Dual precision software for checking explicit
Runge-Kutta methods

P.W. Sharp*
Department of Mathematics, University of Auckland, P.B. 92019,
Auckland, NEW ZEALAND. Email: sharp@math.auckland.ac.nz

J.H. Verner'

Department of Mathematics and Statistics, Queen’s University at Kingston,

Kingston, Ontario, CANADA, K7L 3N6. Email: jim@jhv.mast.queensu.ca

December 2, 1996

Abstract

Coeflicients of an explicit Runge-Kutta method which might be used for
initial-value ordinary differential equations, delay differential equations or
Volterra integral equations, often require many digits for their representation.
This can make manual checking of the coefficients unreliable.

We present a dual precision Fortran 77 package for checking the coeffi-
cients of an explicit Runge-Kutta method consisting of £ formulae. In some
instances when a coefficient is wrong, the output from the package can be
used to deduce which coefficient is likely to be wrong.

Subject Classifications: AMS: 65L06; CR: G.1.7
Keywords: Runge-Kutta, explicit, coefficients, dual precision

1 Introduction

Over the last thirty years a lot of research has gone into deriving explicit Runge—
Kutta (ERK) methods for initial value problems of the form

y, = f(l‘, y)7 y(l‘o) = Yo, (1)

*This work was partly supported by the University of Auckland Research Council.
tThis work was supported by the Natural Sciences and Engineering Research Council of Canada
and the Information Technology Research Centre of Ontario.

where f : R x R* — R". One consequence of this research is that a large number
of sets of coefficients for ERK methods have appeared with the more popular being
made widely available through electronic distribution.

ERK methods are also used to solve delay differential equations of the form

Y= fla,y(),y(0(z,y(2)), = =0, ylwo) =y0, y(x) =), 2 <x0, (2)

where f : RXxR" xR" — R" and §(z,y(x)) < z. In addition, ERK methods are used
as explicit Pouzet Volterra Runge-Kutta methods for Volterra integral equations of
the form

y(@) = g(x) + / ke, ry(n)dr, 1 e X = (0,2, 3)

where g: X - R and k: D xR* - R", D:={(z,7) | 0 <7 <z <z}

A number of ERK methods have been implemented in integrators including
DVERK [7], RKSUITE and DOPRI8 [6] for (1), RKLAG [9] and RETARD [6] for
(2), and RKVIEP [3], VOLCON [5] and V2EXT [8] for (3).

The coefficients of ERK methods, whether they are used for (1), (2) or (3) often
contain a large number of digits. This is particularly so of high order methods.
For example, the coefficients for the widely used 13-stage, (7,8) pair of Prince and
Dormand [10] are (approximately) represented by rational numbers which require
1317 digits. If any one of the more significant digits is wrong, either or both formulae
in the pair will have a reduced order, and may not even have order one.

We present a Fortran 77 package called RKCHK which checks the accuracy of
a set of coefficients. The idea is to compute residuals obtained on substituting
the coefficients of a method into the order conditions. For high-order methods,
often only approximations to an exact set of coefficients are available; for these, the
residual of each order will be non-zero, but those up to order p will be at the level
of unit round-off of the computer. Our package will indicate this by giving non-zero
values of each residual for most or all orders: there will be a sudden increase in the
residual following that of the design order which will indicate the order of a method.

RKCHK comes in two precisions: double precision and extended precision of ap-
proximately 38 digits. The latter is built around the multiprecision package MPFUN
[1].

Since the extended precision version is more accurate than the double precision
version, the latter may seem redundant. However, we believe it is not, because
ERK methods are commonly used in double precision. In these cases, the double
precision version of RKCHK will give users a good indication of the accuracy of the
coefficients in the arithmetic they are using.

In section 2 we describe the checks performed by RKCHK on an ERK method.
In section 3, we summarise the implementation of the double precision version of
RKCHK and describe how it is used. Then in section 4 we discuss the extended
precision version. We follow this in section 5 with two examples of using RKCHK,
one for each of the double and extended precision versions. We also show how the

output can be used in some instances to deduce which coefficient is likely to be
wrong.

