
        

BASIC INTERVALS IN THE PARTIAL ORDER OF
METRIZABLE TOPOLOGIES

D. W. MCINTYRE AND W. S. WATSON

Abstract. For a set X, let Σm(X) denote the set of metrizable
topologies on X, partially ordered by inclusion. We investigate the
nature of intervals in this partial order, with particular emphasis
on basic intervals (in other words, intervals in which the topology
changes at at most one point).
We show that there are no non-trivial finite intervals in Σm(X)
(indeed, every such interval contains a copy of P(ω)/fin). We show
that although not all intervals in Σm(X) are lattices, all basic
intervals in Σm are lattices. In the case where X is countable,
we show that there are at least two isomorphism classes of basic
intervals in Σm(X), and assuming the Continuum Hypothesis there
are exactly two such isomorphism classes.

1. Introduction

For a set X, Let Σ(X) denote the collection of all topologies on X,
partially ordered by inclusion. Then Σ(X) is a complete, bounded lat-
tice in which the meet of a collection of topologies is their intersection,
while the join is the topology with their union as a subbasis. This lat-
tice has been the subject of study since it was first defined by Birkhoff
in [1]. Given σ, τ ∈ Σ(X), one can form the interval [σ, τ ], defined by

[σ, τ ] = {μ ∈ Σ(X) | σ � μ � τ }.
Our current research was motivated by the problem of identifying the
finite lattices which can occur as such an interval, with various restric-
tions on the topologies σ and τ (for example that they be T1, Hausdorff
or metrizable). This problem was solved for σ and τ T1 by Valent and
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Larson and Rosický: Valent and Larson showed in [7] that every finite
distributive lattice occurs as an interval between T1 topologies, and
Rosický showed in [6] that every finite interval between T1 topologies
is distributive. More recently, Knight, Gartside and the first author ex-
tended this result to intervals between T2 topologies [4], and Good and
the authors extended this to intervals between T3 (indeed, Hausdorff
and zero-dimensional) topologies, assuming the existence of infinitely
many measurable cardinals. Of course, if σ is T1 (resp. Hausdorff) then
every topology in [σ, τ ] must be T1 (resp. Hausdorff). However, if we
refine a metrizable topology, it may not remain metrizable. This leads
us to the problem of determining the structure of the set of metrizable
topologies between two metrizable topologies σ and τ .

Let Σm(X) and Σi(X) denote, respectively, the sets of metrizable
topologies and of Ti topologies (i = 1, 2, 3) in Σ(X). When the un-
derlying set X is clear from the context, we will omit mention of it,
and simply write Σ, Σm or Σi. Σm, Σ3 and Σ2 are not lattices, as the
following Example shows:

Example 1. There exist a set X and zero-dimensional metrizable topolo-
gies σ and τ on X such that σ ∧ τ is not Hausdorff.

Proof. Let X = ω ∪ {p, q}, where p �= q and p, q /∈ ω. Let μ be
the topology P(ω) ∪ {X � F | F is finite } on X. Let σ and τ be the
topologies obtained from μ by isolating p and by isolating q respectively.
Then σ, τ ∈ Σm and both are zero-dimensional. However, σ ∧ τ = μ,
which is not Hausdorff.

Since Σm is not a lattice, it is possible that intervals in Σm are not
lattices. Indeed, we will show that there are intervals in Σm which
are not lattices. On the other hand, basic intervals in Σm (in other
words intervals in which the topology changes at a most one point) are
sublattices of Σ.

For subsets A and B of ω we write A ⊆∗ B if A � B is finite, and
A =∗ B if A ⊆∗ B and B ⊆∗ A. Then =∗ is an equivalence relation
on P(ω), and ⊆∗ induces a partial order on the quotient with respect
to =∗. This partially ordered set is a Boolean algebra, denoted by
P(ω)/fin.

We will see in Section 2 that no interval in Σm is finite, or even
countable, by showing that we can embed P(ω)/fin in any such interval.
In Section 3 we will consider basic intervals in Σm(X) where X is
countable, and, under the assumption of the Continuum Hypothesis
(CH), show that there are up to isomorphism exactly two such intervals.
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For σ, τ ∈ Σm, we will denote [σ, τ ] ∩Σm by [σ, τ ]m. If F is a family
of subsets of X, then 〈F〉 denotes the topology on X with F as a
subbasis. We abbreviate 〈σ ∪ {A1, . . . , An}〉 by 〈σ,A1, . . . , An〉.

If d is a metric on X, then ρd denotes the topology generated by
d, and, for x ∈ X and ε > 0, B(x, d, ε) denotes the ε-ball about x
with respect to the metric d. If f : X → R is a function, then ψf

is the pseudometrizable topology on X with pseudometric e, where
e(x, y) = |f(x) − f(y)|. Notice that ψf is the coarsest topology on X
which makes f continuous, and that a topology τ on X is completely
regular if and only if there is some family F of functions from X to R
such that τ = 〈⋃f∈F ψf〉.

We will abbreviate phrases like “open with respect to the topol-
ogy σ” and “continuous with respect to the topology σ” by σ-open
and σ-continuous respectively. To avoid ambiguity, we will refer to a
countable union of locally finite sets as being sigma-locally finite.

2. Intervals in Σm

It is easy to show that the join of two metrizable topologies is metriz-
able:

Proposition 1. Let d, e be metrics on a set X. Then max(d, e) is a
metric on X, and ρmax(d,e) = ρd∨ρe (where the join refers to the lattice
Σ, not just the subset Σm).

Corollary 1. Let σ, τ ∈ Σm. Then σ � τ if and only if there are
metrics d and e such that σ = ρd, τ = ρe and, for every x, y ∈ X,
d(x, y) � e(x, y)

On the other hand, the meet of two metrizable topologies need not
be metrizable, as shown by Example 1. Even if there is a metrizable
topology coarser than both topologies, they might have no meet in
Σm, as shown by the following examples. In the light of Example 3,
Example 2 is redundant: however we have included it to clarify the
argument in the latter Example.

Example 2. There exist metrizable topologies σ, μ and ν on a set X
such that σ � μ ∧ ν, but {μ, ν} has no greatest lower bound in Σm.

