦𝑘𝑘,𝑙𝑙 =  𝑎𝑎�1,𝑙𝑙 𝐶𝐶𝑅̅𝑅𝑅𝑅,𝑘𝑘 +  𝑒𝑒𝑙𝑙,𝑘𝑘             (1) 155 

where 𝑎𝑎�1,𝑙𝑙 is derived from a least-square regression of eq. 1. An analysis of 𝑒𝑒𝑙𝑙 at the different 156 

low-cost sensor sites, k, was then used to assess local effects that are not captured by the RF 157 

model.  158 

 159 

Results and Discussion 160 

Measured pollutant concentrations 161 

Concentrations are expressed as mixing ratios: parts-per-billion (109) by volume, ppb. Figure 162 

2 shows boxplots for the O3 and NO2 concentrations measured at the different low-cost sensor 163 

sites across the study period, showing that the intra-site variability tends to be larger than the 164 

variability between sites for both pollutants. Maximum 8-hour O3 was 120 ppb (site 184). The 165 

highest 1-hour average NO2 concentrations were recorded at site 124 (116 ppb). 166 
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167 

Figure 2. Boxplot for NO2 and O3 concentrations measured at the low-cost sensor sites (x-axis) 168 

from April to May 2018. The line denotes the median value. The upper and lower hinges 169 

represent the 25th and 75th percentiles. The whiskers extend from the hinge 1.5 times the 170 

interquartile range. Outliers are shown as dots. The location of the sites and site numbers are 171 

shown in figure 1. 172 

 173 

Figure 3 shows the spatial variability of mean O3 and NO2 concentrations. Mean O3 174 

concentrations were not highly variable between locations across the region. However, the 175 

range of concentrations experienced between locations did differ significantly (figure 2).  The 176 

mean NO2 concentration was highly spatially variable across the region. The results suggest 177 

higher O3 and NO2 concentrations north of Riverside along the mountain range. At other sites, 178 

the two pollutants show the expected opposite pattern with higher NO2 concentrations and 179 

lower O3 concentration in the south west (SW) direction of Riverside.  Although at individual 180 

sites the NO2 concentration showed an irregular temporal variation (Weissert et al. 2019b), on 181 

average, with more variability for NO2, the two pollutants showed a simple diurnal variation 182 
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with the lowest value close to zero: figure 4.  For a regular diurnal variation with minimum 183 

zero, eq 1 would apply exactly. 184 

185 

Figure 3. Average measured O3 (left) and NO2 (right) concentrations at the low-cost sensor 186 

sites.  187 

 188 

 189 

 190 

Figure 4. Mean diurnal variation of O3 (red) and NO2 (blue), averaged over all sites and days.  191 

 192 

Model results 193 

Table 2 shows a summary of the resampling results for different predictor selection approaches 194 

(1: all predictors, 2: predictors with optimized buffers, 3: predictors with optimized buffers and 195 
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that follow the expected direction of effect). It shows that the model performed well on the 196 

data, with a slightly better performance when using all predictors. When applied to all sensor 197 

sites, the sample Pearson correlation coefficient, R2, between the modelled and measured O3 198 

and NO2 concentrations was 0.73 (RMSE = 1.8 ppb) and 0.93 (RMSE = 1.3 ppb), respectively.  199 

 200 

Table 2. Summary of the model performance for different predictor selections (1: all predictors, 201 

2: predictors with optimized buffers, 3: predictors with optimized buffers and that follow the 202 

expected direction of effect). mtry is the number of variables randomly sampled as candidates. 203 

Approach Training data (n = 31)   
 

O3     NO2     
  R2 RMSE mtry R2 RMSE mtry 
1 0.70 1.14 11 0.71 1.82 20 
2 0.71 1.14 5 0.66 1.95 2 
3 NA NA NA 0.66 1.95 2 

