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Abstract 

This thesis comprises of three empirical studies that examine separate interactions between 

environmental variables and financial markets. Set within a U.S. backdrop, the studies integrate and 

analyse relationships between asset pricing, corporate finance, behavioural finance, and 

environmental economics. The first chapter examines whether low frequency temperature risk, a 

component of climate risk, is a priced risk factor in equity markets. Rising temperatures are associated 

with states of poor consumption and potential disasters; consumption-based asset pricing theories 

suggest investors prefer investments which pay off in these poor states. I estimate low frequency 

temperature shocks and employ them in asset pricing tests. Results provide no evidence of a low 

frequency temperature risk premium in U.S. equity markets. I discuss possible reasons as to why 

results may diverge from the asset pricing theory. The second chapter tests whether institutional 

investors are reluctant to own polluter ‘sin’ stocks. I hypothesise that sensitivity to social norms 

restricts institutional ownership of polluters. Using toxic emissions data from the Toxic Release 

Inventory, I find results that are consistent with the hypothesis. Furthermore, I find that institutions 

with long-term investment horizons and exposure to public scrutiny display a stronger reluctance to 

own polluters. I find no evidence of positive abnormal performance of polluter stocks, as 

hypothesised by the ‘shunned-stock’ theory. The final chapter examines security analyst earnings 

forecasts for polluter firms. Polluters are negatively exposed to increased regulations and consumer 

backlash; however, security analysts may misestimate associated costs. Tests show that analysts 

generate systematically pessimistic forecasts for polluter firm earnings on average; behavioural 

theories suggest that this pessimism is due to cognitive constraints. I also find evidence of persistent 

analyst bias for polluters, consistent with the conservatism bias theory. Results provide no evidence 

of polluter abnormal returns resulting from positive earnings surprises around earnings 

announcements. 
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Introduction 

Central to environmental economics are the concepts of value and market failure. The natural 

environment is a source of value for any economy; however, unsustainable practices and misuse of 

natural resources can create economic risk and welfare loss. As a subset of environmental economics, 

studies in environmental finance examine interactions between the natural environment, financial 

securities, investors, and institutions that operate in financial markets. Finance is concerned with the 

optimisation of some economic objective function (Miller, 1999); these objectives often include firm 

value or personal wealth. Environmental variables have a clear interaction with such concepts of 

economic optimisation.  

This thesis empirically examines three separate environmental topics within U.S. financial 

markets, where each is set out as an independent chapter. The first chapter studies the role of 

temperature, a subset of aggregate climate change, as a source of macroeconomic risk in equity 

markets, and empirically estimates the price of a temperature risk factor. The second chapter 

investigates institutional investors and their equity ownership of firms that pollute toxic emissions. 

The final chapter examines the relationship between security analysts, behavioural biases, and 

forecasted earnings of polluter firms. 

Chapter 1 is the first study in this thesis on the U.S. equity market and low frequency (i.e. long-

run) temperature risk. Climate change is driven by increasing average temperatures, which are 

expected to bring negative long-term economic consequences as certain temperature thresholds are 

crossed (Nordhaus, 2013; IPCC, 2014). Economic costs arise due to a declining natural environment 

as well as an increasing probability of natural disasters. The consumption-based and rare disaster 

asset pricing literature asserts that investors with consumption smoothing preferences should prefer 

investments that pay off in such disaster states. In contrast, securities that are expected to perform 

poorly in the worst climate scenarios require a risk premium for investment. 
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The primary contribution of this research is testing for a low frequency temperature risk premium, 

as hypothesised under consumption-based asset pricing, using empirical testing techniques consistent 

with the literature. The study highlights the economic rationale as to why temperature may be a priced 

risk factor, and empirically estimates a temperature risk premium. In recent studies, Bansal, Kiku, & 

Ochoa (2016) and Balvers, Du, & Zhao (2017) find evidence of a temperature risk premium in U.S. 

equity markets. Building on their work, I use a range of alternative empirical techniques to test for a 

similarly defined risk factor.  

Using temperature data for the contiguous U.S. states obtained from the National Oceanic and 

Atmospheric Administration, I estimate low frequency temperature shocks through time series 

analysis. Within the data sample of 1988 to 2016, I test for a temperature risk premium using a range 

of benchmark asset pricing models and empirical techniques, which include pooled panel regressions, 

Fama-MacBeth regressions, and long-short portfolio tests. All techniques fail to provide any evidence 

of a low frequency temperature risk premium in equity markets. Furthermore, additional analysis on 

temperature exposures using an event study on the Paris Agreement and an alternative climate risk 

metric suggest that estimated temperature betas are poor measures of climate change risk. I provide 

some qualitative reasoning as to why estimated temperature risk premiums may be insignificant in 

tests. 

Chapter 2 moves away from climate risk and asset pricing, and towards environmental pollution 

and corporate finance. Hong & Kacperczyk (2009) reveal that as a result of societal discrimination, 

institutional investors avoid investments in the traditional ‘sin’ stocks of alcohol, gambling and 

tobacco firms. This effect is less pronounced for institutions with aggressive investment strategies 

that are more likely play the role of market arbitrageur, and leads to reduced analyst coverage along 

with positive abnormal returns in accordance with the shunned-stock hypothesis (Angel & Rivoli, 

1997). As with traditional sin stocks, polluting companies may be discriminated by society due to 

being perceived as irresponsible and costly to societal welfare; I test whether this is the case. 
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The contribution of this study is to assess whether institutional investors hold relatively fewer 

shares of polluter firms due to societal pressures. While anecdotal evidence may suggest there is an 

increasing environmental awareness amongst society and institutions, I empirically assess whether 

this is indeed the case. Furthermore, the study examines whether polluting firms exhibit other 

characteristics that are found for traditional sinners, such as reduced analyst coverage and abnormal 

stock returns. 

Using data from the Toxic Release Inventory (TRI), I identify the greatest polluting firms in the 

sample of 1987 to 2014. Tests provide evidence of reduced aggregate institutional ownership of the 

top polluters relative to their other investments; I also find evidence of an increasing institutional 

reluctance in polluter equity investment over time. Results indicate that while publicly scrutinised 

institutions have the greatest relative reduction in polluter stock ownership, aggressive arbitrageur 

institutions are not as constrained. Institutions with shorter investment horizons disproportionately 

own more polluter equity. Furthermore, tests reveal that polluters receive reduced analyst coverage. 

In contrast to the shunned-stock hypothesis, I find no evidence of any abnormal returns generated 

from a long-short polluter trading strategy. 

The third and final chapter of this thesis shifts the focus to security analysts, and the biases present 

in their forecasts of polluter firm earnings. Building on prior behavioural theories and empirical 

findings, such as Tversky & Kahneman (1974, 1979, 1981) and De Bondt & Thaler (1985, 1987, 

1990), I hypothesise that analyst forecasted earnings for polluting firms are systematically 

pessimistic. Pessimistic biases may arise from analysts overweighting low-probability regulatory or 

demand-side costs, being overly influenced by memorable past events, and generating inaccurate 

conditional expectations of performance. 

This research examines the effects of pollution on firm value from the perspective of security 

analysts. This study contributes to the literature by examining whether security analysts, who are 

professional estimators of value, exhibit biases when forecasting for polluting firms. Under the 
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framework of rational expectations, there should be no systematic bias present in analyst estimates, 

however behavioural theories and empirical evidence indicate that this may not be the case. This 

research also examines whether individual analysts display persistent biases towards polluters, and 

whether aggregate analyst bias results in abnormal returns around earnings announcements. 