Proof. Let R denote the set R of real numbers with its usual topology,
and let Rd denote R with the discrete topology. Let X = R × R.
Let (X, σ) = R × R, (X,μ) = R × Rd and (X, ν) = Rd × R. Then
σ, μ, ν ∈ Σm and σ � μ ∧ ν.

For x = (x, y) ∈ X, ε > 0, let Pε(x) = ({x}×Bε(y))∪(Bε(x)×{y}),
where Bε(x) denotes the ε-ball about x in the usual metric. Observe
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that the sets Pε(x) for ε > 0 and x ∈ X form a weak neighbourhood
base for μ∧ ν (in other words, although the sets Pε(x) are not open in
μ ∧ ν, a subset U of X is open in μ ∧ ν if and only if for every x ∈ U ,
there is some ε > 0 such that Pε(x) ⊆ U).

By a pigeonhole principle argument, one can easily see that any
disjoint collection of sets Pε(x) must be countable, so μ ∧ ν has the
countable chain condition (CCC). However, the diagonal Δ = { (x, x) |
x ∈ R } is discrete and uncountable in this topology. So μ ∧ ν is CCC
but not hereditarily CCC, and this topology is therefore not metrizable.

Of course, the fact that μ∧ ν /∈ Σm does not preclude the possibility
that μ and ν have a greatest lower bound in Σm. So suppose that
θ ∈ Σm with σ � θ � μ ∧ ν. Choose some x0 ∈ R such that (x0, x0) is
not isolated in (Δ, θ � Δ). Let

Un = {(x0, x0)} ∪ { (x, y) | |x− x0| <
|y − x0|

2n
or |y − y0| <

|y − x0|
2n

},

and let ρ = 〈θ ∪ {Un | n ∈ ω }〉. Then ρ ∈ Σm and θ < ρ � μ ∧ ν.
Hence θ cannot be a greatest lower bound for μ and ν in Σm.

One might ask whether such an example can be obtained in which
the underlying set is countable. Of course, we cannot use CCC versus
hereditary CCC to identify non-metrizability in a countable space, but
a similar example will still work.

Example 3. There exist metrizable topologies σ, μ and ν on a count-
able set X such that σ � μ∧ ν, but {μ, ν} has no greatest lower bound
in Σm.

Proof. Let Q denote the set Q of rational numbers, with its usual topol-
ogy, and let Qd denote Q with the discrete topology. Let X = Q × Q.
Let σ = Q×Q, μ = Q×Qd and ν = Qd ×Q. Then σ, μ, ν ∈ Σm and
σ � μ ∧ ν.

For x = (x, y) ∈ X, n ∈ ω, let Pn(x) = ({x}×B2−n(y))∪ (B2−n(x)×
{y}), where Bε(x) denotes the ε-ball about x in the usual metric.
Again, the sets Pn(x) for n ∈ ω and x ∈ X form a weak neighbourhood
base for μ ∧ ν.

For A ⊆ X, we define a function fA : ω → ω as follows: if (2−n, 0) /∈
A then fA(n) = 0. Otherwise, fA(n) is the least m > 0 such that
{(2−n, 0)} ×B2−(m+n)(0) ⊆ A.

Let θ be a metrizable topology with σ � θ � μ ∧ ν, and let (Bn)n∈ω
be a neighbourhood basis for θ at (0, 0). Since { fBn | n ∈ ω } is
countable, there is a function g : ω → ω � {0} such that, for every
n ∈ ω, fBn(m) < g(m) for all but finitely many m ∈ ω.
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For each k ∈ ω let gk : (0, 1] → R be the unique function which is
linear on each interval [2−(n+1), 2−n] and takes the value 2−(g(n)+k) at
each 2−n. Put

Sk = { (x, y) | x � 0 or (k + 1)x < |y| }
Tk = { (x, y) | 0 < x � 1 and y < gk(x) }
Uk = { (x, y) | x > 1 and y < gk(1) }
Vk = Sk ∪ Tk ∪ Uk

Then Vk is σ-open except at (0, 0), Vk+1 ⊆ Vk for each k and fVk
(n) =

g(n)+ k for each n. Since 0 < fBn(m) < g(m) for all but finitely many
m ∈ ω, Bn � Vk for each n. Thus Vk /∈ θ. Let ρ be the topology with
subbasis θ ∪ {Vk | k ∈ ω }. Then ρ is regular and second countable, so
it is metrizable, and θ < ρ � μ ∧ ν. Thus μ and ν have no greatest
lower bound in Σm.

In considering finite intervals in Σ, one is led to the consideration of
basic intervals. An interval [σ, τ ] in Σ is basic if there is some point x
(called the base of the interval) such that σ � X � {x} = τ � X � {x}.
It is easy to show that any finite interval in Σ1(X) is isomorphic to
a basic interval in Σ1(Y ) for some Y . We will frequently use without
further comment the fact that if [σ, τ ] is basic with base x and x ∈ A
then A is τ -closed if and only if it is σ-closed.

Lemma 1. Let σ, τ ∈ Σm with σ < τ . Then there exist σ′, τ ′ ∈ [σ, τ ]m
with σ′ < τ ′ such that [σ′, τ ′] is basic.

Proof. Let d, e be metrics such that ρd = σ, ρe = τ and d(x, y) � e(x, y)
for all x, y ∈ X, as guaranteed by Corollary 1.

Let x ∈ X and A ⊆ X with x ∈ A
σ � A

τ
. Choose some sequence

(xn)n∈ω of distinct elements of A which converges in σ to x but which
does not converge in τ . Choose τ -neighbourhoods Un of xn for n ∈ ω
and U of x such that {U} ∪ {Un | n ∈ ω } is a discrete collection in
(X, τ), and Un is contained in the d-ball about xn whose radius is 1

3
of the least d-distance from xn to x or to any of the other xi. Let
fn : X → [0, 1] be τ -continuous with f(xn) = 1 and f(X � Un) = {0}.

Let σ′ = 〈σ∪⋃
n∈ω ψfn〉. Then σ′ is a join of topologies of the form ψf ,

so it is completely regular. Moreover, σ has a sigma-locally finite base,
as does each ψfn , so σ′ has a sigma-locally finite subbasis. Thus σ′ is
metrizable. Similarly, τ ′ = 〈σ′, ψf〉 is metrizable, where f =

∑
n∈ω fn.

