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Abstract

Coe
cients of an explicit Runge�Kutta method which might be used for

initial�value ordinary di�erential equations� delay di�erential equations or

Volterra integral equations� often require many digits for their representation�

This can make manual checking of the coe
cients unreliable�

We present a dual precision Fortran 

 package for checking the coe
�

cients of an explicit Runge�Kutta method consisting of k formulae� In some

instances when a coe
cient is wrong� the output from the package can be

used to deduce which coe
cient is likely to be wrong�

Subject Classi�cations� AMS� ��L��� CR� G����
Keywords� Runge	Kutta
 explicit
 coe�cients
 dual precision

� Introduction

Over the last thirty years a lot of research has gone into deriving explicit Runge	
Kutta �ERK
 methods for initial value problems of the form

y� � f�x� y
� y�x�
 � y�� ��
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where f � R � R
n �� R

n � One consequence of this research is that a large number
of sets of coe�cients for ERK methods have appeared with the more popular being
made widely available through electronic distribution�

ERK methods are also used to solve delay di�erential equations of the form

y� � f�x� y�x
� y���x� y�x



� x � x�� y�x�
 � y�� y�x
 � ��x
� x � x�� ��


where f � R�Rn�Rn �� R
n and ��x� y�x

 � x� In addition
 ERK methods are used

as explicit Pouzet Volterra Runge	Kutta methods for Volterra integral equations of
the form

y�x
 � g�x
 �

Z x

�

k�x� �� y��

d�� x � X �� ��� xf �� ��


where g � X � R
n and k � D � R

n � R
n 
 D �� f�x� �
 j � � � � x � xfg�

A number of ERK methods have been implemented in integrators including
DVERK ���
 RKSUITE and DOPRI� ��� for ��

 RKLAG ��� and RETARD ��� for
��

 and RKVIEP ���
 VOLCON ��� and V�EXT ��� for ��
�

The coe�cients of ERK methods
 whether they are used for ��

 ��
 or ��
 often
contain a large number of digits� This is particularly so of high order methods�
For example
 the coe�cients for the widely used ���stage
 ��
�
 pair of Prince and
Dormand ���� are �approximately
 represented by rational numbers which require
���� digits� If any one of the more signi�cant digits is wrong
 either or both formulae
in the pair will have a reduced order
 and may not even have order one�

We present a Fortran �� package called RKCHK which checks the accuracy of
a set of coe�cients� The idea is to compute residuals obtained on substituting
the coe�cients of a method into the order conditions� For high�order methods

often only approximations to an exact set of coe�cients are available� for these
 the
residual of each order will be non�zero
 but those up to order p will be at the level
of unit round�o� of the computer� Our package will indicate this by giving non�zero
values of each residual for most or all orders� there will be a sudden increase in the
residual following that of the design order which will indicate the order of a method�

RKCHK comes in two precisions� double precision and extended precision of ap�
proximately �� digits� The latter is built around the multiprecision package MPFUN
����

Since the extended precision version is more accurate than the double precision
version
 the latter may seem redundant� However
 we believe it is not
 because
ERK methods are commonly used in double precision� In these cases
 the double
precision version of RKCHK will give users a good indication of the accuracy of the
coe�cients in the arithmetic they are using�

In section � we describe the checks performed by RKCHK on an ERK method�
In section �
 we summarise the implementation of the double precision version of
RKCHK and describe how it is used� Then in section � we discuss the extended
precision version� We follow this in section � with two examples of using RKCHK

one for each of the double and extended precision versions� We also show how the
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output can be used in some instances to deduce which coe�cient is likely to be
wrong�

� Checks

We assume for xi � xi�� � h the ERK method generates k approximations y
�l�
i to

y�xi

 i � �� � � �
 with the approximations de�ned as

y
���
i � ui�� � h

Ps

j�� b
���
j fj

y���i � ui�� � h
Ps

j�� b
���
j fj

��� �
���

y
�k�
i � ui�� � h

Ps

j�� b
�k�
j fj

����������
���������

��


where ui�� is one of y
���
i��� � � � � y

�k�
i�� and

f� � f�xi��� ui��

��


fj � f�xi�� � cjh� ui�� � h

j��X
l��

ajlfl
� j � �� � � � � s�

We also assume the coe�cients are selected so that approximation l is of order
pl� l � �� � � � � k� i�e�

y�xi
� y
�l�
i � O�hpl
�

We refer to each of the k approximations as a formula and the collection of approx�
imations de�ned by ��
 and ��
 as an ERK method� We refer to ci� i � �� � � � � s� as
the abscissae
 to aij� j � �� � � � � i � �� i � �� � � � � s� as the interior weights
 and to

b
�l�
i � i � �� � � � � s� l � �� � � � � k� as the exterior weights�
All existing ERK methods
 except very low order ones
 satisfy the row conditions

ci �
i��X
j��

aij� i � �� � � � � s� ��


We use these conditions in the checking process�
Although most ERK methods consist of either one or two formulae
 there do

exist ERK methods which consist of up to � formulae �see Verner ���� for example
�
We assume k � ���
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For convenience we write the coe�cients of the method as the Butcher tableau

�
c� a��
c� a�� a��
���

���
� � �

cs as� as� � � � as�s��

order p� b
���
� b

���
� � � � b

���
s�� b

���
s

order p� b
���
� b

���
� � � � b

���
s�� b

���
s

���
���

���
���

���
���

order pk b
�k�
� b

�k�
� � � � b

�k�
s�� b

�k�
s

��� Order conditions

Three sets of checks are performed by RKCHK� The �rst set is on the order condi�
tions for each formula in the ERK method�

For the lth formula in ��

 l � �� � � � � k
 the order conditions can be written as

v�l�rm ��
�rm

r�

�
�� 	rm

sX
j��

�b
�l�
j �rmj


�
� �� m � �� � � � � Nr� r � �� � � � � pl� ��


where Nr is the number of order conditions of order r� The elementary weights
�rmj are polynomials of degree r � � in the interior weights and abscissae
 while
the parameters 	rm and �rm are integers� A comprehensive exposition on order
conditions for Runge	Kutta methods is given in a number of monographs such as
��� �p������
 �������
 and ��� �p�������
�

As conditions ��
 are assumed
 each elementary weight �rmj can be expressed in
terms of the interior weights alone� We elected to use this form to permit a more
thorough checking of the interior weights� For each formula in a method
 we �rst
generate the left hand side of ��
 in this form� We refer to these as the residuals �for
the order conditions
� For each order q � �� � � � � pk and each formula l � �� � � � � k
 we

then calculate the L� norm of the vector v
�l�
q of residuals� From this we calculate the

scaled norm jjv
�l�
q jj�
u where u is the unit round�o� or an estimate of it� We print

the base��� logarithm of the scaled norm� If the norm is zero
 we set its logarithm
to zero�

If the coe�cients are exact and exact arithmetic is used when calculating the
residuals and the scaled norms
 the scaled norms would be zero� But in �nite
precision they will usually be non�zero� However our experience suggests the scaled
norms will be O��
 if the coe�cients are accurate which means their logarithm
should be small and positive or zero or negative�

The order conditions are generated using a recursive tree algorithm� A number of
recursive algorithms are possible� We use one based on some early work of Butcher
�private communication
�
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Our scheme for generating the residual of the order conditions uses only the
interior and exterior weights� We could have written the generation scheme so it
used the abscissae as well and thereby reduced the amount of computation required�
We elected not to do this in order to aid the identi�cation of which coe�cients were
in error when one or more checks were not passed�

��� Quadrature conditions

Our second set of checks is of the quadrature conditions for each formula in the
method� Since these conditions are a subset of the order conditions
 they are already
available from the �rst check� However
 in order to check the abscissae
 we re�
calculate the quadrature conditions using the abscissae and the exterior weights

and not using the interior and exterior weights as was done for the order conditions�

For the lth formula
 l � �� � � � � k� the quadrature conditions can be written as

r� �� ��
sX

j��

b
�l�
j � �� rq ��

�

q
�

sX
j��

b
�l�
j cq��j � �� q � �� � � � � pl�

We form the residual of each quadrature condition and print the base��� logarithm
of

jrij

umaxf��maxjfjb
�l�
j jgg

� i � �� � � � � pl�

As for the �rst set of checks
 each logarithm should be a small positive number or
zero or negative�

��� Row conditions

Our third and �nal set of checks is of the conditions

ri � ci �
i��X
j��

aij � �� i � �� � � � � s� ��


�These conditions are often denoted by A��
�
 We form and print the base���
logarithm of

jrij

umaxf��max��j�i��fjaijgg
� i � �� � � � � s�

Each logarithm should be a small positive number or zero or negative
 except pos�
sibly for very low order methods when conditions ��
 are not satis�ed�

�



� Double precision version

��� Overview

The double precision version of RKCHK consists of �� subroutines� These can be
divided into six groups which for convenience we refer to as driver
 input
 trees

residuals
 output and machine�

driver This group consists of �ve driver subroutines� drkchk
 drkcff
 drktre

delm and doc� The �rst driver is the one called by the user�s program
 the
second controls the reading of the coe�cients of the ERK method
 the third
controls the generation of the trees
 the fourth controls the calculation of the
elementary weights and the �fth controls the calculation of the residuals for
the order conditions�

input This group consists of �ve subroutines� drdval
 dchkin
 drdfp
 drdrf and
drdri� The �rst subroutine is used to read information about the method
being checked such as the number of stages and the number of formulae� The
second subroutine performs some simple acceptance checks on the input values
�for example
 the number of stages must be positive

 and returns with an
error �ag set if the values are unacceptable� The subroutines drdfp
 drdrf
and drdri read the coe�cients from a �le�

trees This group consists of two subroutines� drktr� and drktrq� These imple�
ment the recursive algorithm used to generate the Runge	Kutta trees�

residuals This group consists of four subroutines� delmex
 docin
 dqres and
da�res� The subroutine delmex calculates the elementary weights and docin

calculates the residuals for the order conditions� The remaining two subrou�
tines calculate the residuals for the quadrature conditions and the row condi�
tions respectively�

output This group consists of �ve subroutines� dwrerr
 dwroc
 dwrqc
 dwra� and
dformt� The �rst subroutine is called from the user�s program after an error
return from drkchk� It prints an explanation of the error return� The sub�
routines dwroc
 dwrqc and dwra� print a table of the logarithms for the order
conditions
 the quadrature conditions and the row conditions respectively� The
subroutine dformt returns the format statement needed by dwroc and dwrqc

when printing a line of logarithms�

machine This group consists of just the subroutine dmchne which returns an esti�
mate of the unit round�o� �the user must explicitly set the value in dmchne
�

�



��� Input values to drkchk

The input values can be divided into �i
 the parameters of the method being checked
and �ii
 the coe�cients�

For �i

 the user must supply a �le containing k
 s
 pl
 l � �� � � � � k
 and a boolean
value which is true if the coe�cients of the method are to be read from a �le� If they
are
 the user must also specify how the coe�cients are represented� RKCHK provides
for three representations� rational numbers with the numerator and denominator
both integers
 rational numbers with the numerator and denominator both �oating
point numbers
 and �oating point numbers� These three possibilities are speci�ed
in the input �le by the strings ratint
 ratfp and fp respectively and saved in the
variable reprcf�

The values of k
 s
 pl
 l � �� � � � � k must satisfy

� � k � ��� � � s � ��� � � pl � ���

For �ii

 the coe�cients can be supplied by providing a �le �which must be ap�
pended to the �le for �i


 or by providing a subroutine which returns the coe�cients�
If the coe�cients are supplied by �le
 there must be one coe�cient per line with all
zero coe�cients included� For rational coe�cients the numerator and denominator
must both be entered even if the numerator is zero or the denominator is one�

��� Calling program

A sample calling program is given in Figure �� drkchk has three input arguments

program rkchk

integer in�out�ind

external cfcn

in � �

out � �

call drkchk �in�out�cfcn�ind�

if �ind �lt� 	� then

call dwrerr �out�ind�

end if

stop

end

Figure �� A sample calling program for drkchk�

�in
 out and cfcn
 and one output argument �ind
� The arguments in and out
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are the unit numbers for input and output respectively
 and cfcn is the name of the
subroutine which returns the coe�cients of the ERK method� If the coe�cients are
being read from a �le
 cfcn can be a dummy subroutine� The argument ind is a
output status �ag which indicates whether the checking was completed
 and if not

why not�

��� Values of ind

There are three possible values of ind on exit from drkchk�

ind � � RKCHK completed the checking� A summary is in the output �le�

ind � �� One or more of the input values describing the method �excluding the
coe�cients
 were unacceptable�

ind � �� Rational coe�cients were being read from a �le and the denominator of
a coe�cient was zero�

��� Machine dependence

The only machine dependent number used besides the unit numbers for input and
output �both are input arguments to drkchk

 is the unit round�o� u� This value or
an estimate of it must be explicitly set by the user in the subroutine dmchne�

The subroutine dformt does some simple character manipulation� We have writ�
ten this in what we believe is a portable way�

��� Common blocks

RKCHK uses the common block cchkin to pass information about errors in the
input values from dchkin to dwrerr�

� Extended precision version

The extended precision version of RKCHK
 which for convenience we denote by
RKCHKep
 uses the multiprecision package developed by Bailey ���� Bailey�s pack�
age consists of a suite of functions for performing arithmetic operations and tran�
scendental functions on �oating point numbers of arbitrarily high precision
 together
with a translator which by means of special comments in the user�s program
 trans�
lates the program to the required precision� This translated version along with the
suite of multiprecision functions is then compiled and linked to form the executable
module�

We provide an untranslated and a translated version of RKCHKep
 with the
subroutines and a sample main program for each version in a single �le� The un�
translated version is essentially the double precision version of RKCHK with some
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changes to the comments and the special translator comments added� The subrou�
tine names are the same as in the double precision version� The translated version
is for a precision level of �� which typically gives �� digits of accuracy� This amount
of accuracy should be su�cient for most purposes�

If greater accuracy is required
 the untranslated version can be converted to the
required precision using the following steps�

�i
 Change the �� in the special comment cmp� precision level �� at the
start of the untranslated �le to cmp� precision level n where n should be
a least � greater than the number of digits of accuracy required� For example

if �� digits are required
 n should be at least ���

�ii
 Change urnd in the subroutine dmchne to ����n where n is from step �i
�

�iii
 Translate the untranslated version using the translator of ����

Once an executable module has been obtained
 RKCHKep is used in the same way
as the double precision version of RKCHK
 except when �oating point numbers are
being read from a �le �i�e� when reprcf is either fp or ratfp
� In these two cases

the exponent �if there is one
 of each �oating point number must appear �rst� For
example
 ����� ���	 must be entered as ���	 � �����

To avoid having to do this for the case repref � fp
 we have written a subrou�
tine called mkcfcn which reads the coe�cients of the method as character strings
from a �le and prints the subroutine cfcn�

� Examples

��� Example �

To illustrate the use of the double precision version of RKCHK
 we ran it on the
��stage CSIRK method given by Verner ����� This method consists of formulae of
order � to � embedded in an order � formula� The coe�cients are rational numbers
and are exact�

We elected to read the coe�cients from a �le� Our input �le is given in Figure �

where to save space in this article only
 we have put more than one coe�cient per
line� �For use with RKCHK
 each coe�cient must be entered on a single line�
 The
�rst line is the number of formulae
 the second line is the number of stages and the
third line gives the order of the formulae in the method� The value on the fourth
line is true which means the coe�cients are to be read from the �le� The �fth line
gives the type of representation of the coe�cients� ratint signals the coe�cients
are rational numbers with both the denominator and numerator being integers�

The rest of the �le gives the coe�cients in the order c�
 � � �
 c

 a��
 a��
 a��

a	�
 � � �
 as�s��
 followed by the exterior weights of the order � formula
 the order �
formula and so on down to the order � formula� It is important to note that although
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the lower order formulae do not use some of the six stages
 the exterior weights for
the stages not used must be entered �as 	 �
� �It is necessary to explicitly state
which exterior weights are zero because the nonzero exterior weights can not be
predicted from just s and the order of the formulae in the method
�

�

�

� 
 � � 


�true�

ratint

� 
	

� �


 


�� 
	


 



� 
	

� 
� 
 
�

� 
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Figure �� Input �le for Example ��

When we ran RKCHK using the main program of the previous section
 we ob�
tained the output in Figure � and ��

The logarithms of the residuals in Table � of the output are small positive num�
bers or zero or negative
 which is a good indication the order conditions are satis�ed
to machine precision� This implies
 since the order conditions are calculated in
RKCHK using the interior and exterior weights
 that both sets of weights are prob�
ably correct�

The logarithms of the residuals in Table � for the formulae of orders � to � are
zero or negative
 which is a good indication the quadrature conditions for the four
formulae as calculated by RKCHK are satis�ed� However the logarithms for the
order � formula
 except for the �rst one
 are large�

Because the quadrature conditions are calculated using only the exterior weights
and the abscissae we can conclude using just Table � that

�a
 the exterior weights for the formulae of orders � to � are probably correct
 and

�b
 the exterior weights for the formula of order � or the abscissae are probably
wrong�
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In the summary below� the column heading

Form n

ord k

is for the nth formula� specified as order k by the user�

TABLE 


The summary below gives the base�
	 logarithm of the

L�infinity norm of r�u where r is the vector of residuals for

the order conditions of a prescribed order and u is the unit

round�off� or an estimate of it� for the computer� The norms

are listed for each order and each formula� The logs should

be small and positive or zero or negative� If a residual is

zero its log is set to 	� The last line of the summary gives

an estimate of the number of digits to which the order

conditions are satisfied�

Order Form 
 Form � Form � Form 
 Form �

ord � ord 
 ord � ord � ord 



 	�		 	�		 	�		 	�		 	�		

� �	��� �	��� 	�		 	�		

� 	��
 	��
 	�		


 	��� 	���

� �	�	�

No� dig� 
� 
� 
� 
� 
�

Figure �� Table � of the output for Example ��
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TABLE �

The table below gives the base�
	 logarithm of the

relative residuals


 s i

r � � ��� � sum b c � � w � i�	���p�


i i�
 j�
 j j i

where w � u max�
�max ��b ����

i j j

p is the order of the formula and u is the unit round�off� or

an estimate of it� for the computer� The logs should be small

and positive or zero or negative� If a residual is zero� its

log is set to zero�

Order Form 
 Form � Form � Form 
 Form �

ord � ord 
 ord � ord � ord 



 �	��� �	�	� 	�		 	�		 	�		

� 

�	� �	�	� 	�		 	�		

� ���� 	�		 �	���


 ���
 	�		

� ����

TABLE �

The table below gives the base�
	 logarithm of the

relative residuals

s

r � � c � sum a � � w � i�
���s

i i j�
 ij i

where w � u max�
�max ��a ���

i j ij

and u is the unit round�off� or an estimate of it� for the

computer� The logs should be small and positive or zero or

negative for most methods� If a residual is zero� its log is

set to zero�

Stage i r

��������������������

� 	�		

� �	���


 	�		

� �	���

� 
��
�

Figure �� Tables � and � of the output for Example ��
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If we assume the exterior weights are correct �as suggested by Table �

 the error
must be in the abscissae� If one or more of c�
 c�
 c	 or c� is wrong
 then since
b�l�
 � �� l � �� �� �� �
 the quadrature conditions for the formulae of orders � to �
would probably not be satis�ed� Hence we conclude that c
 is probably wrong�

The logarithms of the residuals in Table � for stages � to � are zero or negative
which is a good indication the row conditions are satis�ed for stages � to �� Since the
row conditions depend only on the abscissae and the interior weights
 we conclude
that the abscissae and the interior weights for the �rst � stages are probably correct�
However the logarithm for the sixth stage is large� If the row condition ��
 is
supposed to be satis�ed by the sixth stage �which is highly likely for an order �
formula

 we have further evidence that c
 is wrong�

In fact c
 should be ���� and not ����� �We intentionally introduced this error
in the coe�cients from ���� to illustrate the capacity of RKCHK to identify errors
in the coe�cients�


��� Example �

To illustrate the extended precision version of RKCHK
 we generated the coe�cients
of an explicit Runge	Kutta formula from the family of order �� formulae derived by
Hairer ��� using double precision arithmetic
 and then checked the accuracy of the
coe�cients� The coe�cients were generated using the algorithm described in ����

The output from RKCHKep is given in Figures �� To save space we have omitted
the pre�amble to the tables and placed them side by side� We observe from the
output
 since u is set to �����
 that the coe�cients are accurate to about �� digits�
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