Combining data on analyst forecasts, firm fundamentals, and the TRI, I find evidence of a 

systematic pessimistic bias within analyst forecasts of next period earnings. I find that this pessimism 

disappears when firm pollution is scaled by firm sales. When disaggregated by the types of toxic 

chemicals in the dataset, tests indicate that compared to persistent bio-accumulative chemicals and 

dioxins, standard TRI chemical releases are most associated with significant forecast pessimism 

despite being relatively less toxic. At the individual analyst level, I find evidence of persistence in 

analyst bias. Analysts that are relatively pessimistic (optimistic) towards polluting firms again exhibit 

pessimism (optimism) for subsequent forecasts. Despite evidence of an aggregate analyst pessimism 

in polluter earnings forecasts, I find no evidence of positive earnings surprises and abnormal returns 

around earnings announcements. 
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1. Chapter 1 

 

Global Warming Asset Pricing: Estimating a Temperature Risk 

Premium 
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1.1. Introduction 

Climate change is a significant economic concern due to the expected consequences of a 

deteriorating environment on variables such as consumption, output, employment and productivity. 

This research includes financial market considerations into the climate change discussion by 

examining the explanatory power of temperature as a risk factor in the cross-section of U.S. equity 

returns. Temperature change is a core driver of other climate change phenomena and is the main 

climate variable examined in this study. I focus on the impact of low frequency temperature shocks 

on equities.1 The main contribution of this study is testing the hypothesis of a priced temperature risk 

factor in financial markets with an approach that is consistent with the asset pricing literature. I take 

a consumption-based asset pricing approach motivated by rare disaster models, and test for the 

existence of a risk premium for temperature sensitive stocks. Temperature rise is strongly linked to 

the physical risk of climate disaster events that ultimately reduce consumption (IPCC, 2014). Assets 

that perform poorly in states of unexpectedly high temperatures and low consumption are less 

attractive; I therefore test whether investors require a higher premium for stocks with negative 

temperature loadings. 

I create a low frequency temperature shock variable by transforming raw U.S. temperature data 

and use it to proxy for shocks to expectations of long-term temperature trends. I estimate the 

sensitivities of U.S. industry equity returns to low frequency temperature shocks and find no evidence 

to suggest that average industry temperature betas have been decreasing with time over the sample. I 

also find no evidence of any interaction between temperature betas and the underlying low frequency 

temperatures themselves.  

The main empirical tests estimate a cross-sectional temperature risk premium that is required by 

investors as compensation for exposure to low frequency temperature risk. I focus on the period post 

 
1 Low frequency temperatures are defined as long-run temperature averages. Low frequency temperature shocks are 

the differences between expected and realised low frequency temperatures. In contrast, high frequency temperatures are 

short-run temperatures which fluctuate around the long-run average. 
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1988; this date is chosen to coincide with the establishment of the Intergovernmental Panel on Climate 

Change (IPCC)2 and is set as the cut-off date from which climate change awareness rapidly 

increased.3 I find no evidence of a low frequency temperature risk priced into U.S. stock returns. 

Traditional portfolio tests are also used to examine the relationship between returns and temperature 

risk. I create portfolios based on temperature sensitivity to test the returns of a temperature sensitive 

long-short position, and to serve as a robustness check for main results. Neither equal nor value-

weighted portfolios are found to generate significant average returns in accordance with the 

hypothesis, nor are portfolio alphas significant after benchmark risk factors are controlled for. Results 

provide no evidence of a low frequency temperature risk priced into U.S. stock returns. 

Additional tests conducted on temperature betas include an event study on the 2015 Paris 

Agreement and temperature beta correlations with firm-specific climate disclosures. Industry 

temperature betas are not correlated with the outcomes of the Paris Agreement, nor are firm exposures 

to temperature shocks correlated with firm disclosure to total climate risk. Results suggest that 

historically estimated temperature betas are weak measures of return sensitivity to climate change. 

I reconcile the lack of evidence of a priced temperature risk factor with three possible reasons. 

The first is the very long time horizons of climate-related disasters. If extreme climate disasters are 

expected to occur in the distant future, today’s investors may not price this risk. Secondly, if 

temperature exposure is diversifiable then temperature risk is not systematic, and exposure will not 

generate a premium. Finally, long-run climate exposures may be reduced through firm and industry 

adaptabilities.  

 
2 The IPCC was established in 1988 by the World Meteorological Organization. The IPCC has issued a series of 

Assessment Reports that highlight the causes and consequences of climate change, and have increased climate awareness. 

The First Assessment Report was produced in 1990. 
3 James E. Hansen of NASA also gave testimony to Congress in 1988 that largely raised climate change awareness. 
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1.2. Literature review 

The primary aim of this research is to estimate the market price of risk associated with exposure 

to temperature change factors. Specifically, the alternative hypothesis is the existence of a negative 

temperature risk premium that compensates investors for exposure to low frequency temperature 

risk.4 Low frequency temperature shocks are assumed to affect realised returns by shocking both 

contemporaneous and future cash flows. I test whether temperature exposure helps explain cross-

sectional variation in expected returns. 

In this literature review, I examine the price of risk associated with temperature change through 

a consumption-based approach. I initially highlight some recent studies on climate risk in financial 

markets, and then consider the relationship between temperature, consumption and disasters. 

Thereafter, I review the literature for examples of interactions between temperatures and industry 

performance. 

Bansal, Kiku, & Ochoa (2016) and Balvers, Du, & Zhao (2017) find evidence of equity market 

sensitivity to changes in average temperatures and a negative price of temperature risk. Using 

consumption-based pricing theory, I also hypothesise the existence of a negative temperature risk 

premium; however, I improve upon the limitations of the prior studies using an augmented modelling 

approach along with differences in assumptions and data. 

Bansal et al. (2016) empirically test whether exposure to first order differences in low frequency 

temperatures is a source of risk, however, I argue that the first order differences may be predictable. 

Predictable changes in temperatures are unlikely to create systematic risk; expected changes should 

already be priced according to theories of efficient markets and rational expectations. Instead, return 

sensitivity to temperature shocks generates risk. Bansal et al. (2016) do not control for popular risk 

factors, use yearly frequency data, and estimate temperature betas without allowing for time-variation 

 
4 In the Arbitrage Pricing Theory example Ε[R] = β * γ where expected excess returns R are a function of temperature 

sensitivity β, the price of temperature risk is γ. The temperature factor risk premium is equivalent to the price of 

temperature risk and the two terms are used interchangeably in this study. 
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in temperature sensitivities. Their regressions may therefore suffer from omitted variable bias from 

missing benchmark factors and measurement bias from the low frequency of returns and time-

invariant estimates of temperature risk. Furthermore, their empirical models use data dating from 

1934, which may generate incorrect temperature risk premium estimates given that expectations 

around climate change are a much more recent phenomenon.  

Balvers et al. (2017) estimate whether temperature is a priced risk factor, primarily using a 

mimicking portfolio approach. Balvers et al. (2017) focus on average annual temperatures, which 

may be too high a frequency to proxy for climatic shifts. Their study controls for the Fama-French 3-

factor model, however, the literature has developed stronger benchmark factor models. Factor 

exposures are not generated with rolling windows, leading to static estimates of sensitivity to 

temperature shocks. Balvers et al. (2017) also use data dating from 1953 when climate change was 

not a known concern and therefore unlikely to have been priced.  

I develop on Bansal et al. (2016) and Balvers et al. (2017) with stronger testing methodologies, 

which include two-way clustered panel regressions and long-short portfolio alpha tests. I also use an 

alternative climate data set and an event study to cross-check estimated temperature betas. 