 204 

Figure 5 shows the variable importance derived from the RF suggesting that location (latitude) 205 

is the most important predictor for O3, followed by average truck traffic and the inverse 206 

distance from the nearest main road. The spatial variability of the measured pollutant 207 

concentrations confirms the higher O3 concentrations at higher latitudes at the bottom of the 208 

mountain range (Fig. 3). NO2 concentrations were largely dependent on the main road length 209 

within 1 km, inverse distance to main road and elevation with a tendency for higher 210 

concentrations measured at higher altitudes.  211 

Whilst the inverse distance to the nearest main road was important, there was a lot of scatter 212 

and the relationship with NO2 concentrations was weak (R2 < 0.1) and followed the opposite 213 

direction of effect. While predictors following an unexpected direction of effect are excluded 214 

in standard linear regression models, RF models may also include predictors with counter-215 
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intuitive effects, for example, to compensate for over or under predictions by other predictors 216 

(Chen et al., 2019).  217 

218 

Figure 5. Scaled variable importance (%) plot for the final RF model for a) O3, b) NO2. The 219 

variables are listed in order of importance from top to bottom.  220 

 221 

Temporal variation results 222 

Figure 6 shows the hourly-averaged O3 concentrations measured at the low-cost sensor sites 223 

against the modelled and temporally updated O3 concentrations. Figure 6 shows that across the 224 

entire study period, the model captured well the temporal variation measured at the low-cost 225 

sensor sites. This is to be expected since at most sites and times the variation was a regular 226 

diurnal cycle with the lowest value close to zero; hence, the hourly variation would be simply 227 

related to the mean. 228 

 229 
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230 

Figure 6. Hexbin plots of hourly averaged O3 concentrations at the low-cost sensor sites against 231 

the modelled O3 concentrations (equation 1). The dashed line is the 1:1 line.  232 

 233 

Figure 7 shows the same figure for NO2, with the measured NO2 concentrations on the y-axis 234 

and the modelled NO2 concentrations on the x-axis. The model captured the overall temporal 235 

variability well at most sites, however some deviations can be observed. At site 121, for 236 

example, the model was not able to capture the NO2 concentrations measured at this site. 237 

Likewise, some high concentrations were missed at site 124.  238 
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 239 

Figure 7. Hexbin plots of hourly averaged NO2 concentrations at the low-cost instrument sites 240 

against the modelled NO2 concentrations (equation 1). The dashed line is the 1:1 line.  241 

 242 

Analysis of local effects 243 

Figure 8 shows the unexplained variance for each site as a fraction of the total unexplained 244 

variance. O3 concentrations were generally well captured, which is partly due to the lower 245 

spatial variability of O3. Sites where the model did not predict temporal O3 concentrations as 246 

well include sites 120, 124 ,116 and 167. The unexplained variance was slightly higher for NO2 247 

(Fig. 8b) and higher for sites 121, 120, 124 and 167. The spatial variation of the unexplained 248 

variance is shown in figure 8c – e. As indicated by the larger unexplained variance (expressed 249 

as the ratio of the mean sum of squared error, sse, at the particular site divided by the mean 250 

sum of squared error at all sites, sse site/sse total) the model did not perform as well for O3 and 251 

NO2 for sites close to the mountain range, north and south of the valley. In an effort to analyse 252 

and discuss local effects that may have contributed to unpredicted variations, we also plotted 253 
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the mean difference term (measured – modelled concentrations) across different wind 254 

direction-speed bins (Fig. 9). Some examples for local effects are discussed below. 255 

 256 

Figure 8. a) – b) O3 and NO2 variation not explained by the model at the different low-cost 257 

instrument sites; mean sum of squared error (sse) at the particular site divided by mean sum of 258 

squared error at all sites (sse total).  c) – e) maps at different scales to illustrate the spatial 259 

variability of the unexplained O3 and NO2 variation. The location of the sites and site numbers 260 

are shown in figure 1.  261 

 262 
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 263 

Figure 9. Polar plots showing the mean difference between the measured and modelled O3 (a) 264 

and NO2 (b) concentrations divided into different wind direction and wind speed (ws / m s-1) 265 

bins. 266 

 267 

Site 116 is located SW of Riverside at a high school. The O3 model tended to slightly 268 

overestimate O3 concentrations at this site, particularly when wind speed was low. This 269 

suggests that O3 concentrations at this school are lower than expected for sites at this latitude 270 

and sites with similar traffic and road patterns. The reason may be hyper-local traffic patterns 271 

around the site that may be leading to local O3 titration with vehicle-emitted nitric oxide (NO). 272 