2 Checks

We assume for x; = x; ; + h the ERK method generates k£ approximations yl@ to
y(x;), i =1,..., with the approximations defined as
3\
= s+ h Y 0V
yl@) = U;j—1 + h Zj’:l b§2)f]
> (4)

oy = w R 00 f

where u;_; is one of yz@l, e ,yl@l and

fi = f@i,uim) (5)

j—1

fj = f(l"if1+cjh,uz;1—|—h2aﬂf;), j=2,...,8.

=1

We also assume the coefficients are selected so that approximation [is of order
p, L=1,...,k;ie.
!
y(x:) =y = O(h™).

We refer to each of the £ approximations as a formula and the collection of approx-
imations defined by (4) and (5) as an ERK method. We refer to ¢;, i =2,...,s, as
the abscissae, to a;;, j = 1,...,4—1, ¢ = 2,..., s, as the interior weights, and to
n0

i

1=1,...,s, I =1,...,k, as the exterior weights.
All existing ERK methods, except very low order ones, satisfy the row conditions

i—1
ci:Zazj, i:2,...,8. (6)
j=1

We use these conditions in the checking process.

Although most ERK methods consist of either one or two formulae, there do
exist ERK methods which consist of up to 8 formulae (see Verner [11] for example).
We assume k < 12.

For convenience we write the coefficients of the method as the Butcher tableau

0

C2 a21

C3 a3r a3z

Cs Qg1 Qg2 '+ Ogs—1
order p; bgl) bél) .- ijl bt
order p, | b b p?, b
order py bgk) bék) e bgk_)l b

2.1 Order conditions

Three sets of checks are performed by RKCHK. The first set is on the order condi-
tions for each formula in the ERK method.
For the [tD formula in (4), 1 =1,...,k, the order conditions can be written as

(8%
Ug”)n rm[f)/rmz d)rm]]:()’ m=1,....N,, r=1,...,p, (7)

where N, is the number of order conditions of order r. The elementary weights
¢rmj are polynomials of degree r — 1 in the interior weights and abscissae, while
the parameters 7,,, and a,, are integers. A comprehensive exposition on order
conditions for Runge-Kutta methods is given in a number of monographs such as
[2] (p79-104, 163-173) and [6] (p142-153).

As conditions (6) are assumed, each elementary weight ¢,,,; can be expressed in
terms of the interior weights alone. We elected to use this form to permit a more
thorough checking of the interior weights. For each formula in a method, we first
generate the left hand side of (7) in this form. We refer to these as the residuals (for
the order conditions). For each order ¢ = 1, ..., p; and each formulal =1,... k, we
then calculate the L, norm of the vector v,gl) of residuals. From this we calculate the
scaled norm ||v,§l)||oo/u where u is the unit round-off or an estimate of it. We print
the base-10 logarithm of the scaled norm. If the norm is zero, we set its logarithm
to zero.

If the coefficients are exact and exact arithmetic is used when calculating the
residuals and the scaled norms, the scaled norms would be zero. But in finite
precision they will usually be non-zero. However our experience suggests the scaled
norms will be O(1) if the coefficients are accurate which means their logarithm
should be small and positive or zero or negative.

The order conditions are generated using a recursive tree algorithm. A number of
recursive algorithms are possible. We use one based on some early work of Butcher
(private communication).

Our scheme for generating the residual of the order conditions uses only the
interior and exterior weights. We could have written the generation scheme so it
used the abscissae as well and thereby reduced the amount of computation required.
We elected not to do this in order to aid the identification of which coefficients were
in error when one or more checks were not passed.

2.2 Quadrature conditions

Our second set of checks is of the quadrature conditions for each formula in the
method. Since these conditions are a subset of the order conditions, they are already
available from the first check. However, in order to check the abscissae, we re-
calculate the quadrature conditions using the abscissae and the exterior weights,
and not usin%lthe interior and exterior weights as was done for the order conditions.
For the (™ formula, [= 1,...,k, the quadrature conditions can be written as

5 R _
rl:zl—Zbg-l):(), rq:ZQ—Zbgl)C?IZO, q=2,...,p.
7=1 7j=2

We form the residual of each quadrature condition and print the base-10 logarithm

of
|74

umax{1, max;{|p\"[}}

i:1,...,pl.