Other notable work in this literature includes Donadelli, Jüppner, Paradiso, & Schlag (2019), who 

argue that inter-annual temperature volatility affects macroeconomic variables and is a priced risk 

factor. Griffin, Lont, & Lubberink (2019) find that extreme temperatures in the U.S. generate negative 

equity returns for firms with local operations. Engle, Giglio, Lee, Kelly, & Stroebel (2020) develop 

a strategy of hedging the impacts of short-term climate change news on realised returns.  Choi, Gao, 

& Jiang (2020) take a behavioural approach and argue that investors adjust their beliefs about climate 

change following high frequency temperature shocks. While relevant, these studies do not specifically 

focus on estimating the risk premium of exposure to low frequency temperature shocks as based on 

classical economic and asset-pricing conventions, which is the primary contribution of this research.  
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1.2.1. Temperature and consumption 

Campbell (2003) states that assets that are expected to perform relatively better in states of poor 

consumption should be in greater demand, with investors willing to pay higher prices or equivalently 

require lower average returns as compensation.5 Campbell (2003) highlights that because investors 

attempt to smooth consumption through time, the equity premium is the covariance between stock 

excess returns and consumption growth multiplied by investor risk aversion. Empirically, models that 

estimate the equity premium only reconcile with observed premiums if unreasonable risk aversion 

parameters are introduced (Mehra & Prescott, 1985). Temperature effects have been found to shock 

consumption growth rates (Bansal & Ochoa, 2011); this negative relationship combined with rare 

disaster theory may help explain the equity premium puzzle. 

Bansal & Ochoa (2011) find that rising temperatures impact world GDP growth negatively. 

Rising global temperature trends deteriorate aggregate growth and may lead to states of reduced 

consumption. Bansal & Ochoa (2011) also show that temperature betas contain information about 

differences in cross-country risk premiums. Global temperature rise has stronger negative impacts on 

economic growth for countries that are closer to the equator; market correlations with temperature 

shocks are found to vary between countries based on geography. This supports evidence presented 

by Dell, Jones, & Olken (2009) who find that temperature has a negative relationship with cross-

sectional income at both the international and domestic levels. Additionally, Dell, Jones, & Olken 

(2012) reveal that growth is negatively affected when poorer countries have unusually hotter years, 

and is correlated with decreased investments and increased political instability.6 Donadelli, Jüppner, 

Riedel, & Schlag (2017) find that temperature shocks in the U.S. lead to drops in consumption, output, 

investment and labour productivity growths. Consumption-smoothing investors value returns more 

 
5 More specifically, stochastic discount factor pricing illustrates that financial assets with low covariances with the 

future marginal utility of consumption must have high expected returns, as they tend to have poor pay-offs when investors 

need returns the most; when future marginal utility is high and future consumption is low.  
6 Using data on the Philippines, Crost, Duquennois, Felter, & Rees (2018) find that wetter wet seasons and drier dry 

seasons resulting from temperature rise may lead to increased civil conflict. Similarly, Ranson (2014) finds that under the 

IPCC’s A1B climate scenario the U.S. will experience a large increase in crime. Climate change is therefore expected to 

impact socio-economic variables that are linked to consumption. 
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in poorer states and therefore should place a negative price on the covariance of future equity returns 

and unexpected temperature changes.  

1.2.2. Rare disaster risk 

Rare disasters are defined as improbable states in which consumption and output fall sharply 

(Barro & Jin, 2011). The disaster asset pricing literature primarily focuses on economic and wartime 

disasters such as the Great Depression, World Wars, and disease epidemics. I consider the potential 

consequences of climate change that will ultimately shock consumption, which include sea level rise, 

ocean acidification, permafrost thawing, and an increased intensity and prevalence of hurricanes, 

storm surges, wildfires, droughts and coastal flooding (IPCC, 2014; Jaffe & Kerr, 2015). Pricing of 

both actual and potential rare disaster events are of importance, as asset prices are set ex-ante on 

forward-looking expectations of future states (Berkman, Jacobsen, & Lee, 2011). The unmanageable 

events of Nordhaus (2013) are examples of disastrous climate change events that will negatively 

shock consumption and production in the long and very long-run. The IPCC (2014) states that higher 

temperatures are correlated with more frequent and intense natural disasters. The true disaster states 

resulting from climate change are expected to occur in the distant future as temperatures exceed safe 

bounds. Tail event disaster states shock consumption and should be priced into equity returns (Rietz, 

1988); equities that are sensitive to short-run and long-run disaster states resulting from temperature 

shocks should require greater returns for exposure to climate disaster risk. 

Disaster asset pricing provides a potential solution to the equity premium puzzle which is also 

grounded in consumption-based asset pricing theory. Rare disaster models incorporate the demands 

of risk-averse investors who are averse to extreme losses that may be incurred during disastrous 

events. Even if next period disasters do not actually occur ex-post, equity owners must be 

compensated with a premium for ex-ante exposure. Rietz (1988) finds that given reasonable estimates 

of risk aversion and investor impatience, an Arrow-Debreu approach that accounts for probabilities 

of market crashes can explain high equity premiums. Similarly, Barro (2006) calibrates a model to 
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estimate an average probability of disasters that reduce GDP per capita, providing an explanation for 

high equity premiums and low interest rates in the U.S. during major wars. Copeland & Zhu (2007), 

however, argue that rare disaster risk is diversifiable to the extent that correlations between 

international disasters are less than perfect. Extending their argument to climate change, if climate 

disaster exposures are diversifiable between countries or industries then the effect on required 

premiums will be constrained.  

The Rietz-Barro hypothesis is limited by the assumption of constant probability of disaster. 

Disaster probabilities can instead be modelled as a dynamic variable that adjusts based on investor 

expectations of future states (Wachter, 2013), while the corresponding equity exposures may vary in 

both the cross-section and time series (Gabaix, 2012). Variation in the cross-section and time series 

of climate disaster exposure is realistic due to varying correlations between industry performance and 

temperature. The probability of extreme climate disasters is likely conditional on ex-ante 

temperatures (IPCC, 2014), while the cash flow impact of climate shocks is unequally distributed 

among industries (Hitz & Smith, 2004; Schaeffer et al., 2012). 

Models that allow for variable rare disaster risk also allow for volatile asset prices and can 

incorporate time-varying risk premiums. Berkman et al. (2011) empirically test this approach by using 

a time-varying index on perceptions of political disaster probabilities and find evidence in the cross-

section for priced crisis risk; industries that are more exposed to rare crises are found to yield higher 

returns on average. My approach estimates sensitivities to long-run climate disasters based on 

historical correlations between equity returns and temperature shocks. Instead of explicitly estimating 

the probabilities and consumption costs of long-run climate disasters, I estimate cross-sectional 

exposures of diversified portfolios to low frequency temperature risk and the associated price of this 

risk. Implicit in my model is the central assumption that historical correlations between realised 

returns and temperature shocks are realistic estimates of forward-looking correlations. Bansal et al. 

(2016) find that the price of temperature risk has both a constant component and a time-varying 
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component. Their results indicate that the temperature risk premium is dependent on temperatures in 

the current state, however, this premium is estimated using constant temperature betas. Developing 

on their findings, I additionally allow for time-varying temperature betas and include tests for a time-

varying temperature risk premium. Incorporating dynamic estimates of temperature betas and risk 

premiums in models accounts for industry adaptation effects and time-varying prices of future climate 

disaster risk. 

In summary, assets which are expected to perform well during states in which consumption is 

reduced through temperature-related rare disasters should require lower returns in the cross-section, 

ceteris paribus. This leads to a hypothesised negative temperature risk premium. If higher 

temperatures correlate with states of lower consumption, assets that have positive sensitivities to 

temperature shocks should generate less returns in equilibrium. Alternatively, investments that 

perform poorly in states when temperatures are high and consumption is low introduce greater 

volatility in future consumption, are unattractive to investors, and require a premium in returns. 

1.2.3. Industry exposure to temperature 

Temperature shocks are mostly related to physical risks which impact asset values by introducing 

exposure to climate factors that damage tangible assets, disrupt supply chains, and shift consumer 

preferences.7 Not all firms are equally exposed to these channels; variation in temperature sensitivity 

among industries allows better estimation of a temperature risk premium. Through these channels, 

climate change winners and losers emerge within the economy. The immediate consequences of 

climate change are not always negative, and in the short-run certain industries and firms may be 

positively exposed to low frequency temperature shocks (Hitz & Smith, 2004). I highlight this 

possibility with the following industry examples. 