Since each fn is τ -continuous and {Un | n ∈ ω } is discrete, f is τ -
continuous. Thus we have [σ′, τ ′] ⊆ [σ, τ ].
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To show that σ′ < τ ′, we note that x /∈ {xn | n ∈ ω }τ
′
, since f(xn) =

1 for every n, while f(x) = 0. On the other hand, each fn is equal to 0
on a σ-neighbourhood of x, so every σ′ neighbourhood of x is actually

a σ-neighbourhood of x. Thus x ∈ {xn | n ∈ ω }σ
′
.

Finally, to see that [σ′, τ ′] is basic, we note that {Un | n ∈ ω }
is discrete with respect to σ except at x, and thus f is σ-continuous
except at x.

Proposition 2. Let [σ, τ ] be a basic interval with σ, τ ∈ Σm. Then
[σ, τ ]m is a sublattice of [σ, τ ].

Proof. Let μ, ν ∈ [σ, τ ]m. We have already seen that μ ∨ ν ∈ Σm, so it
is sufficient to show that μ∧ ν ∈ Σm. So let B be a sigma-locally finite
basis for σ, and let {Un | n ∈ ω } and {Vn | n ∈ ω } be local bases for
μ and ν respectively at x, the base of the interval [σ, τ ]. Let θ be the
topology with basis B∪{Un∪Vn | n ∈ ω }. Then θ is regular and has a
sigma-locally finite basis, so θ is metrizable. But it is easy to see that
θ = μ ∧ ν, so μ ∧ ν ∈ Σm as required.

Valent and Larson have shown that if σ is T2 and first countable, and
σ < τ , then [σ, τ ] has a subinterval which is isomorphic to the power
lattice P(c), where c = 2ω and P(c) is ordered by inclusion [7, Theorem
10]. As they observe [7, Corollaries 1 and 3], this implies that no T2

first countable topology has a cover in Σ1, and all the topologies in the
subinterval isomorphic to P(c) (except possibly the largest) do have
covers, and are therefore not first countable. Thus Valent and Larson’s
result does not tell us anything about intervals in Σm. In particular,
we cannot hope to show that any such interval has at least 2c many
elements, since if X is countable then there are only c many metrics on
X. The following result shows that there are always at least c many
elements in any interval in Σm.

Theorem 1. Let σ, τ ∈ Σm with σ < τ . Then there is an order-
embedding Φ : P(ω)/fin → [σ, τ ]m.

Lemma 2. Let d be a metric on X, and let f : X → R be a function.
Define e : X ×X → [0,∞) by e(x, y) = d(x, y) + |f(x) − f(y)|. Then
e is a metric, and e gives the same topology at x as d does if and only
if f is continuous at x.

Proof of Theorem 1. We can assume without loss of generality that
[σ, τ ] is a basic interval. Let d, e be metrics such that ρd = σ, ρe = τ
and d(x, y) � e(x, y) for all x, y ∈ X, as guaranteed by Corollary 1.
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Let x ∈ X and A ⊆ X with x ∈ A
σ � A

τ
. Choose some sequence

(xn)n∈ω of distinct elements of A which converges in σ to x but which
does not converge in τ . Choose τ -neighbourhoods Un of xn for n ∈ ω
and U of x such that {U} ∪ {Un | n ∈ ω } is a discrete collection in
(X, τ). Note that Un is actually a σ-neighbourhood of xn for each n:
we can choose these sets in such a way that Un is contained in the d-ball
about xn whose radius is 1

3
of the least d-distance from xn to x or to

any of the other points xi. Let fn : X → [0, 1] be σ-continuous with
f(xn) = 1 and f(X � Un) = {0}. For A ∈ P(ω) let FA be the function∑

n∈A fn. Then, by Lemma 2, the functions dA, eA : X × X → [0,∞)
given by

dA(y, z) = d(y, z) + |FA(y) − FA(z)|
eA(y, z) = e(y, z) + |FA(y) − FA(z)|

are both metrics. Now FA is σ-continuous except (for infinte A) at
x, and is τ -continuous at x (being constant on the τ -open set U), so
FA is τ -continuous. Thus eA gives the same topology as e, namely τ .
Moreover, we have d � dA � eA, so by Corollary 1 we have σ � ρdA � τ .

By the choice of the sets Un, if A,B ⊆ ω with A ⊆∗ B then there is
a σ-neighbourhood of x on which FA � FB, and therefore dA(x, y) �
dB(x, y) for every y in this neighbourhood. Since x is the only place
at which the topologies change, this implies that ρdA � ρdB . Thus
the function Φ : P(ω)/fin → [σ, τ ]m given by Φ([A]) = ρdA is well-
defined and order-preserving. Conversely, suppose that A,B ⊆ ω with
A �∗ B. Then C = A � B is infinite. For each xn ∈ C, we have
FB(xn) = FB(x) = 0, FA(xn) = 1. Thus dB(x, xn) = d(x, xn) for
each xn ∈ C, so x ∈ C

ρdB . On the other hand, since dA(x, xn) > 1
for each xn ∈ C, x /∈ C

ρdA . Thus Φ([A]) � Φ([B]). Hence Φ is an
order-embedding.

Although the previous result shows that any interval in Σm contains
a copy of P(ω)/fin, no such interval can be isomorphic to P(ω)/fin.
This follows from the following result. Recall that a bounded lattice L
with least element 0 and greatest element 1 is complemented if every
element x has a complement x′ with x ∧ x′ = 0 and x ∨ x′ = 1. It
is easy so show that every subinterval of P(ω)/fin is a complemented
lattice, and by Lemma 1 every interval in Σm contains a basic interval
in Σm.

Theorem 2. Let σ, τ ∈ Σm with σ < τ and [σ, τ ] basic. Then [σ, τ ]m
is not complemented.
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Proof. Let d, e, x, (xn)n∈ω, U , (Un)n∈ω and (fn)n∈ω be as in the proof
of Theorem 1. Let ω =

⋃
n∈ω An, where the sets An are infinite and

pairwise disjoint. Define F : X → R by

F (y) =
∑
n∈ω

∑
m∈An

2−nfm(y).

Then F is σ-continuous except at x, and is τ -continuous. Let μ = ρd′ ,
where d′(y, z) = d(y, z) + |F (y) − F (z)|.