Site 120 is located in a residential area, east of the Sycamore Canyon Wilderness Park. Thus, 273 

the main road length within 1 km, one of the most important predictors for NO2, was relatively 274 
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small. However, the site was also S/SW of a multi-lane motorway and it is likely that high NO2 275 

and low O3 concentrations were measured when the site was downwind from the motorway, as 276 

can be seen in figure 9. Another site that showed distinct differences between measured and 277 

modelled NO2 concentrations was site 121. The polar-plot in figure 9 reveals that this was 278 

particularly the case when there was a north wind direction. This site was located just south of 279 

the San Bernardino Santa Fe depot, a major road and rail transport hub (Fig. 8e), which resulted 280 

in high NO2 concentrations at this site. Site 124 was located 100 m west from a major road, but 281 

measured O3 concentrations were higher and NO2 lower than typically expected within close 282 

proximity to a main road. The site is located within a golf-course, suggesting perhaps that nitric 283 

oxide (NO) was scavenged by grass and vegetation so O3 titration from vehicle traffic may 284 

have been lower. Site 167 is 400 m south-west from the San Bernardino National Forest, which 285 

explains the higher than modelled O3 concentrations and lower than modelled NO2 286 

concentrations associated with wind from the forested area being lower in NO.  287 

To further assess the temporal differences between modelled and measured concentrations, we 288 

examined the time-series for April for the sites with disproportionately high unexplained 289 

variances (see Figure 10). For O3, the temporally updated model followed the measured O3 290 

concentrations relatively well, although some deviations were observed between the 9th and 291 

14th of April at site 121 where O3 concentrations were lower than modelled. This site also 292 

showed large deviations for NO2 for the same time period, suggesting the local emission 293 

sources may have changed during this time period. Wind data for this period showed a change 294 

in wind direction from dominating south-westerlies to northerlies. Thus, the influence from the 295 

train depot north of this site would therefore have been stronger between the 9th and 14th of 296 

April, particularly on the 9th and 13th when measured NO2 concentrations were considerably 297 

higher than modelled. Similarly, site 167 showed larger deviations between the 9th and 14th of 298 

April, when measured air was mostly coming from the San Bernardino National Forest.  299 
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 300 

 301 

Figure 10. a) hourly measured (red) and modelled (blue) NO2 concentrations and b) hourly 302 

measured (red) and modelled (blue) O3 concentrations during April, c) frequency of wind speed 303 

and wind direction in different wind speed and wind direction categories at site 121 between 304 

the 7th and 16th of April (the panels are different days).  305 

 306 

Temporally variable pollution maps 307 
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Finally, the presented approach allows mapping pollutant concentrations for any given day and 308 

hour measurement data are available. An example for predicted NO2 concentrations for 309 

10/05/2018 at 07:00 local time is shown in figure 11. Given that the prediction success of the 310 

model developed here is limited due to the relatively small number of sites, the figure is focused 311 

on an area where measurements were relatively dense and the predictions likely more 312 

representative. It shows the expected high NO2 concentrations during the morning rush hour. 313 

Spatially, NO2 concentrations were higher north and south of the study area, for which higher 314 

altitude was the main driver in the model.  The likely explanation is the reaction with vehicle-315 

emitted NO of ozone transported down the valley sides from higher in the troposphere: the 316 

ozone concentration variation shown in figure 8 is consistent with this. Although the local 317 

spatial variations seem small, they are of importance in relation to the emerging understanding 318 

of the consequences for health of increases in NO2 concentration on the scale of 5 – 10 ppb and 319 

in relation to suggestions of the need for quantification of long-term health effects of annual 320 

mean concentrations > 10 ppb (WHO, 2013).  Estimates of potential harm are very sensitive to 321 

the thresholds chosen (European Environment Agency, 2019). In the analysis of 322 

epidemiological effects, having data at sufficiently fine spatial and temporal scale is important 323 