 
7 In the framework of Carney (2015), aggregate climate risk can be disaggregated into physical, transition and liability 

risks. Transition risk refers to the potential shift to a low-carbon economy and reflects the valuation impacts of changes 

in policy, technology, and firm reputation. Liability risk refers to the potential for firms to be held legally responsible and 

owe compensation to parties that suffer losses through climate change. 
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Schaeffer et al. (2012) summarise the consequences of climate change on various industries. They 

argue that agricultural considerations of long-term temperature rise include effects on precipitation, 

evapotranspiration and the reproduction rates of pests, all of which are expected to worsen cash flows 

to the industry. The increasing probability of tail events that include droughts, frosts and floods are 

also material considerations. However, higher CO2 levels can positively improve the photosynthesis 

of crops (Schaeffer et al., 2012). As each crop category has an ideal temperature range in which 

productivity is maximised, gradual increases in temperature are likely to have parabolic relationships 

with crop output. Mendelsohn, Nordhaus, & Shaw (1994) argue that although the major grain groups 

are negatively exposed to temperature rise, they represent a small proportion of the American farm 

market. Warmer temperatures may improve alternative agricultural produce; the total impact of 

temperature on agriculture is dependent on the composition of the industry. 

Climate change impacts on the energy and utility sector are also nonconstant. Within the energy 

and utilities sector, Schaeffer et al. (2012) further break down the sub-industries of hydropower, wind 

power, biofuels, solar energy, marine energy, oil, gas and coal into their resource endowments, energy 

supply and energy distributions supply chains. Even at this relatively broad level, the number of 

moving variables is large, and it is immediately obvious that climate factors have varying effects on 

operations. For example, solar energy generation is dependent on atmospheric water vapour content, 

cloud characteristics and atmospheric transmissivity. Climate change therefore has differing 

implications on solar energy generation at the country level; while positive impacts of temperature 

rise are reported in south-eastern Europe, negative impacts are noted in Canada as a result of 

decreasing solar radiation (Schaeffer et al., 2012). With rising temperatures, energy demand is also 

found to increase for cooling and decrease for heating. Total energy demand for temperature control 

is a parabolic function of average temperatures. Similar non-linear structures are also found in the 

demand for motors, engines and water. Similarly, Schaeffer et al. (2012) suggest that rising 

temperatures will increase the demand for vehicular air conditioning, leading to an increase in demand 

for fuel and efficient vehicles. Demand-side implications for energy are thus influenced by regional 
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effects; rising temperatures in tropical climates would likely increase cooling energy demand while 

colder regions would see reductions in heating energy demand. 

1.3. Data 

1.3.1. Low frequency temperature shock 

I create a proxy for low frequency temperature shocks that is used in the asset pricing models that 

follow. I focus on shocks to long-run temperatures, as high frequency temperature surprises are 

unlikely to reflect average temperatures shifts or climate change trends (IPCC, 2014). Raw 

temperature data consists of U.S. temperature observations in degrees Fahrenheit, obtained from the 

National Oceanic and Atmospheric Administration.8 The data is of average monthly temperature 

observations for the contiguous 48 states. Using relatively less granular temperatures is justified 

through the demand-side motivation for the temperature risk premium itself; consumption-based asset 

pricing models assume that financial security prices are set based on macroeconomic consumption, 

which is in turn more likely to be influenced by average temperatures.9 While temperature warming 

effects may vary across specific regions, climate change is itself representative of shifts in long-run 

temperature averages. 

Low frequency temperature shock data requires a transformation of raw temperature data into a 

new variable that estimates the differences between observations and investor expectations of average 

temperatures. I create a low frequency temperature shock variable, Temp, from the residuals of an 

autoregressive temperature model.  

Following Bansal et al. (2016), first a simple 5-year moving average is calculated for U.S. 

temperatures, representing low frequency temperatures. I also choose 5 years to maintain consistency 

 
8 Temperature data is sourced from URL https://www.ncdc.noaa.gov/cag/time-series/us. Monthly data for the 

observed average temperature in degrees Fahrenheit is retrieved for the period January 1895 to April 2017. No base period 

is subtracted from raw data and thus temperature data is not a meteorological temperature anomaly. Data has, however, 

been adjusted to remove artificial effects created by instrument changes, station relocation, urbanisation and observer 

practice changes, and may thus differ from official observations located elsewhere. 
9 Region-specific temperatures may influence regional firm operations, but have no impact on the consumption of 

investors, many of whom live elsewhere, and does not reconcile with the need for a risk premium. 

https://www.ncdc.noaa.gov/cag/time-series/us
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with the sample size of rolling average regressions in later empirical tests. The moving average is not 

biased by monthly or quarterly seasonality and has a smoother trend than raw high frequency 

temperatures. I make the modelling assumption that low frequency temperatures are generated 

through the following autoregressive process. 

𝑀𝐴𝑡 =  𝛼 +  𝑀𝐴𝑡−1  + 𝛽∆𝑀𝐴𝑡−1  ∗  𝛥𝑀𝐴𝑡−1  +  𝜀𝑡       (1.1) 

This process assumes that moving average temperatures follow an augmented random walk, in 

which contemporaneous low frequency temperatures are equal to the sum of a deterministic drift, 

previous low frequency temperatures, feedback from prior changes, and an unexpected error term. I 

estimate and validate the parameters of model (1.1) as follows. 

Using data from 1980 to 2016,10 I take first order differences of the moving average to estimate 

observed changes in low frequency temperatures.  

𝛥𝑀𝐴𝑡 =  𝑀𝐴𝑡  −  𝑀𝐴𝑡−1          (1.2) 

ΔMA is not a shock if it is not entirely random, as highlighted in the full temperature model. This 

is a realistic assumption, given that the very nature of temperature rise implies an expectation of 

positive shifts in low frequency temperatures. I use an autoregressive model to decompose ΔMA into 

expected and unexpected components. ΔMA autocorrelations with up to 12-month lagged ΔMA values 

are plotted using a partial autocorrelation function (PACF) in Figure 1.1. The estimated partial 

correlations between ΔMA and lagged ΔMA values are plotted with a 95% confidence band. ΔMA and 

1-month lagged ΔMA show a significantly positive correlation with each other. The correlation 

between ΔMA and 2-month lagged ΔMA values is also positive and borderline significant at the 5% 

level, however for simplicity I ignore this marginally significant correlation and account for only a 

1-month autoregressive term in my model.  

 
10 More specifically, I create the temperature anomaly variable from January 1980 to April 2017. Temperature betas 

are later calculated in a 60-month rolling window, and cross-sectional regressions run from 1988 to the end of 2016. This 

provides enough data points for risk premia to be estimated without losing any observations post 1988 in later regressions. 
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Following the output of the PACF function, I use an AR(1) process to model the time series of 

low frequency temperatures. I regress the changes in the moving average temperature against 1-month 

lagged values in the following autoregressive model.11  

𝛥𝑀𝐴𝑡 =  𝛼 +  𝛽∆𝑀𝐴𝑡−1 ∗ 𝛥𝑀𝐴𝑡−1 + ɛ𝑡       (1.3) 

This model accounts for an average temperature change with intercept α, and for feedback effects 

from prior temperature changes with ΔMAt-1. The coefficient βΔMAt-1 is estimated as 0.143 and is 

significant at the 1% level, while the constant is estimated as 0.005 and is significant at the 5% level; 

the regression R2 is 0.02. The residual term reflects unexpected shifts in low frequency temperatures 

after accounting for the expected constant and feedback effects. I store and label the residuals εt as 

Temp, the low frequency temperature shock variable. 

 
11 Model (1.3) is equivalent to model (1.1) after subtracting MAt-1 from both sides of the equation. 

Figure 1.1: Partial autocorrelation function plot of ΔMAt with 12 lags. 
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𝑇𝑒𝑚𝑝𝑡 =  ɛ𝑡            (1.4) 

Conceptually, Temp is a proxy for shocks to 5-year temperature averages after adjusting for drift 

and feedback effects in temperatures through an autoregressive structure in temperature changes. I 

assume investor expectations are removed through the data transformation; Temp is thus assumed to 

reflect both unanticipated and exogenous low frequency temperature shocks.  