Suppose ν is a complement of μ in [σ, τ ]. In particular, U ∈ μ ∨ ν,
so there exist V ∈ μ and W ∈ ν with x ∈ V ∩W ⊆ U . Shrinking V if
necessary we can assume that V = B(x, d′, ε) for some ε > 0. Choose
n large enough so that 2−n < ε. Let O = W ∪B(x, d′, 2−n). Then O ∈
μ∧ν. However, O∩{xm | m ∈ An } = ∅, and x ∈ {xm | m ∈ A− n }σ,
so μ ∧ ν �= σ, a contradiction.

3. Basic intervals in Σm(X) with X countable

In the previous section we saw that every interval in Σm contains
P(ω)/fin, but is not isomorphic to it. In this section we will give two
different characterisations of the simplest possible interval—that be-
tween the usual topology and the discrete topology on ω+ 1. The first
is as a quotient of ωω, and the second is as an extension of P(ω)/fin
obtained by adding limits of increasing sequences. Finally we will see
that, under CH, every basic interval in Σm(X) with X countable is such
an extension of either P(ω)/fin or a certain kind of power of P(ω)/fin.

Define a relation � on ωω by declaring that f � g if and only if
there is some (weakly) order-preserving function π : ω → ω such that
for every n ∈ ω, g(n) � π(f(n)). It is easy to see that � is a preorder
(in other words, it is reflexive and transitive). Thus the relation ≈,
defined by f ≈ g if and only if f � g and g � f , is an equivalence
relation, and � induces a partial order on ωω/≈.

Theorem 3. Let σ denote the usual topology on X = ω + 1, and let
τ denote the discrete topology. Then (ωω/≈,�) is isomorphic to the
interval [σ, τ ]m.

Proof. If d is a metric on X with σ � ρd � τ , define a function fd :
ω → ω by

fd(n) = min{m ∈ ω | 2−m � d(n, ω) }.
Now suppose that e is another such metric. Suppose first that ρd � ρe.
For each m ∈ ω, B(ω, d, 2−m) is ρe-open, so there is some k ∈ ω such
that B(ω, e, 2−k) ⊆ B(ω, d, 2−m). Define π : ω → ω by

π(m) = min{ k ∈ ω | B(ω, e, 2−k) ⊆ B(ω, d, 2−m) }.
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Since the sets B(ω, d, 2−m) and B(ω, e, 2−k) form decreasing sequences,
π is an order-preserving function. Now let n ∈ ω. Put m = fd(n). Then
d(n, ω) � 2−m, so n /∈ B(ω, d, 2−m), and therefore n /∈ B(ω, e, 2−π(m)).
So 2−π(m) � e(n, ω), and therefore fe(n) � π(m) = π(fd(n)). Since
this holds for every n ∈ ω, fd � fe.

Conversely, suppose that d and e are metrics on X with ρd, ρe ∈
[σ, τ ]m and fd � fe. Let π : ω → ω be an order preserving function
such that for every n ∈ ω, fe(n) � π(fd(n)). Fix m ∈ ω. For each
n ∈ ω, if d(n, ω) � 2−m then fd(n) � m, so fe(n) � π(fd(n)) � π(m),
and thus e(n, ω) � 2−π(m). Hence B(ω, e, 2−π(m)) ⊆ B(ω, d, 2−m),
so B(ω, d, 2−m) is an e-neighbourhood of ω. Since these sets form a
neighbourhood basis at ω, and all the other points are isolated in both
ρd and ρe, this implies that ρd � ρe.

Hence if d and e are metrics on X with ρd, ρe ∈ [σ, τ ]m then fd � fe
if and only if ρd � ρe. Thus the function Φ : [σ, τ ]m → ωω/≈ given by
Φ(ρd) = [fd] is well-defined and order-preserving. To show that it is an
isomorphism, we will show that for every f ∈ ωω there is a metric d
with ρd ∈ [σ, τ ]m and fd = f . Indeed, let d be the metric on X given
by

d(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if x = y

2−f(x) if x ∈ ω, y = ω

2−f(y) if x = ω, y ∈ ω

2−f(x) + 2−f(y) otherwise.

Then it is easy to see that d is such a metric and fd = f .

Given the way that between two metrizable topologies we can find
P(ω)/fin many metrizable topologies, a tempting conjecture is that all
basic intervals between metrizable topologies, or at least all such inter-
vals on a countable set, are isomorphic. However, this is not the case:
there are at least two isomorphism classes, and under CH there are
exactly two isomorphism classes. To show this, we will first introduce
some new definitions.

Definition 1. Let σ, τ ∈ Σm with σ � τ . We say that τ is a successor
with respect to σ if [σ, τ ] is a basic interval and there is some A such
that τ = 〈σ,A〉. We say that τ is a limit with respect to σ if there
is a strictly increasing countable sequence (μn)n∈ω in [σ, τ ]m such that
τ = sup{μn | n ∈ ω }.

We denote the set of successors with respect to σ in [σ, τ ]m by [σ, τ ]ms.
In other words,

[σ, τ ]ms = {μ ∈ [σ, τ ]m | ∃A (μ = 〈σ,A〉) }.
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Notice that, despite our rather suggestive terminology, these notions
are not a priori complementary. Notice also that not every topology
of the form 〈σ,A〉 will be metrizable. Finally, notice that we regard σ
as being a successor with respect to itself. In what follows, whenever
we say something like “choose A such that μ = 〈σ,A〉” we will assume
that if μ = σ then the A we choose will be X.

Lemma 3. Let σ be a regular topology on a set X, and let x ∈ A ⊆ X
with A � intσ(A) = {x}. Then 〈σ,A〉 is regular if and only if there is
some U ∈ σ such that x ∈ U and U ∩ A = U ∩ A

σ
.

Proof. Suppose first that 〈σ,A〉 is regular. Then there is some U ∈ σ

such that x ∈ U∩A ⊆ U ∩ A
〈σ,A〉 ⊆ A. As U is open, U∩Aσ

= U ∩ A
σ
,

whence U ∩ A
σ

= U ∩ A.
Conversely, suppose that there is some U ∈ σ such that x ∈ U and

U ∩ A
σ

= U ∩ A. Let y ∈ V ∈ 〈σ,A〉.
Case 1: y ∈ intσ(V ). Then, by regularity of σ, there is some W ∈
σ ⊆ 〈σ,A〉 with

y ∈ W ⊆ W
〈σ,A〉 ⊆ W

σ ⊆ intσ(V ) ⊆ V.