(Wei et al., 2019). The spatial coverage and prediction power of the model may be improved 324 

by supplementing low-cost sensor networks with diffusion tube campaigns involving local 325 

communities or schools. The combination of the two approaches would not only show the 326 

general land-use effects on average air quality but also would show the temporal variation as 327 

well as the particular, time-dependent effect of local urban design features not captured by the 328 

land use model. This would then allow mapping pollutant concentrations with more confidence 329 

for any given day and hour at a neighbourhood scale and offer insights about pollution hotspots 330 

and their temporal variation.   331 
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 332 

Figure 11.  Predicted NO2 concentrations (ppb) at 500 m resolution for northern Riverside, 333 

where the low-cost sensor network was the densest network in the region, with measured NO2 334 

concentrations at the sensor sites superimposed: 10th May 2018 at 07:00. The dark lines are 335 

major roads.  336 

 337 

Conclusions  338 

This paper has presented results of a RF model to predict concentration values for O3 and NO2 339 

based on LUR and a low-cost sensor network that was deployed in the Inland Empire region 340 

in Southern California. A previously described procedure was used to remotely calibrate the 341 

low-cost sensors using data from the more sparsely distributed regulatory network. We 342 

combined land use information and an RF model with hourly low-cost sensor data to identify 343 

local effects on O3 and NO2 concentrations at a high temporal resolution. The mean RF models 344 

performed well for O3 and NO2 concentrations (R2 = 0.73/RMSE = 1.8 ppb and R2 = 345 

0.93/RMSE = 1.3 ppb, respectively) at the low-cost sensor sites.  The model consistency over 346 

the several months of the study gave support to the effectiveness of the sensor drift and offset 347 

correction methods. The mean modelled pollutant concentrations were successfully updated 348 
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hourly using the low-cost instrument data. The model for O3 combined with the low-cost 349 

instrument data captured the spatial and temporal variation well. For NO2, deviations from the 350 

model highlighted particular urban features, not accounted for by the general land-use 351 

modelling, that under particular circumstances resulted in significantly increased pollutant 352 

concentration that would be cause for concern. These locations and circumstances could be 353 

related back to specific and understandable local effects. The combination of sensor data at 354 

high time resolution and an average land-use model proved to be an effective and simple way 355 

to highlight the spatial and temporal distribution of local effects that may disproportionately 356 

contribute to pollutant concentrations. The findings may be associated with different 357 

meteorological conditions (e.g. higher pollutant concentrations expected for particular wind 358 

directions) offering support for local pollution alerts. If supplemented with more dense 359 

measurements, for example using diffusion tube campaigns, the model would allow for 360 

mapping pollutant concentrations for any given day and hour, which may be updated in near 361 

real-time as long as measurement data were available.  362 

Acknowledgement 363 

This work was funded by the New Zealand Ministry for Business, Innovation and Employment, 364 

contract UOAX1413. This work was performed in collaboration with the Air Quality Sensor 365 

Performance Evaluation Center (AQ-SPEC) at the South Coast Air Quality Management 366 

District (South Coast AQMD).  The authors would like to acknowledge the work of Mr. Berj 367 

Der Boghossian for his technical assistance with deploying AQY sensor nodes. The authors 368 

would like to acknowledge the work of the South Coast AQMD Atmospheric Measurements 369 

group of dedicated instrument specialists that operate, maintain, calibrate, and repair air 370 

monitoring instrumentation to produce regulatory-grade air monitoring data.  DEW 371 

acknowledges the support of a fellowship program at the Institute of Advanced Studies, 372 

Durham University, UK. 373 



23 
 

 374 

6. Competing interests 375 

LW, EM, KA and GSH are employees of Aeroqual Ltd, manufacturer of the sensor nodes used 376 

in the study. GSH and DEW are founders and shareholders in Aeroqual Ltd. 377 

 378 

References 379 

Araki, S., Shima, M., Yamamoto, K., 2018. Spatiotemporal land use random forest model for  380 

estimating metropolitan NO2 exposure in Japan. Sci Total Environ 634, 1269-1277. 381 

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y.,  382 

Künzli, N., Schikowski, T., Marcon, A., Eriksen, K.T., Raaschou-Nielsen, O.,  383 

Stephanou, E., Patelarou, E., Lanki, T., Yli-Tuomi, T., Declercq, C., Falq, G., 384 

Stempfelet, M., Birk, M., Cyrys, J., von Klot, S., Nádor, G., Varró, M.J., Dėdelė, A., 385 