Bansal et al. (2016) use first order differences in the moving average of temperature to proxy for 

low frequency temperature shocks; however, first order differences are not representative of shocks 

to investor expectations. First order differences may be predictable if the temperature trend can be 

estimated and therefore are not representative of temperature risk. I use a different approach by 

proxying investor expectations with my AR(1) model. Temp has a smaller average magnitude than 

the first order differences of Bansal et al. (2016), as expected components are subtracted from 

observed changes. I assume that this approach creates a more appropriate explanatory risk variable 

than first order differences in moving averages. 

Table 1.1: Summary statistics for Temp, the variable used to proxy for low frequency temperature shocks. 

  Temp summary statistics   

        

Date 

range 
N Mean Median Min Max Std Dev Skewness 

        
March 

1980 - 

April 

2017 

446 0.000 0.002 -0.158 0.181 0.048 0.231 

Due to the moving average transformation, the first two months of data are lost in creating Temp. 

On average, the unexpected monthly temperature innovation is 0 degrees Fahrenheit as seen in Table 

1.1; this is facilitated by the construction of Temp as regression residuals which is consistent with the 

assumption of rational expectations of temperatures. There is only weak positive skew in the Temp 

data, and the mean and median are similar. Both Pearson and Spearman correlations between Temp 

and shifts in the 5-year temperature MA used in Bansal et al. (2016) are 0.99 and are significant at 
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the 1% level. The high correlation reveals that movements in Temp closely mirror the movements in 

the temperature variable used in Bansal et al. (2016), and that a high proportion of changes in 

temperature averages are contributed by the regression residuals. 

I illustrate the Temp time series in Figure 1.2. First order differences in the temperature moving 

average are of low magnitudes, and thus the shocks to expectations of temperature change are also of 

low magnitudes. As drift and feedback effects have been removed from Temp, there is no clear 

deterministic tendency in the data.12 

For robustness, I recreate Temp using alternative time series models and rerun main results. I find 

that the alternative measures of low frequency temperature shocks produce estimates of temperature 

risk premiums which are qualitatively the same in statistical and economic significance. Alternative 

measures of Temp and subsequent premium estimates using the Carhart 4-factor model are provided 

in the appendix. 

 

 
12 Using an augmented Dickey-Fuller test I reject the null hypothesis that Temp has a unit root at the 1% level. Temp 

is therefore accepted as a stationary time series. Temp does not have a significant coefficient when regressed on lagged 

values of itself either, providing no evidence of additional layers of autocorrelation. 
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Figure 1.2: The time series of Temp, the shocks to low frequency temperatures. The 5-year moving average of Temp is plotted in bold. 

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1980 1985 1990 1995 2000 2005 2010 2015

D
eg

re
es

 F
a

h
re

n
h

ei
t

Date

Temp time series

Temp Temp moving average (5 year)



 

21 

 

1.3.2. Returns and control risk factors 

I obtain monthly and daily returns for the Fama-French 49 industry value-weighted portfolios 

(Fama & French, 1997); portfolios are used as test assets to reduce the effects of idiosyncratic risk on 

returns.13 I choose industry portfolios as industries are intuitively expected to have natural variation 

in their sensitivity to temperatures. Furthermore, popular benchmark models such as the Fama-French 

factors do a poor job of explaining cross-sectional variation in industry portfolio returns (Berkman et 

al., 2011). For long-short portfolio tests, I use monthly realised returns on domestic U.S. equities.14  

I obtain monthly data for control risk factor portfolios.15 The five control factor models used in 

this study include the Capital Asset Pricing Model, the Fama-French 3-factor and 5-factor models 

(Fama & French, 1993, 2015), the Carhart 4-factor model (Carhart, 1997), and the Hou-Xue-Zhang 

q-factor model (Hou, Xue, & Zhang, 2014). All dependent and independent variable returns data are 

stored in percentage format. 

In Table 1.2, I present estimated correlations between control risk factors and estimated Temp 

shocks from 1980 to 2016. Correlations are weak and indicate that the Temp variable is orthogonal 

to the risk factors.  

 
13 Industry portfolio returns were sourced from Kenneth R. French's data library, URL: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Daily returns of industry portfolios are used 

in the event study. 
14 Monthly realised return data for domestic common equities are obtained from the CRSP database, with CRSP share 

codes of 10 or 11. I follow Shumway (1997) in correcting for delisting biases. If delisting returns in the panel data have 

a delisting stock code of 500, 520, between 551 and 573 inclusive, 574, 580 or 584, returns are set to -30%; while a 

missing delisting return with an available delisting code has returns set to -100%. Micro-caps are excluded from the equal-

weighted portfolio. The micro-cap exclusion process involves dropping stocks with market capitalisations in the lowest 

decile in each month. Micro-caps are given immaterial weights in value-weighted portfolios and therefore are not 

excluded. 
15 MKT, SMB, HML, RMW, CMA, MOM and the risk-free rate data were sourced from Kenneth R. French’s data 

library. I obtain daily frequency data for the Carhart 4-factors to use in the event study. I thank Lu Zhang for data on the 

q-factor portfolios. Minor deviations exist between the q-factor and Fama-French market and size premiums due to slight 

differences in portfolio construction methods.  
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Table 1.2: Correlation matrix of explanatory risk factors. Correlations between temperature anomalies and control risk factors are weak, suggesting orthogonality and a low chance of 

collinearity issues in tests. Correlation coefficients significant at the 5% level are in bold. 

                        

 Temp 
MKT 

(FF) 
SMB HML MOM RMW CMA 

MKT      

(HXZ) 
ME I/A ROE 

                        

            

Temp 1           

MKT 

(FF) 
-0.035 1          

SMB 0.013 0.210 1         

HML -0.017 -0.277 -0.154 1        

MOM 0.007 -0.128 0.027 -0.213 1       

RMW -0.052 -0.316 -0.426 0.246 0.107 1      

CMA -0.014 -0.391 -0.061 0.684 0.007 0.126 1     

MKT 

(HXZ) 
-0.033 0.998 0.217 -0.276 -0.134 -0.323 -0.390 1    

ME 0.013 0.216 0.972 -0.105 0.060 -0.419 -0.034 0.222 1   

I/A -0.030 -0.374 -0.169 0.684 0.006 0.229 0.908 -0.376 -0.138 1  

ROE -0.005 -0.252 -0.366 0.000 0.510 0.700 -0.008 -0.265 -0.292 0.101 1 
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1.3.3. Firm-specific climate disclosure 

For secondary tests on climate sensitivity, I use a measure of firm-specific exposure to aggregate 

climate risk. Generated from sustainability disclosures on Ceres,16 climate risk is measured from 10-

K filings following the 2010 SEC ruling stating that material information on climate risk should be 

included in reports.17 Prior to 2010, less than 24% of companies include any discussion of climate 

risk in their 10-K’s, whereas in 2011 to 2015 56% of companies disclose some type of material 

climate risk (Berkman, Jona, & Soderstrom, 2019); hence the sample size is limited to this range. 

ClimateScore is a proxy for firm-specific climate exposure from textual analysis of climate risk 

disclosures for Russell 3000 firms, and is based on the language and length of climate disclosure in 

firm’s 10-K reports. Higher values of ClimateScore represent greater firm-specific climate risk. 

ClimateScore is an aggregate climate risk measure, and comprises of consolidated disclosures of firm-

specific physical, transition and liability climate risks. 

Summary statistics for ClimateScore are presented in Table 1.3. The positive skew in the data is 

largely due to variation between industry averages. In tests involving ClimateScore, I control for firm 

size and book-to-market ratios as at fiscal year-end sourced from CRSP and Compustat. 

Table 1.3: Summary statistics for ClimateScore, values of self-disclosed climate exposure extracted using textual analysis 

of individual firm 10-K reports. Data is of yearly frequency. 