Case 2: y /∈ intσ(V ). Then we must have y = x and there is some
V ′ ∈ σ with x ∈ V ′ ∩ A ⊆ V . By regularity of σ, we can choose
W ∈ σ with x ∈ W ⊆ W

σ ⊆ V ′ ∩ U . Then x ∈ W ∩ A ∈ 〈σ,A〉,
and so

W ∩ A
〈σ,A〉

= W ∩ A
σ

⊆ W
σ ∩ A

σ

⊆ V ′ ∩ U ∩ A
σ

= V ′ ∩ U ∩ A

⊆ V

Thus 〈σ,A〉 is regular, as required.

Corollary 2. Let X be a countable set and let σ ∈ Σm(X). Then τ is
a (metrizable) successor with respect to σ if and only if [σ, τ ] is basic
and τ = 〈σ,A〉 for some σ-closed set A.

Proof. Suppose that τ = 〈σ,A〉 is a successor and σ �= τ . Let x be the
base of [σ, τ ]. By Lemma 3 there is some U ∈ σ with x ∈ U ∩ A =
U ∩ A

σ
. Equivalently, we have U ∩ (A

σ � A) = ∅, so we may shrink
U to a σ-clopen set Q containing x (since σ is a metrizable topology
on a countable set, and hence zero-dimensional). Since x ∈ Q ∈ σ,
〈σ,A〉 = 〈σ,Q ∩ A〉, and Q ∩ A is closed.
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Conversely, if A is closed and [σ, τ ] is basic, then by Lemma 3, 〈σ,A〉
is regular. Since σ has a countable basis, 〈σ,A〉 has a countable basis.
Thus 〈σ,A〉 is metrizable.

Proposition 3. Let X be a countable set, and let σ, τ ∈ Σm(X) with
σ < τ and [σ, τ ] basic. Then there is some μ ∈ Σm with σ < μ � τ and
μ a successor with respect to σ.

Proof. Let x be the base of [σ, τ ]. Choose some A ∈ τ � σ. Notice
that x ∈ A. Since τ is a metrizable topology on a countable set, it is
zero-dimensional, so we can find some τ -clopen set B with x ∈ B ⊆ A.
Now B is closed in τ and contains x, so it is closed in σ. Thus, by
Lemma 3, μ = 〈σ,B〉 ∈ Σm(X). Since A ∈ μ and B ∈ τ we have
σ < μ � τ .

The hypothesis that X is countable is necessary in the previous re-
sult, as is shown by the following example.

Example 4. Let σ be the usual topology on R, and let τ = σ ∨ ψf ,
where f : R → R is given by

f(x) =

⎧⎨⎩sin 1
x

if x �= 0,

0 if x = 0.

Then no topology in (σ, τ ]m is a successor with respect to σ.

Proof. Notice that [σ, τ ] is basic with base 0.
Suppose μ ∈ [σ, τ ]m with μ = 〈σ,A〉. In particular, μ is regular, so by

Lemma 3 there is some neighbourhood U of x such that U∩Aσ
= U∩A.

Shrinking U if necessary, we can assume that U is an open interval
(−x, x) with x > 0. Now A � {0} is σ-open, so each component of
U ∩ (A � {0}) is an open interval. Since U contains no points of
A

σ �A, these components must be of the form (−x, 0) or (0, x). Since

0 ∈ (−x, 0)
τ∩(0, x)

τ
, both of these must be components of U∩(A�{0}.

In other words, U ∩ A = U . But then A ∈ σ, so μ = σ.

Proposition 4. Let X be a countable set, and let σ, τ ∈ Σm(X) with
σ < τ and [σ, τ ] a basic interval. Then τ is a limit with respect to σ if
and only if τ is not a successor with respect to σ. Moreover, if τ is a
limit, then it is a limit of successors with respect to σ.

Proof. Suppose first that τ is a limit. Let (μn)n∈ω be a strictly in-
creasing sequence in [σ, τ ]m converging to τ , and suppose there is some
A ∈ τ with τ = 〈σ,A〉. Then, for some n ∈ ω, A ∈ μn. But then, for
every m � n, τ = 〈σ,A〉 � μm < μm+1 � τ , a contradiction. So if τ is
a limit, it cannot be a successor.



      

12 D. W. MCINTYRE AND W. S. WATSON

Conversely, suppose that τ is not a successor. Let x be the base of
[σ, τ ], and let {Bn | n ∈ ω } be a local basis for τ at x consisting of
clopen sets. Then, for each n ∈ ω, μn = 〈σ,⋂m<nBm〉 is in [σ, τ ]ms.
Furthermore, (μn)n∈ω is an increasing sequence, and τ = sup{μn | n ∈
ω }. However, the sequence might not be strictly increasing. So we
define a strictly increasing subsequence (μnk

)k∈ω by

n0 = 0

nk+1 = the least m > k such that μnk
< μm

To see that this is a well-defined subsequence, it is enough to show
that for every n ∈ ω there is some m ∈ ω with μn < μm. Suppose this
were not so. Then there would be some n such that Bm ∈ μn for every
m � n. But then we would have μn = τ , and so τ = 〈σ,⋂m<nBm〉,
contradicting the assumption that τ is not a successor.

Proposition 5. Let X be a countable set. Then there exist at least
two isomorphism classes of basic intervals in Σm(X).

Proof. We exhibit topologies σ < μ < τ in Σm(ω + 1) with [σ, τ ] basic
and [σ, μ]m �∼= [σ, τ ]m.

Let σ and τ denote, respectively, the usual topology and the discrete
topology on ω + 1. Let {An | n ∈ ω } be a partition of ω into infinite
subsets, and let μ be the topology on ω + 1 in which elements of ω are
isolated and a basic neighbourhood of ω is of the form {ω} ∪⋃

m�nAm

for some n ∈ ω. Notice that μ is a limit with respect to σ, since it
is the limit of the strictly increasing sequence (μn)n∈ω, where μn =
〈σ,⋃m�nAm〉. On the other hand, τ = 〈σ, {ω}〉 is a successor with
respect to σ, and is therefore not a limit. Since the property of being
a limit is purely a lattice property, it is preserved by isomorphism. So
[σ, μ]m �∼= [σ, τ ]m.