Gražulevičienė, R., Mölter, A., Lindley, S., Madsen, C., Cesaroni, G., Ranzi, A., 386 

Badaloni, C., Hoffmann, B., Nonnemacher, M., Krämer, U., Kuhlbusch, T., Cirach, M., 387 

de Nazelle, A., Nieuwenhuijsen, M., Bellander, T., Korek, M., Olsson, D., Strömgren, 388 

M., Dons, E., Jerrett, M., Fischer, P., Wang, M., Brunekreef, B., de Hoogh, K., 2013. 389 

Development of NO2 and NOx land use regression models for estimating air pollution 390 

exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric 391 

Environment 72, 10-23. 392 

Breiman, L., 2001. Random Forests. Machine Learning 45, 5 - 32. 393 

Brokamp, C., Jandarov, R., Rao, M.B., LeMasters, G., Ryan, P., 2017. Exposure assessment  394 

models for elemental components of particulate matter in an urban environment: A  395 

comparison of regression and random forest approaches. Atmos Environ (1994) 151, 396 

1-11. 397 



24 
 

Caltrans (2019). Caltrans GIS Data – Truck Volumes AADT. https://gisdata- 398 

caltrans.opendata.arcgis.com/datasets/dfe7fd95282946db98145e9bcaf710fb_0,  399 

Accessed: September, 2019).  400 

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M.,  401 

van Donkelaar, A., Hvidtfeldt, U.A., Katsouyanni, K., Janssen, N.A.H., Martin, R.V.,  402 

Samoli, E., Schwartz, P.E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., Vienneau, 403 

D., Vermeulen, R., Brunekreef, B., Hoek, G., 2019. A comparison of linear regression, 404 

regularization, and machine learning algorithms to develop Europe-wide spatial models 405 

of fine particles and nitrogen dioxide. Environ Int 130, 104934. 406 

Clements, A.L., Griswold, W.G., Rs, A., Johnston, J.E., Herting, M.M., Thorson, J., Collier- 407 

Oxandale, A., Hannigan, M., 2017. Low-Cost Air Quality Monitoring Tools: From  408 

Research to Practice (A Workshop Summary). Sensors (Basel) 17. 409 

Delaine, F., Lebental, B., Rivano, H., 2019. In Situ Calibration Algorithms for Environmental  410 

Sensor Networks: A Review. IEEE Sensors Journal 19, 5968-5978. 411 

Deville Cavellin, L., Weichenthal, S., Tack, R., Ragettli, M.S., Smargiassi, A., Hatzopoulou,  412 

M., 2016. Investigating the Use Of Portable Air Pollution Sensors to Capture the  413 

Spatial Variability Of Traffic-Related Air Pollution. Environ Sci Technol 50, 313-320. 414 

Epstein, S.A., Lee, S., Katzenstein, A.S., Carreras-Sospedra, M., Zhang, X., Farina, S.C.,  415 

Vahmani, P., Fine, P.M., Ban-Weiss, G., 2017. Air-quality implications of widespread  416 

adoption of cool roofs on ozone and particulate matter in southern California. PNAS 417 

114, 8991-8996. 418 

European Environment Agency, 2019. Air Quality in Europe - 2019 Report. Publications 419 

Office of the European Union, Luxembourg. 420 

Feinberg, S.N., Williams, R., Hagler, G., Low, J., Smith, L., Brown, R., Garver, D., Davis,  421 



25 
 

M., Morton, M., Schaefer, J., Campbell, J., 2019. Examining spatiotemporal  422 

variability of urban particulate matter and application of high-time resolution data  423 

from a network of low-cost air pollution sensors. Atmospheric Environment 213, 579-424 

584. 425 

Grange, S.K., Carslaw, D.C., Lewis, A.C., Boleti, E., Hueglin, C., 2018. Random forest  426 

meteorological normalisation models for Swiss PM10; trend analysis. Atmospheric 427 

Chemistry and Physics 18, 6223-6239. 428 

Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008.  429 

A review of land-use regresssion models to assess spatial variation of outdoor air  430 

pollution Atmospheric Environment 42, 7561 - 7578. 431 

Hu, X., Belle, J.H., Meng, X., Wildani, A., Waller, L.A., Strickland, M.J., Liu, Y., 2017.  432 