  ClimateScore summary statistics   

        

Date 

range N Mean Median Min Max Std Dev Skewness 
        

2011-2014 5,561 20.402 2.000 0.000 961 50.900 6.145 

 

 
16 I thank Henk Berkman for providing this climate disclosure data, which is also publicly available at 

https://www.ceres.org/issues/resources/tools/sec-sustainability-disclosure. See Berkman et al. (2019) for an in-depth 

discussion of ClimateScore. 
17 See SEC (2010) for full guidelines on required climate disclosure. 
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1.4. Average industry temperature exposure over time 

Using the Fama-French 49 industry value-weighted portfolios as test assets, I initially estimate 

time-varying temperature betas and examine their trends over time. Temperature betas represent the 

sensitivities of industry realised returns to any deviations from expected low frequency temperatures. 

I estimate industry temperature betas with the following time series regression for each industry i. 

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝 ∗  𝑇𝑒𝑚𝑝𝑡 +  𝛽𝑖,𝑡

𝑚𝑘𝑡 ∗  𝑀𝐾𝑇𝑡 +  𝛽𝑖,𝑡
𝑠𝑚𝑏 ∗  𝑆𝑀𝐵𝑡 +  𝛽𝑖,𝑡

ℎ𝑚𝑙 ∗  𝐻𝑀𝐿𝑡 +  𝛽𝑖,𝑡
𝑚𝑜𝑚 ∗

 𝑀𝑂𝑀𝑡 +  ɛ𝑖,𝑡             (1.5) 

Industry excess realised returns Ri,t are regressed on Tempt while controlling for the Carhart 4-

factors in a 60-month rolling window regression.18 Rolling windows provide time-varying estimates 

of exposure to all risk factors employed in the regression. Betas estimated with less than 30 

observations in a window are set as missing.19 I then average the individual industry temperature 

betas βi,t
temp for each month in the cross-section from 1988 onwards. This procedure generates an 

equal-weighted measure representative of average industry exposure to temperature. I plot average 

industry temperature betas in Figure 1.3. 

 

 

 

 
18 I choose 60-month rolling windows following the methodology of other research in this area, such as Petkova & 

Zhang (2005), Berkman et al. (2011), and Franzoni (2002). For illustrative purposes, I present the average temperature 

beta estimates for each industry based on these rolling window regressions in the appendix. 
19 The panel of observations with industry and month dimensions is strongly balanced from 1988 onwards. 
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Average industry temperature betas appear to be decreasing over the sample. A negative 

temperature beta trend is intuitive. With rising average temperatures over time, the consequences of 

temperature shocks on returns may be larger; average industry returns may have a larger negative 

exposure to low frequency temperature shocks as average temperatures rise. I test for both trends in 

the average industry temperature beta and interactions with average temperatures in this section.  

I first estimate trends in the time series of average industry temperature betas with the following 

regression.  

𝛥𝛽𝑡
𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ =  𝛼 +  𝛾𝑡𝑖𝑚𝑒 ∗  𝑡 +  𝜀𝑡         (1.6) 

Figure 1.3: An illustration of estimated average industry temperature betas βtemp over the sample period. 
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First order differences in the estimated average industry temperature betas Δ̅β̅t
temp are regressed 

against time t, from which a trend coefficient γtime, intercept α and errors εt are estimated.20 As the 

dependent variable Δ̅β̅t
temp is transformed by differencing the underlying ̅β̅t

temp, the trend coefficient 

is interpreted as an exponential trend in the underlying average industry temperature beta, while the 

intercept is interpreted as a linear drift. Standard errors are adjusted for Newey-West 5-month lags.21 

I present the regression coefficients in Table 1.4.  

Table 1.4: Estimated average temperature beta linear trend coefficient and constant values. P-values are Newey-West 

adjusted with 5-month lags. P-values in bold denote significance at the 10% level. 

Average industry temperature beta trend 
   

Variable Coefficient P-value 

   
Trend 0.000 (0.882) 

Intercept -0.016 (0.671) 

N 347  

I find no evidence of either an exponential or linear negative trend in the average industry 

temperature beta. Neither the trend nor the intercept coefficients are statistically significant, 

suggesting that the average industry temperature betas do not display a deterministic exponential or 

drift-like trend.  

I also consider the correlation between average industry temperature betas and the underlying 

average temperature. I hypothesise a negative relationship between estimated temperature betas and 

average temperatures, meaning that the marginal costs of temperature shocks increase as base 

temperatures rise. I use the following regression to test this hypothesis. 

𝛥𝛽𝑡
𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ =  𝜇 +  𝜋 ∗  𝛥𝑀𝐴𝑡 +  𝜂𝑡          (1.7) 

 
20 The results of a PACF function on Δβ̅̅t

temp do not indicate the presence of first order autocorrelation; therefore I do 

not include an autoregressive difference term in this regression. The model effectively imposes a random walk process 

on Δβ̅̅t
temp. An alternative approach is to regress Δ̅β̅t

temp on a trend and include ̅β̅t
temp as an explanatory variable; I find 

similar non-results using this specification. 
21 Following the literature I set the lag equal to 4(T/100)a where T = 347 time periods and a = 4/25 using the quadratic 

spectral kernel. The output equals 4.88, which I round up to 5. 
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First order differences in average industry temperature betas Δ̅β̅t
temp are regressed against the first 

order differences in the 5-year moving average temperature, ΔMAt.
22 The model provides estimates 

of the intercept μ, the slope parameter π and the error term ηt. If the hypothesised relationship between 

average industry temperature betas and average temperatures is true, a negative value for π is 

expected. I present the regression results in Table 1.5.  

Table 1.5: Estimated relationship between first order differences in average industry temperature betas and a temperature 

5-year moving average. P-values are Newey-West adjusted with 5-month lags. P-values in bold denote significance at the 

10% level. 

Average temperature beta relationship with low frequency temperatures 
   

Parameter Coefficient P-value 

   
π 0.732 (0.363) 

μ -0.014 (0.567) 

N 347  

Results provide no evidence of a negative relationship between low frequency temperatures and 

average industry temperature betas, revealing that the changes in estimated temperature exposures 

are not driven by changes in average temperatures.23 

1.5. Main Results 

In primary tests, I use estimated temperature betas to test for evidence of a priced temperature 

risk factor. Specifically, I examine whether stocks with greater temperature betas generate lower 

expected returns on average, and whether Temp adds explanatory power to asset pricing models. Tests 

include pooled panel regressions, Fama-MacBeth regressions, and a portfolio test. 

1.5.1. Pooled panel regressions 

I employ a pooled panel regression model with two-way clustered standard errors to estimate the 

temperature risk premium. The approach follows two stages. In the first stage I estimate industry 

 
22 Using augmented Dickey-Fuller tests on Δβ̅̅temp and ΔMA, I reject the null hypothesis of unit roots in the transformed 

variables at the 1% level. The results of the Durbin-Watson test do not indicate autocorrelation in the error terms of the 

specified regression. 
23 In unreported results, I find no evidence of a relationship between average industry temperature betas and 

temperatures even when interaction effects between ΔMAt and MAt are included. Similar non-results are obtained when 

estimating the relationship between first order differences in average temperature betas and lagged temperatures. 
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return sensitivities to Temp, and in the second stage I conduct a pooled panel regression of industry 

returns on estimated betas.  

In the first stage, I conduct the following rolling window regression for each portfolio i. 

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝 ∗  𝑇𝑒𝑚𝑝𝑡 +  𝜷𝒊,𝒕

𝒄𝒐𝒏𝒕 ∗  𝒄𝒐𝒏𝒕𝒕 +  ɛ𝑖,𝑡     (1.8) 

Industry excess portfolio returns Ri,t are regressed against the low frequency temperature shock 

Tempt and a vector of control risk factors contt in a 60-month rolling window time series regression. 