Lemma 4. Let σ be a topology on X, and let A,B ⊆ X with A �
intσ(A) = B � intσ(B) = {x}. Then

(1) 〈σ,A〉 ∧ 〈σ,B〉 = 〈σ,A ∪B〉.
(2) 〈σ,A〉 ∨ 〈σ,B〉 = 〈σ,A ∩B〉.
(3) the following are equivalent:

(a) 〈σ,A〉 � 〈σ,B〉,
(b) x /∈ B � A

σ
,

(c) for some U ∈ σ, x ∈ U ∩B ⊆ A.

Proof. Straightforward.

Lemma 5. Let X be a countable set and let σ, τ ∈ Σm(X) with σ < τ
and τ a successor with respect to σ. Then [σ, τ ]ms is a Boolean algebra.
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Proof. By Lemma 4 we know that [σ, τ ]ms is a distributive lattice, and
it is clearly bounded. So we only need to show that it is complemented.
Let μ ∈ [σ, τ ]ms. By Corollary 2 we can choose A and B closed in σ
with μ = 〈σ,A〉 and τ = 〈σ,B〉. Put C = (X �A)∪B and ν = 〈σ,C〉.
Then C is τ -clopen (since both A and B are), and x ∈ C, so C is
σ-closed. Hence ν ∈ Σm(X). Moreover, since B ⊆ C, ν ∈ [σ, τ ], so
ν ∈ [σ, τ ]ms.

Now μ ∧ ν = 〈σ,A ∪ C〉 = 〈σ,X〉 = σ, and μ ∨ ν = 〈σ,A ∩ C〉 =
〈σ,A ∩ B〉 = μ ∨ τ = τ . Thus ν is a complement of μ in [σ, τ ]ms, as
required.

Recall that a Boolean algebra B has property Hω (also known as the
strong countable separation property) if for every pair { an | n ∈ ω }
and { bn | n ∈ ω } of countable subsets of B such that for every n ∈ ω,∨

m�n am <
∧

m�n bm there is some c ∈ B such that for every n ∈ ω,∨
m�n am < c <

∧
m�n bm.

Lemma 6. Let X be a countable set, and let σ, τ ∈ Σm(X) with σ < τ
and τ a successor with respect to σ. Then [σ, τ ]ms has property Hω.

Proof. Let d be a metric with ρd = σ. Let x be the base of [σ, τ ].
Let {αn | n ∈ ω } and { βn | n ∈ ω } be subsets of [σ, τ ]ms such
that for every n ∈ ω,

∨
m�n αm <

∧
m�n βm. For each n ∈ ω choose

σ-closed sets An and Bn with α = 〈σ,An〉 and βn = 〈σ,Bn〉. Now
〈σ,⋂m�nAm〉 � 〈σ,⋃m�nBm〉, so there is some σ-open set Un with x ∈
Un ∩ ⋃

m�nBm ⊆ ⋂
m�nAm. Shrinking Un if necessary we can assume

that Un is clopen and that Un ⊆ B(x, d, 2−n). We also know that
〈σ,⋃m�nBm〉 � 〈σ,⋂m�nAm〉, so x ∈ ⋂

m�nAm � ⋃
m�nBm

σ
. Thus we

can inductively choose distinct points xn, yn such that

xn, yn ∈ Un ∩ (
⋂

m�n

Am �
⋃

m�n

Bm) � ({xm | m < n } ∪ { ym | m < n }).

The only limit point of {xn | n ∈ ω } ∪ { yn | n ∈ ω } is x, so we can
choose clopen sets Dn and En for n ∈ ω such that for each n ∈ ω,

xn ∈ Dn ⊆ Un ∩ (
⋂

m�n

Am �
⋃

m�n

Bm),

yn ∈ En ⊆ Un ∩ (
⋂

m�n

Am �
⋃

m�n

Bm), and

Dn ∩ (
⋃

m∈ω�{n}
Dm ∪

⋃
m∈ω

Em) = ∅ = En ∩ (
⋃
m∈ω

Dm ∪
⋃

m∈ω�{n}
Em).

For each n ∈ ω let Cn = ((Un � ⋃
m�nDm) ∩ ⋃

m�nBm) ∪ En. Let
C =

⋃
n∈ω Cn, and let γ = 〈σ,C〉.
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Claim: C is closed.
For: Since Cn ⊆ Un ⊆ B(x, d, 2−n) for each n, every limit point of
C must be either a limit point of some Cn or be x itself. Since
each Cn is closed and x ∈ C, this means that every limit point of
C is an element of C.

Claim: For each n,
∨

m�n αm � γ.
For: Let Vn = Un � ⋃

m�nEm. Then x ∈ Vn ∈ σ, so 〈σ,C〉 =
〈σ, Vn ∩ C〉. Now Vn ∩ C = (Vn ∩ ⋃

m�nCm) ∪ (Vn ∩ ⋃
m>nCm).

Notice that for m � n we have Cm ⊆ ⋃
k�mBk∪Em, so

⋃
m�nCm�⋃

m�nEm ⊆ ⋃
m�nBm. Thus Vn ∩ ⋃

m�nCm ⊆ Un ∩ ⋃
m�nBm ⊆⋂

m�nAm. Also for m > n we have Cm ⊆ ⋂
k�mAk ⊆

⋂
k�nAk, so

Vn∩
⋃

m>nCm ⊆ ⋂
m�nAm. Thus Vn∩C ⊆ ⋂

m�nAm, as required.
Claim: For each n, γ � ∨

m�n αm.
For: Notice that {xm | m � n } ⊆ ⋂

m�nAm for each n. We will
show that for every m, xm /∈ C, by showing that xm /∈ Cn for
every n. So let m,n ∈ ω. If m � n then xm ∈ ⋃

m�nDm and
xm /∈ En, so xm /∈ Cn. On the other hand, if m > n then
Cn ⊆ ⋃

k�nBk ∪ En ⊆ ⋃
k�mBk ∪ En. Since xm was chosen to be

an element of
⋂

k�mAk � ⋃
k�mBk, and xm /∈ En, xm /∈ Cm.

Thus for every n we have {xm | m � n } ⊆ ⋂
m�nAm � C, so

x ∈ ⋂
m�nAm � C

σ
, as required.

Claim: For each n, γ � ∧
m�n βm.