Estimating PM2.5 Concentrations in the Conterminous United States Using the  433 

Random Forest Approach. Environ Sci Technol 51, 6936-6944. 434 

Kuhn, M., 2019. caret: Classification and Regression Training, R package version 6.0-84. 435 

Kumar, A., Singh, D., Singh, B.P., Singh, M., Anandam, K., Kumar, K., Jain, V.K., 2015.  436 

Spatial and temporal variability of surface ozone and nitrogen oxides in urban and  437 

rural ambient air of Delhi-NCR, India. Air Quality, Atmosphere & Health 8, 391-399. 438 

Li, H.Z., Gu, P., Ye, Q., Zimmerman, N., Robinson, E.S., Subramanian, R., Apte, J.S.,  439 

Robinson, A.L., Presto, A.A., 2019a. Spatially dense air pollutant sampling:  440 

Implications of spatial variability on the representativeness of stationary air pollutant 441 

monitors. Atmospheric Environment: X 2, 100012. 442 

Li, L., Girguis, M., Lurmann, F., Wu, J., Urman, R., Rappaport, E., Ritz, B., Franklin, M.,  443 

Breton, C., Gilliland, F., Habre, R., 2019b. Cluster-based bagging of constrained  444 

mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction  445 

over large regions. Environ Int 128, 310-323. 446 



26 
 

Lim, C.C., Kim, H., Vilcassim, M.J.R., Thurston, G.D., Gordon, T., Chen, L.C., Lee, K.,  447 

Heimbinder, M., Kim, S.Y., 2019. Mapping urban air quality using mobile sampling  448 

with low-cost sensors and machine learning in Seoul, South Korea. Environ Int 131, 449 

105022. 450 

Masiol, M., Squizzato, S., Chalupa, D., Rich, D.Q., Hopke, P.K., 2019. Spatial-temporal  451 

variations of summertime ozone concentrations across a metropolitan area using a  452 

network of low-cost monitors to develop 24 hourly land-use regression models. Sci 453 

Total Environ 654, 1167-1178. 454 

Masiol, M., Zikova, N., Chalupa, D.C., Rich, D.Q., Ferro, A.R., Hopke, P.K., 2018. Hourly  455 

land-use regression models based on low-cost PM monitor data. Environ Res 167, 7- 456 

14. 457 

Mead, M.I., Popoola, O.A.M., Stewart, G.B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, 458 

J.J., McLeod, M.W., Hodgson, T.F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, 459 

J.R., Jones, R.L., 2013. The use of electrochemical sensors for monitoring urban air 460 

quality in low-cost, high-density networks. Atmospheric Environment 70, 186-203. 461 

Miskell, G., Alberti, K., Feenstra, B., Henshaw, G., Papapostolou, V., Patel, H., Polidori, A., 462 

 Salmond, J.A., Weissert, L.F., Williams, D.E., 2019. Reliable data from low-cost  463 

ozone sensors in a hierarchical network, http://arxiv.org/abs/1906.08421. 464 

Miskell, G., Salmond, J., Alavi-Shoshtari, M., Bart, M., Ainslie, B., Grange, S., McKendry,  465 

I.G., Henshaw, G.S., Williams, D.E., 2016. Data Verification Tools for Minimizing  466 

Management Costs of Dense Air-Quality Monitoring Networks. Environ Sci Technol  467 

50, 835-846. 468 

Miskell, G., Salmond, J.A., Williams, D.E., 2018a. Solution to the Problem of Calibration of  469 

Low-Cost Air Quality Measurement Sensors in Networks. ACS Sensors 3, 832-843. 470 

Miskell, G., Salmond, J.A., Williams, D.E., 2018b. Use of a handheld low-cost sensor to  471 



27 
 

explore the effect of urban design features on local-scale spatial and temporal air 472 

quality variability. Science of The Total Environment 619-620, 480-490. 473 

Popoola, O.A.M., Carruthers, D., Lad, C., Bright, V.B., Mead, M.I., Stettler, M.E.J., Saffell,  474 