For each portfolio i during month t, αi,t is the regression constant and ɛi,t is the error term. βi,t
temp and 

βi,t
cont

 are the estimated factor loadings of the temperature shock and control risk factors respectively, 

and are stored for the second stage. Betas estimated with less than 30 observations in a window are 

set as missing. Estimated sensitivities to temperature innovations vary dependent on the benchmark 

control risk factors used to estimate betas. The sample is constrained to 1988 - 2016; with this reduced 

sample I conduct the second stage pooled panel regression.24 

𝑅𝑖,𝑡 =  µ +  𝛾𝑡𝑒𝑚𝑝 ∗  𝛽𝑖,𝑡−1
𝑡𝑒𝑚𝑝 +  𝜸𝒄𝒐𝒏𝒕 ∗  𝜷𝒊,𝒕−𝟏

𝒄𝒐𝒏𝒕 + Ƞ𝑖,𝑡       (1.9) 

Industry excess returns Ri,t are regressed against lagged beta estimates βi,t-1
temp and βi,t-1

cont in a 

pooled panel regression with two-way clustered standard errors (Petersen, 2009). The model adjusts 

standard errors for clustering on both the industry and time dimensions. Ƞi,t captures the error term of 

the pooled panel regression, while γtemp is the estimated temperature risk premium and γcont is the 

estimated vector of premiums for control factor risk. I repeat the entire two-stage approach separately 

using each of the five control risk factor models. Table 1.6 presents the results of the pooled panel 

regressions. 

 
24 Results of the Harris-Tzavalis, Breitung, Im-Presaran-Shin and Fisher panel data unit root tests on estimates of 

βt
temp generated with the Carhart 4-factors are significant at the 1% level; therefore the null hypothesis that temperature 

beta panels contain unit roots can be rejected. Similarly, the error terms of the pooled panel regression are also significant 

at the 1% level when used in the same panel data unit root tests, and are also be assumed to be stationary. 
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Table 1.6: Pooled panel regression results with two-way clustered standard errors. Industry portfolios are used as test assets. Pooled panel tests are run with CAPM, FF 3-factor, 5-

factor, Carhart 4-factor and HXZ q-factor benchmark models. Monthly industry excess returns are regressed against temperature and control risk factor loadings to estimate the 

corresponding risk premiums. P-values are based on two-way clustered standard errors by industry and time and are shown in brackets below estimates. P-values in bold denote 

significance at the 10% level. 

  Pooled panel regression results   

           

   CAPM   FF 3  Carhart  FF 5  HXZ 

           

Constant  0.549  0.561  0.732  0.852  0.740 
  (0.043)  (0.022)  (0.001)  (0.001)  (0.005) 

Temp  -0.005  -0.002  0.000  0.001  0.000 
  (0.317)  (0.686)  (0.954)  (0.912)  (0.952) 

MKT  0.176  0.132  -0.041  -0.163  -0.038 
  (0.583)  (0.680)  (0.894)  (0.623)  (0.902) 

SMB    0.115  0.217  0.174   

    (0.466)  (0.149)  (0.222)   

HML    0.092  0.006  0.058   

    (0.647)  (0.975)  (0.769)   

MOM      0.106     

      (0.754)     

RMW        0.090   

        (0.563)   

CMA        -0.047   

        (0.722)   

ME          0.108 
          (0.526) 

I/A          0.155 
          (0.265) 

ROE          -0.015 
          (0.927) 

           

N 

 

 17,003  17,003  17,003  17,003  17,003 
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Results of the pooled panel regressions do not provide any evidence of a cross-sectional 

temperature risk premium. Exposure to low frequency temperature shocks are only estimated to 

generate a negative premium in two tests, and all estimates are insignificant at the 10% level. The 

regression constant captures a much larger premium than that generated from exposure to Temp or 

any of the control risk factors. This contrasts with arbitrage pricing theory, and supports prior 

evidence suggesting that common risk factors do not explain industry portfolio expected returns very 

well (Berkman et al., 2011). 

I also test whether using a more recent sample generates a different estimate of the temperature 

risk premium. I reduce the sample to 2000 – 2016 and again conduct the pooled regressions, 

controlling for the Carhart 4-factors. For this reduced sample I estimate a temperature risk premium 

of 0.003 with an insignificant p-value of 0.363. Though climate awareness has grown in this period, 

estimates of the temperature risk premium are still insignificant. In another unreported robustness 

test, I transform temperature beta estimates into decile ranks and rescale them between 0 and 1.25 This 

transformation serves to aid the interpretation of coefficient estimates and reduces second stage 

estimate sensitivity to measurement errors. I again do not find evidence of a temperature risk premium 

in this test. I also conduct the prior panel regressions on an alternate test sample of 25 portfolios that 

are created by independently double-sorting individual stocks on Temp and SMB betas estimated with 

the 4-factor model, however, estimated temperature risk premiums are still insignificant. 

1.5.2. Time-varying temperature risk premium: Fama-MacBeth regressions 

In this section, I use the Fama-MacBeth regression methodology to test for temperature risk 

premiums (Fama & MacBeth, 1973). The Fama-MacBeth approach allows for time-varying 

temperature risk premium estimates. I again use the Fama-French 49 industry value-weighted 

portfolios in a two-stage regression approach. In the first stage I calculate temperature betas for each 

of the i portfolios in separate rolling window regressions.  

 
25 For example, see Nagel (2005) or Berkman et al. (2011). 
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𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝 ∗  𝑇𝑒𝑚𝑝𝑡 +  𝜷𝒊,𝒕

𝒄𝒐𝒏𝒕 ∗  𝒄𝒐𝒏𝒕𝒕 +  ɛ𝑖,𝑡     (1.10) 

I regress industry excess returns Ri,t on Tempt and control risk factors contt in the first stage 60-

month rolling window regression, in the same manner as the pooled panel regressions. Betas 

estimated with less than 30 observations in a window are set as missing. After the first stage procedure 

I reduce the sample period to observations from 1988 - 2016. The estimated betas from the first stage 

are stored; I then conduct the following second stage cross-sectional regressions for each month t. 

𝑅𝑖,𝑡 =  µ𝑡 +  𝛾𝑡
𝑡𝑒𝑚𝑝 ∗  𝛽𝑖,𝑡−1

𝑡𝑒𝑚𝑝 +  𝜸𝒕
𝒄𝒐𝒏𝒕 ∗  𝜷𝒊,𝒕−𝟏

𝒄𝒐𝒏𝒕 +  Ƞ𝑖,𝑡     (1.11) 

In contrast to the single pooled panel regression conducted at the second stage for the pooled 

panel regression, in the Fama-MacBeth approach regressions are conducted for each time period. 

Excess returns are regressed against 1-month lagged βtemp and βcont variables in each cross-section to 

obtain a monthly risk premium estimate for each risk factor, labelled as γt
temp and γt

cont respectively. 

µt captures the constant risk premium term in the model, while Ƞi,t are the estimated error terms.  

The resulting time series of estimated risk premium for the temperature factor and control factors, 

γt
temp and γt

cont, are then averaged with Newey-West standard error corrections for 5-month lags. The 

entire two-step procedure is conducted separately using each of the five control risk models. Results 

are presented in Table 1.7. 
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Table 1.7: Second stage Fama-MacBeth regression results. Industry portfolios are used as test assets. Results are the average risk premiums of temperature and control risk factors over 

the time series. Fama-MacBeth tests are run with CAPM, FF 3-factor, 5-factor, Carhart 4-factor and HXZ q-factor benchmark models. P-values calculated from Newey-West adjusted 

standard errors with 5-month lags are shown in brackets below estimates. P-values in bold denote significance at the 10% level. 