As for the first set of checks, each logarithm should be a small positive number or
zero or negative.

2.3 Row conditions

Our third and final set of checks is of the conditions

i—1

TZ':CZ'—ZGZ']':O, 7::2,...,8. (8)

j=1

(These conditions are often denoted by A(1).) We form and print the base-10
logarithm of
|7l
u rnax{l, maxlgjgi_lﬂaij}} ,
Each logarithm should be a small positive number or zero or negative, except pos-
sibly for very low order methods when conditions (6) are not satisfied.

1=2,...,8.

3 Double precision version

3.1 Overview

The double precision version of RKCHK consists of 22 subroutines. These can be
divided into six groups which for convenience we refer to as driver, input, trees,
residuals, output and machine.

driver This group consists of five driver subroutines: drkchk, drkcff, drktre,
delm and doc. The first driver is the one called by the user’s program, the
second controls the reading of the coefficients of the ERK method, the third
controls the generation of the trees, the fourth controls the calculation of the
elementary weights and the fifth controls the calculation of the residuals for
the order conditions.

input This group consists of five subroutines: drdval, dchkin, drdfp, drdrf and
drdri. The first subroutine is used to read information about the method
being checked such as the number of stages and the number of formulae. The
second subroutine performs some simple acceptance checks on the input values
(for example, the number of stages must be positive), and returns with an
error flag set if the values are unacceptable. The subroutines drdfp, drdrf
and drdri read the coefficients from a file.

trees This group consists of two subroutines: drktrl and drktrq. These imple-
ment the recursive algorithm used to generate the Runge-Kutta trees.

residuals This group consists of four subroutines: delmex, docin, dqres and
dalres. The subroutine delmex calculates the elementary weights and docin
calculates the residuals for the order conditions. The remaining two subrou-
tines calculate the residuals for the quadrature conditions and the row condi-
tions respectively.

output This group consists of five subroutines: dwrerr, dwroc, dwrqc, dwral and
dformt. The first subroutine is called from the user’s program after an error
return from drkchk. It prints an explanation of the error return. The sub-
routines dwroc, dwrqc and dwral print a table of the logarithms for the order
conditions, the quadrature conditions and the row conditions respectively. The
subroutine dformt returns the format statement needed by dwroc and dwrqc
when printing a line of logarithms.

machine This group consists of just the subroutine dmchne which returns an esti-
mate of the unit round-off (the user must explicitly set the value in dmchne).

3.2 Input values to drkchk

The input values can be divided into (i) the parameters of the method being checked
and (ii) the coefficients.

For (i), the user must supply a file containing &, s, p;, L =1, ..., k, and a boolean
value which is true if the coefficients of the method are to be read from a file. If they
are, the user must also specify how the coefficients are represented. RKCHK provides
for three representations: rational numbers with the numerator and denominator
both integers, rational numbers with the numerator and denominator both floating
point numbers, and floating point numbers. These three possibilities are specified
in the input file by the strings ratint, ratfp and fp respectively and saved in the
variable reprcf.

The values of k, s, p;, [= 1,..., k must satisfy

1<k<12, 1<s5<35 1<p<I12.

For (ii), the coefficients can be supplied by providing a file (which must be ap-
pended to the file for (i)), or by providing a subroutine which returns the coefficients.
If the coefficients are supplied by file, there must be one coefficient per line with all
zero coefficients included. For rational coefficients the numerator and denominator
must both be entered even if the numerator is zero or the denominator is one.

3.3 Calling program

A sample calling program is given in Figure 1. drkchk has three input arguments

program rkchk
integer in,out,ind
external cfcn

in =5

out = 6

call drkchk (in,out,cfcn,ind)
if (ind .1t. 0) then

call dwrerr (out,ind)
end if

stop

end
Figure 1: A sample calling program for drkchk.