J.R., Jones, R.L., 2018. Use of networks of low cost air quality sensors to quantify air  475 

quality in urban settings. Atmospheric Environment 194, 58-70. 476 

Schneider, P., Castell, N., Vogt, M., Dauge, F.R., Lahoz, W.A., Bartonova, A., 2017.  477 

Mapping urban air quality in near real-time using observations from low-cost sensors  478 

and model information. Environment International 106, 234-247. 479 

Son, Y., Osornio-Vargas, Á.R., O'Neill, M.S., Hystad, P., Texcalac-Sangrador, J.L., Ohman- 480 

Strickland, P., Meng, Q., Schwander, S., 2018. Land use regression models to assess  481 

air pollution exposure in Mexico City using finer spatial and temporal input  482 

parameters. Science of The Total Environment 639, 40-48. 483 

South Coast AQMD, 2016. Final 2016 - Air Quality Management Plan. 484 

Su, J.G., Jerrett, M., Beckerman, B., 2009. A distance-decay variable selection strategy for  485 

land use regression modeling of ambient air pollution exposures. Sci Total Environ  486 

407, 3890-3898. 487 

Vizcaino, P., Lavalle, C., 2018. Development of European NO2 Land Use Regression Model  488 

for present and future exposure assessment: Implications for policy analysis. Environ  489 

Pollut 240, 140-154. 490 

Wei, Y., Wang, Y., Di, Q., Choirat, C., Wang, Y., Koutrakis, P., Zanobetti, A., Dominici, F., 491 

Schwartz, J.D., 2019. Short term exposure to fine particulate matter and hospital 492 

admission risks and costs in the medicare population: Time stratified, case crossover 493 

study. BMJ 367, l6258. 10.1136/bmj.l6258 494 

Weissert, L.F., Alberti, K., Miskell, G., Pattinson, W., Salmond, J.A., Henshaw, G.,  495 



28 
 

Williams, D.E., 2019a. Low-cost sensors and microscale land use regression: Data 496 

fusion to resolve air quality variations with high spatial and temporal resolution. 497 

Atmospheric Environment 213, 285-295. 498 

Weissert, L.F., Miskell, G., Miles, E., Feenstra, B., Papapostolou, V., Polidori, A., Henshaw,  499 

G.S., Salmond, J.A., Williams, D.E., 2019b. Hierarchical network design for  500 

nitrogen dioxide measurement in urban environments, part 1: proxy selection. 501 

(Available on: http://arxiv.org/abs/1911.03137, Access Date: 4/12/19) 502 

Weissert, L.F., Miles, E., Miskell, G., Alberti, K., Feenstra, B., Henshaw, G.S., Papapostolou,  503 

V., Patel, H., Polidori, A., Polidori, A., Salmond, J.A., Williams, D.E, 2019c.  504 

Hierarchical network design for nitrogen dioxide measurement in urban 505 

environments, part 2: network-based sensor calibration. (Available on: 506 

http://arxiv.org/abs/1911.03136, Access Date: 4/12/19) 507 

WHO, 2013. Health risks of air pollution in Europe –HRAPIE project. Recommendations for 508 

concentration–response functions for cost–benefit analysis of particulate matter, 509 

ozone and nitrogen dioxide, World Health Organisation Regional Office for Europe, 510 

Copenhagen 511 

Williams, D.E., 2019. Low cost sensor networks: How do we know the data are reliable?  512 

ACS Sensors 4, 2558-2565; https://doi.org/10.1021/acssensors.9b01455. 513 

Yeganeh, B., Hewson, M.G., Clifford, S., Tavassoli, A., Knibbs, L.D., Morawska, L., 2018.  514 

Estimating the spatiotemporal variation of NO2 concentration using an adaptive  515 

neuro-fuzzy inference system. Environmental Modelling & Software 100, 222-235. 516 

Zhan, Y., Luo, Y., Deng, X., Zhang, K., Zhang, M., Grieneisen, M.L., Di, B., 2018. Satellite- 517 

Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and  518 

Spatio-temporal Kriging Model. Environ Sci Technol 52, 4180-4189. 519 

http://arxiv.org/abs/1911.03137
http://arxiv.org/abs/1911.03136
https://doi.org/10.1021/acssensors.9b01455