For: We have Un�⋃
m�nDm ∈ σ, and (Un�⋃

m�nDm)∩⋃
m�nBm ⊆

Cn ⊆ C.
Claim: For each n,

∧
m�n βn � γ.

For: Notice that for each m, ym ∈ Em ⊆ Cm. However, for m � n,
ym /∈ ⋃

k�nBk. Thus { ym | m � n } ⊆ C � ⋃
m�nBm, so x ∈

C � ⋃
m�nBm

σ
.

This completes the proof.

Lemma 7. Let X be a countable set, and let σ, τ ∈ Σm(X) with σ < τ
and [σ, τ ] basic. Let (μn)n∈ω be a (not necessarily strictly) increasing
sequence in [σ, τ ]ms and let μ = sup{μn | n ∈ ω }. Then μ is metriz-
able, and if ν ∈ [σ, τ ]ms with ν � μ then ν � μn for some n ∈ ω.

Proof. For each n choose An σ-closed with μn = 〈σ,An〉. Then μ =
〈σ ∪ {An | n ∈ ω }〉. Since each An is closed, a similar argument to
the proof of Lemma 3 shows that μ is regular. Since σ has a countable
basis, so does μ. Thus μ is metrizable.

Now let ν ∈ [σ, τ ]ms with ν � μ. Choose B with ν = 〈σ,B〉. Then
B ∈ 〈σ ∪ {An | n ∈ ω }〉, so there is some n ∈ ω and some U ∈ σ such
that x ∈ U ∩ ⋂

m�nAm ⊆ B. But then B ∈ 〈σ,A0, . . . , An〉 = μn, so
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ν � μn.

If P is a partially ordered set in which no strictly increasing sequence
has a supremum, let S(P ) denote the partially ordered set obtained
by adding suprema of increasing sequences. More formally, let S ′(P )
denote the set of sequences (xn)n∈ω such that for all n ∈ ω, xn � xn+1.
Extend � to S ′(P ) by declaring that (xn)n∈ω � (yn)n∈ω if and only if for
every m ∈ ω there is some n ∈ ω such that xm � yn. This is clearly a
preorder on S ′(P ): let S(P ) denote the quotient obtained by declaring
(xn)n∈ω and (yn)n∈ω to be equivalent if and only if (xn)n∈ω � (yn)n∈ω
and (yn)n∈ω � (xn)n∈ω. We denote the equivalence class of (xn)n∈ω
by [xn]n∈ω. It is then straightforward to show that every increasing
sequence in S(P ) has a supremum, and P can be embedded in S(P )
by identifying x with [x]n∈ω.

Lemma 8. Let X be a countable set, and let σ, τ ∈ Σm(X) with σ < τ
and [σ, τ ] basic. Then [σ, τ ]m ∼= S([σ, τ ]ms).

Proof. By Proposition 4, every topology in [σ, τ ]m is the supremum of
a (not necessarily strictly) increasing sequence in [σ, τ ]ms. So we define
Φ : [σ, τ ]m → S([σ, τ ]ms) by declaring that for every μ, Φ(μ) = [μn]n∈ω,
where (μn)n∈ω is an increasing sequence with supremem μ. To show
that Φ is well-defined, we must verify that if (μn)n∈ω and (νn)n∈ω are
increasing sequences with the same supremum then [μn]n∈ω = [νn]n∈ω,
in other words that for each m ∈ ω there is some n ∈ ω with μm � νn,
and some k ∈ ω with νm � μk. This follows from Lemma 7.

Now let μ, ν ∈ [σ, τ ]m and choose increasing sequences (μn)n∈ω and
(νn)n∈ω with suprema μ and ν respectively. Suppose that μ � ν. For
each m ∈ ω we have μm � μ � sup{ νn | n ∈ ω }, so μm � νn for
some n ∈ ω. Since this holds for every m ∈ ω, (μn)n∈ω � (νn)n∈ω, and
thus [μn]n∈ω � [νn]n∈ω, i.e. Φ(μ) � Φ(ν). Suppose instead that μ � ν.
Then there is some A ∈ μ�ν. Shrinking A if necessary, we can assume
that A is clopen in μ and hence closed in σ. Put λ = 〈σ,A〉. Then
λ ∈ [σ, τ ]ms but λ � ν, so λ � νn for every n. Thus Φ(λ) � Φ(ν).
On the other hand, λ � μ, so λ � μn for some n. Thus Φ(λ) � Φ(μ).
Therefore Φ(μ) � Φ(ν).

Thus for every μ, ν ∈ [σ, τ ]m we have μ � ν if and only if Φ(μ) �
Φ(ν).

To show that Φ is an isomorphism it remains only to show that it
is surjective. So let [μn]n∈ω ∈ S([σ, τ ]ms). By Lemma 7, μ = sup{μn |
n ∈ ω } is metrizable, and Φ(μ) = [μn]n∈ω.
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Corollary 3. For i = 1, 2 let Xi be a countable set and let σi, τi ∈
Σm(Xi) with σi < τi and [σi, τi] basic. If [σ1, τ1]ms

∼= [σ2, τ2]ms then
[σ1, τ1]m ∼= [σ2, τ2]m.

Lemma 9. Let X be a countable set and let σ, τ ∈ Σm(X) with σ < τ .
Then [σ, τ ]ms has cardinality c.

Proof. As previously remarked, we know that Σm(X) has cardinality
c, so it is enough to show that there are at least c many topologies in
[σ, τ ]ms. We will show that P(ω)/fin can be embedded in [σ, τ ]ms.

As in the proof of Theorem 1, we choose some sequence (xn)n∈ω of
distinct elements of X which converges in σ to x but which does not
converge in τ , and τ -neighbourhoods Un of xn for n ∈ ω and U of x
such that {U}∪{Un | n ∈ ω } is a discrete collection in (X, τ). Without
loss of generality, U and all the Un are clopen in τ , and Un is contained
in the d-ball about xn whose radius is 1

3
of the least distance from xn

to x or to any of the other points xi (where d is a metric with σ = ρd).
For A ∈ P(ω), let SA = U ∪ ⋃

n∈ω�A Un and let μA = 〈σ, SA〉. Since
each SA is closed in σ and open in τ , μA ∈ [σ, τ ]ms for each A. Clearly
μA � μB if and only if A ⊆∗ B. Thus the function A �→ μA is an
order-embedding, and |[σ, τ ]ms| � |P(ω)/fin| = c.