(in, out and cfcn) and one output argument (ind). The arguments in and out

are the unit numbers for input and output respectively, and cfcn is the name of the
subroutine which returns the coefficients of the ERK method. If the coefficients are
being read from a file, cfcn can be a dummy subroutine. The argument ind is a
output status flag which indicates whether the checking was completed, and if not,
why not.

3.4 Values of ind

There are three possible values of ind on exit from drkchk.

ind = 1 RKCHK completed the checking. A summary is in the output file.

ind = -1 One or more of the input values describing the method (excluding the
coefficients) were unacceptable.

ind = -2 Rational coefficients were being read from a file and the denominator of

a coeflicient was zero.

3.5 Machine dependence

The only machine dependent number used besides the unit numbers for input and
output (both are input arguments to drkchk), is the unit round-off u. This value or
an estimate of it must be explicitly set by the user in the subroutine dmchne.

The subroutine df ormt does some simple character manipulation. We have writ-
ten this in what we believe is a portable way.

3.6 Common blocks

RKCHK uses the common block cchkin to pass information about errors in the
input values from dchkin to dwrerr.

4 Extended precision version

The extended precision version of RKCHK, which for convenience we denote by
RKCHKep, uses the multiprecision package developed by Bailey [1]. Bailey’s pack-
age consists of a suite of functions for performing arithmetic operations and tran-
scendental functions on floating point numbers of arbitrarily high precision, together
with a translator which by means of special comments in the user’s program, trans-
lates the program to the required precision. This translated version along with the
suite of multiprecision functions is then compiled and linked to form the executable
module.

We provide an untranslated and a translated version of RKCHKep, with the
subroutines and a sample main program for each version in a single file. The un-
translated version is essentially the double precision version of RKCHK with some

changes to the comments and the special translator comments added. The subrou-
tine names are the same as in the double precision version. The translated version
is for a precision level of 45 which typically gives 38 digits of accuracy. This amount
of accuracy should be sufficient for most purposes.

If greater accuracy is required, the untranslated version can be converted to the
required precision using the following steps.

(i) Change the 45 in the special comment cmp+ precision level 45 at the
start of the untranslated file to cmp+ precision level n where n should be
a least 7 greater than the number of digits of accuracy required. For example,
if 60 digits are required, n should be at least 67.

(ii) Change urnd in the subroutine dmchne to 10”"™ where n is from step (i).
(iii) Translate the untranslated version using the translator of [1].

Once an executable module has been obtained, RKCHKep is used in the same way
as the double precision version of RKCHK, except when floating point numbers are
being read from a file (i.e. when reprcf is either fp or ratfp). In these two cases,
the exponent (if there is one) of each floating point number must appear first. For
example, 2.72 x 10~* must be entered as 107™* x 2.72.

To avoid having to do this for the case repref = fp, we have written a subrou-
tine called mkcfcn which reads the coefficients of the method as character strings
from a file and prints the subroutine cfcn.

5 Examples

5.1 Example 1

To illustrate the use of the double precision version of RKCHK, we ran it on the
6-stage CSIRK method given by Verner [11]. This method consists of formulae of
order 1 to 4 embedded in an order 5 formula. The coefficients are rational numbers
and are exact.

We elected to read the coefficients from a file. Our input file is given in Figure 2,
where to save space in this article only, we have put more than one coefficient per
line. (For use with RKCHK, each coefficient must be entered on a single line.) The
first line is the number of formulae, the second line is the number of stages and the
third line gives the order of the formulae in the method. The value on the fourth
line is true which means the coefficients are to be read from the file. The fifth line
gives the type of representation of the coefficients: ratint signals the coefficients
are rational numbers with both the denominator and numerator being integers.

The rest of the file gives the coefficients in the order cs, ..., cg, a2y, asy, ass,
a4y, - .., Gss—1, followed by the exterior weights of the order 5 formula, the order 4
formula and so on down to the order 1 formula. It is important to note that although

the lower order formulae do not use some of the six stages, the exterior weights for
the stages not used must be entered (as 0 1). (It is necessary to explicitly state
which exterior weights are zero because the nonzero exterior weights can not be
predicted from just s and the order of the formulae in the method).

5

6

54321

.true.

ratint

3 10

25

11

39 40

141

3 10

2 15 4 15

7 12 -10 3 15 4

12207 25600 -1677 640 15847 5120 299 12800

887 15360 -433 1920 213 1024 -39 2560 01
112 1 1405 2484 -322 351 1600 1311 320 6669
59 468 475 828 -8 9 3200 2691
112 25 36 29 0
-1 4 5 4 01 0
11 01 01 0

O O O O O
i

01
1 01
1 01
1 01

Figure 2: Input file for Example 1.

When we ran RKCHK using the main program of the previous section, we ob-
tained the output in Figure 3 and 4.

The logarithms of the residuals in Table 1 of the output are small positive num-
bers or zero or negative, which is a good indication the order conditions are satisfied
to machine precision. This implies, since the order conditions are calculated in
RKCHK using the interior and exterior weights, that both sets of weights are prob-
ably correct.

The logarithms of the residuals in Table 2 for the formulae of orders 1 to 4 are
zero or negative, which is a good indication the quadrature conditions for the four
formulae as calculated by RKCHK are satisfied. However the logarithms for the
order 5 formula, except for the first one, are large.

Because the quadrature conditions are calculated using only the exterior weights
and the abscissae we can conclude using just Table 2 that

(a) the exterior weights for the formulae of orders 1 to 4 are probably correct, and

(b) the exterior weights for the formula of order 5 or the abscissae are probably
wrong.

10

In the summary below, the column heading

Form n
ord k

is for the nth formula, specified as order k by the user.
TABLE 1

The summary below gives the base-10 logarithm of the
L-infinity norm of r/u where r is the vector of residuals for
the order conditions of a prescribed order and u is the unit
round-off, or an estimate of it, for the computer. The norms
are listed for each order and each formula. The logs should
be small and positive or zero or negative. If a residual is
zero its log is set to 0. The last line of the summary gives
an estimate of the number of digits to which the order
conditions are satisfied.

Order Form 1 Form 2 Form 3 Form 4 Form b5
ord b5 ord 4 ord 3 ord 2 ord 1

1 0.00 0.00 0.00 0.00 0.00
2 -0.26 -0.26 0.00 0.00
3 0.31 0.31 0.00
4 0.26 0.35
5 -0.05
No. dig. 15 15 15 15 15

Figure 3: Table 1 of the output for Example 1.

11

TABLE 2

The table below gives the base-10 logarithm of the
relative residuals

1 s i
r =] --—-sum bc | /w, i=0...p-1
i it =1 §j i
where w = u max(l,max (|b [)),
i i

p is the order of the formula and u is the unit round-off, or
an estimate of it, for the computer. The logs should be small
and positive or zero or negative. If a residual is zero, its
log is set to zero.

Order Form 1 Form 2 Form 3 Form 4 Form b5
ord b5 ord 4 ord 3 ord 2 ord 1

1 -0.25 -0.03 0.00 0.00 0.00
2 11.08 -0.03 0.00 0.00
3 9.77 0.00 -0.86
4 8.34 0.00
5 6.86
TABLE 3

The table below gives the base-10 logarithm of the
relative residuals

s
r =| c - sum a | / w , i=1...s
i i j=1 ij i
where w =umax(l,max (la 1))
i J ij

and u is the unit round-off, or an estimate of it, for the
computer. The logs should be small and positive or zero or
negative for most methods. If a residual is zero, its log is
set to zero.

Stage 1 r
2 0.00
3 -0.56
4 0.00
5 -0.22
6 12.48

Figure 4: Tables 2 and 3 of the output for Example 1.

12

If we assume the exterior weights are correct (as suggested by Table 1), the error
must be in the abscissae. If one or more of ¢y, c3, ¢4 or c¢5 is wrong, then since
bél) = 0,1 = 2,3,4,5, the quadrature conditions for the formulae of orders 1 to 4
would probably not be satisfied. Hence we conclude that c¢g is probably wrong.