Lemma 10. Assume CH. Let X be a countable set and, for i = 1, 2 let
σi, τi be metrizable topologies on X with [σi, τi] basic and τi a successor
with respect to σi. Then [σ1, τ1]ms

∼= [σ2, τ2]ms.

Proof. Assuming CH, any Boolean algebra of cardinality at most c

with property Hω is isomorphic to P(ω)/fin [3, Theorem 1.1.6]. Thus,
by Lemmas 5, 6 and 9, both [σ1, τ1]ms and [σ2, τ2]ms are isomorphic to
P(ω)/fin and hence to one another.

Definition 2. Let {Li | i ∈ I } be a family of bounded lattices. The
lower weak product of the family is given by

Πlw
i∈ILi = { f ∈

∏
i∈I

Li | f(i) = 0 for all but finitely many i ∈ I },

ordered componentwise. This is a lattice with a least element but no
greatest element (unless I is finite).

Lemma 11. Let X be a countable set, and let σ, τ ∈ Σm(X) with
σ < τ and τ a limit with respect to σ. Then there exist subsets Xn of
X for n ∈ ω such that, for each n, τ � Xn is a successor with respect
to σ � Xn, and

[σ, τ ]ms
∼= Πlw

n∈ω[σ � Xn, τ � Xn]ms
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Proof. Let x be the base of [σ, τ ]. Choose a strictly increasing sequence
(μn)n∈ω such that σ = μ0, τ = sup{μn | n ∈ ω }. For each n ∈ ω choose
a closed set An with μn = 〈σ,An〉, in such a way that An+1 ⊆ An for
each n.

For each n ∈ ω let Bn = An � An+1 and let Xn = Bn ∪ {x}. Notice
that τ � Xn = 〈σ � Xn, {x}〉, so τ � Xn is a successor with respect to
σ � Xn.

We define θ : [σ, τ ]ms → Πlw
n∈ω[σ � Xn, τ � Xn]ms as follows: for

μ ∈ [σ, τ ]ms choose a closed set B with μ = 〈σ,B〉. Then θ(μ)(n) =
〈σ � Xn, B ∩Xn〉 for each n.

Now if B is closed in X then B ∩Xn is closed in Xn so 〈σ � Xn, B ∩
Xn〉 ∈ [σ � Xn, τ � Xn]ms. Moreover, for any σ, B, C and Y , if
〈σ,B〉 = 〈σ,C〉 then 〈σ � Y,B ∩ Y 〉 = 〈σ � Y,C ∩ Y 〉. Thus, to show
that θ is well-defined we only need to show that, for every μ ∈ [σ, τ ]ms,
θ(μ)(n) = σ � Xn for all but finitely many n ∈ ω. So suppose μ =
〈σ,B〉 ∈ [σ, τ ]ms. Then B ∈ τ = 〈σ ∪ {An | n ∈ ω }〉 so, for some
n ∈ ω, B ∈ 〈σ,⋂m�nAm〉 = 〈σ,An〉. Thus there is some U ∈ σ with
x ∈ U ∩ An ⊆ B. But then for every m � n,

x ∈ U ∩Xm ⊆ U ∩ An ⊆ B,

so B ∩Xm ∈ σ � Xm. Thus 〈σ � Xm, B ∩Xm〉 = σ � Xm for all m � n,
as required.

For any σ, B, C and Y , if 〈σ,B〉 � 〈σ,C〉 then 〈σ � Y,B∩Y 〉 � 〈σ �
Y,C ∩ Y 〉. Thus if μ, ν ∈ [σ, τ ]ms with μ � ν then θ(μ) � θ(ν).

Conversely, suppose μ, ν ∈ [σ, τ ]ms with θ(μ) � θ(ν). Choose B, C
closed with μ = 〈σ,B〉, ν = 〈σ,C〉. Then B ∈ τ so for some n1 ∈ ω
and U1 ∈ σ, x ∈ U1 ∩ An1 ⊆ B. Similarly x ∈ U2 ∩ An2 ⊆ C for
some n2 ∈ ω, U2 ∈ σ. Put n = max{n1, n2} and U = U1 ∩ U2. Then
U ∩B∩Xm = U ∩C∩Xm = U ∩Xm for all m � n. Now θ(μ) � θ(ν) so
for each m < n we have 〈σ � Xm, B ∩Xm〉 � 〈σ � Xm, C ∩Xm〉. Thus
for each m < n there is some Vm ∈ σ with x ∈ Vm∩C ∩Xm ⊆ B∩Xm.
Put V =

⋂
m<n Vm. Then x ∈ U ∩ V ∩ C ⊆ B, so 〈σ,B〉 � 〈σ,C〉,

i.e. μ � ν.
Therefore we have θ(μ) � θ(ν) if and only if μ � ν, so θ is an order-

embedding. It remains only to show that θ is onto. So let f ∈ Πlw
n∈ω[σ �

Xn, τ � Xn]ms. Choose n so that for all m > n, f(m) = σ � Xm. For
each m � n choose Cm closed in Xm with f(m) = 〈σ � Xm, Cm〉. Notice
that, because each Am is τ -clopen, each Xm is closed in X, so each Cm is
closed. Note also that each Bm is σ-open, so

⋃
m>nXm = X�⋃

m�nBm

is closed. Thus
C =

⋃
m�n

Cm ∪
⋃

m>n

Xm
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is closed, contains x and is open in τ . Thus μ = 〈σ,C〉 ∈ [σ, τ ]ms, and
clearly θ(μ) = f , as required.

Combining these results, we obtain the following:

Theorem 4. Assume CH. Let X be a countable set. Then every basic
interval in Σm(X) is isomorphic to either S(P(ω)/fin) or S(Πlw

n∈ωP(ω)/fin).

It is well-known that the assertion that all Boolean algebras of cardi-
nality at most c with property Hω are isomorphic to P(ω)/fin is equiv-
alent to CH. This leads us to the following questions:

Question. Is it consistent that there exist three non-isomorphic basic
intervals in Σm(X) for X countable?

Question. Does the negation of the Continuum Hypothesis imply the
existence of three non-isomorphic basic intervals in Σm(X) for X count-
able?
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