The logarithms of the residuals in Table 3 for stages 2 to 5 are zero or negative
which is a good indication the row conditions are satisfied for stages 2 to 5. Since the
row conditions depend only on the abscissae and the interior weights, we conclude
that the abscissae and the interior weights for the first 5 stages are probably correct.
However the logarithm for the sixth stage is large. If the row condition (6) is
supposed to be satisfied by the sixth stage (which is highly likely for an order 5
formula), we have further evidence that ¢4 is wrong.

In fact ¢g should be 1/40 and not 1/41. (We intentionally introduced this error
in the coefficients from [11] to illustrate the capacity of RKCHK to identify errors
in the coefficients.)

5.2 Example 2

To illustrate the extended precision version of RKCHK, we generated the coefficients
of an explicit Runge-Kutta formula from the family of order 10 formulae derived by
Hairer [4] using double precision arithmetic, and then checked the accuracy of the
coefficients. The coefficients were generated using the algorithm described in [4].
The output from RKCHKep is given in Figures 5. To save space we have omitted
the pre-amble to the tables and placed them side by side. We observe from the
output, since u is set to 10738, that the coefficients are accurate to about 15 digits.

References

[1] D. H. Bailey, Multiprecision Translation and Ezecution of Fortran Programs,
ACM Transactions on Mathematical Software, 19, no. 3, Sept. 1993, p. 288-319.

[2] J.C. Butcher, The numerical analysis of ordinary differential equations, John
Wiley & Sons Ltd, 1987.

[3] R.P. Duncan, A Runge-Kutta method using variable stepsizes for Volterra in-
tegral equations of the 2nd kind, TR 157/82, Dept. of Computer Science, Uni-
versity of Toronto, 1982.

[4] E. Hairer, A Runge-Kutta method of order 10, J. Inst. Maths Applics, 21,
(1978), 47-59.

[5] E. Hairer, Ch. Lubich, M. Schlichte, Fast numerical solution of nonlinear
Volterra convolution equations, STAM J. Sci. Stat. Comp., 6, (1985) 532-541,

[6] E. Hairer, S.P. Norsett, G. Wanner, Solving ordinary differential equations I,
Springer series in computational mathematics, 8, Springer Verlag.

13

Ord

O O O NO O WN -

[

No.

[7]

[10]

[11]

TABLE 1 TABLE 2 TABLE 3

er Form 1 Order Form 1 Stage i r
ord 10 ord 10 -—————————————————-
20.78 1 20.78 2 0.00
21.19 2 21.10 3 0.00
21.33 3 21.51 4 21.00
21.31 4 21.65 5 21.46
21.17 5 21.70 6 0.00
20.96 6 21.73 7 21.48
22.50 7 21.73 8 20.52
22.41 8 21.73 9 20.31
22.25 9 21.72 10 20.78
22.07 10 21.71 11 21.23
12 20.95
dig. 15 13 22.23
14 20.34
15 0.00
16 0.00
17 22.28
Figure 5: Tables 1, 2 and 3 for Example 2.
T.E. Hull, W.H. Enright, K.J. Jackson, User’s guide for DVERK - a subroutine

for solving non-stiff ODFE’s, Tech. Rep. 100, Department of Computer Science,
Univ. of Toronto, 1976.

A.N. Lomakovich, V.A. Ischuk, The approrimation solution of certain nonlinear
Volterra type integral equations by a bilateral method of Runge—Kutta—Fehlberg
form (Russian), Vychisl, Prikl, Math (Kiev), 23, 2904. A translation by C.T.H.
Baker, M.S. Keech and P. Sermer appeared as Numer. Anal. Report No. 26,
Dept. of Mathematics, University of Manchester.

K.W. Neves, S. Thompson, Software for the Numerical Solution of Systems of
Functional Differential Equations With State Dependent Delays, Applied Nu-
merical Mathematics, 9, (1992), 385-401.

Prince P.J., Dormand J.R., High order embedded Runge-Kutta formulae, J.
Comp. Appl. Math., 7 (1981), 67-76.

Verner J.H., Families of imbedded Runge—Kutta methods, STAM J. Num. Anal.,
16, No. 5, (1979), 857-875.

14