  Second stage Fama-MacBeth regression results   

           

    CAPM  FF 3  Carhart  FF 5  HXZ 

           

Constant  0.361  0.346  0.333  0.422  0.335 

  (0.180)  (0.132)  (0.145)  (0.057)  (0.165) 

Temp  -0.003  0.002  0.003  0.001  0.003 

  (0.572)  (0.704)  (0.545)  (0.855)  (0.535) 

MKT  0.338  0.306  0.326  0.253  0.340 

  (0.308)  (0.318)  (0.302)  (0.379)  (0.274) 

SMB    0.039  0.089  -0.014   

    (0.788)  (0.540)  (0.926)   

HML    0.307  0.266  0.263   

    (0.101)  (0.152)  (0.145)   

MOM      0.317     

      (0.253)     

RMW        0.096   

        (0.447)   

CMA        0.042   

        (0.782)   

ME          0.097 

          (0.521) 

I/A          0.103 

          (0.494) 

ROE          0.125 

            (0.437) 

           

N  347  347  347  347  347 
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Fama-MacBeth results do not show a significant average temperature risk premium for exposure 

to low frequency temperature shocks. The control risk factor coefficients do not provide significant 

estimates of other risk premiums either, again illustrating the difficulties in explaining the expected 

return characteristics of industry portfolios (Berkman et al., 2011).  

With increasing climate change awareness, it is possible that the temperature risk premium has 

become more negative over time. In Figure 1.4 I illustrate the temperature risk premium time series 

by plotting cross-sectional Fama-MacBeth estimates of γt
temp, after controlling for the Carhart 4-

factors, from 1988 to 2016. 

Figure 1.4: Monthly cross-sectional estimates of the temperature risk premium γt
temp, estimated after controlling for the 

Carhart 4-factors. A 5-year moving average of γt
temp is plotted with the darker thicker line. 

Contrary to a-priori expectations of increasing climate awareness, temperature risk premium 

estimates do not have a strongly observable trend through the time series. There are large volatilities 

in estimates of temperature risk premiums, while the smoothed 5-year moving average is relatively 

stationary. There is a slight upwards trend in the moving average in the late 2000’s however this 
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movement is in the opposite direction to the hypothesis and does not last. I test for a linear trend in 

estimated temperature risk premiums with the following regression. 

𝛾𝑡
𝑡𝑒𝑚𝑝 =  𝛼 +  𝛽𝑡 ∗ 𝑡 +  ɛ𝑡          (1.12) 

The estimated temperature risk premium γt
temp is regressed against time t in order to estimate a 

linear trend coefficient βt. The constant and error terms are captured by α and ɛt respectively. I present 

the regression results in Table 1.8. 

Table 1.8: Estimated trend coefficient of the temperature risk premium, calculated using the Carhart 4-factor model. 

Newey-West adjusted p-values with 5-month lags are displayed below estimates in brackets. P-values in bold denote 

significance at the 10% level. 

Temperature risk premium trend 

Intercept Trend coefficient N 

 
  

-0.01333 0.00009 347 

(0.122) (0.047)  

I find no evidence of an economically significant trend in temperature risk premiums.26 The 

monthly temperature risk premium is only increasing by just under 0.0011% each year, and is of the 

opposite sign compared to the alternative hypothesis; given an increasing climate change awareness, 

the estimated temperature risk premium should be decreasing instead of increasing. The intercept 

estimate is negative but is insignificant. 

I perform another regression to test whether temperature risk premiums have shifted in recent 

decades. Estimates of the temperature risk premium γt
temp are regressed against two time dummies, 

D2000 and D2010, which are activated during the 2000’s and 2010’s respectively. The constant 

temperature risk premium α and decadal dummy effects β2000 and β2010 are presented in Table 1.9. 

𝛾𝑡
𝑡𝑒𝑚𝑝 =  𝛼 +  𝛽2000 ∗  𝐷𝑡

2000  +  𝛽2010 ∗  𝐷𝑡
2010  +  ɛ𝑡      (1.13) 

 
26 The results of the Durbin-Watson test do not provide evidence of autocorrelation in the temperature premium linear 

trend regression errors. 
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Table 1.9: Decadal dummy coefficients of the temperature risk premium, calculated using the Carhart 4-factor model. 

Newey-West adjusted p-values with 5-month lags are displayed below estimates in brackets. P-values in bold denote 

significance at the 10% level. 

Temperature risk premium decadal effects 
    

Constant 2000's Dummy 2010's Dummy N 
 

   
-0.006 0.011 0.019 347 

(0.397) (0.244) (0.107)  

I find no evidence of negative decadal effects in estimated temperature risk premiums. The 

dummy coefficients have a directional sign opposite to the hypothesis, and neither are significant.  

Results are puzzling, providing no evidence of a negative linear trend for temperature risk 

premiums over the sample, nor any evidence of average decadal effects in the last two decades. 

1.5.3. Portfolio tests 

I implement a long-short portfolio strategy and create a tradeable temperature hedge portfolio to 

test for a priced Temp factor. For robustness, I create both equal-weighted and value-weighted 

portfolios based on return sensitivity to the Temp variable. I combine monthly excess returns data for 

individual equities with the five control risk factor models and Temp in the time series. I begin the 

portfolio creation process by generating temperature beta estimates for individual equities.  

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝 ∗  𝑇𝑒𝑚𝑝𝑡 +  𝜷𝒊,𝒕

𝒄𝒐𝒏𝒕 ∗  𝒄𝒐𝒏𝒕𝒕 +  ɛ𝑖,𝑡     (1.14) 

The beta estimation methodology follows the same process as the first stage regressions in 

temperature risk premium tests, but instead uses individual equities. I regress individual equity excess 

returns against Temp and control risk factors in the 60-month rolling window first stage regressions, 

from which coefficients formed with less than 30 prior periods are set as missing. After the beta 

estimation, the sample is reduced to observations from 1988 - 2016. In each month I generate portfolio 

breakpoints based on the deciles of lagged NYSE temperature betas. Stocks are then sorted into one 

of the ten temperature portfolios at the beginning of each month.  
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I implement a long-short portfolio strategy by subtracting the returns of the lowest temperature 

decile portfolio from the returns of the highest temperature decile portfolio, labelling the resulting 

long-short portfolio Temphedge. If a premium exists for temperature risk, then the monthly 

rebalanced Temphedge portfolio strategy should generate abnormally negative excess returns on 

average. I test for abnormal returns using the following regression. 

𝑅𝑡  =  𝛼 +  𝜷𝒄𝒐𝒏𝒕  ∗  𝒄𝒐𝒏𝒕𝒕  +  ɛ𝑡        (1.15) 

The excess returns of the Temphedge portfolio Rt are used in a time series regression against the 

control risk factors contt with Newey-West 5-month lag adjustments. Sensitivity to control risk 

factors is captured in the vector βcont, with an estimated intercept α and error terms ɛt. The intercept 

parameter estimate is interpreted as the Temphedge portfolio abnormal returns, which is expected to 

reflect a priced temperature risk factor. I repeat the portfolio formation process and test for abnormal 

returns using all five benchmarks models, using both equal and value-weights for robustness.27 Tables 

1.10 and 1.11 present the average returns, abnormal returns and factor sensitivities for the equal and 

value-weighted portfolios respectively. 

 

 

 

 

 

 

 

 

 

 
27 Because estimated temperature betas are dependent on the risk factors used in the first stage regressions, portfolio 

composition will also vary, effectively creating different portfolios for each benchmark model. Each column in the output 

tables is thus a different portfolio that is sorted on slightly different estimates of temperature sensitivities by separately 

controlling for one of the five benchmark factor models, from which the tabulated estimates for portfolio sensitivities and 

abnormal returns are again calculated using the same benchmark. I calculate portfolios weights based on beginning of 

month information. 
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Table 1.10: Equal-weighted Temphedge portfolio regression results. The average monthly portfolio returns are shown in 

the first row. The coefficients shown below are the estimated sensitivities of Temphedge to control risk factors. Portfolio 

alphas are shown in the third row. Significantly negative alphas would support the alternative hypothesis. Newey-West 

p-values generated with 5-month lags are reported in brackets below estimates. P-values in bold denote significance at 

the 10% level. 

  Equal-weighted Temphedge portfolio results   

           

  CAPM  FF 3  Carhart  FF 5  HXZ 

           

Avg. return  0.063  0.142  0.149  0.099  0.101 

  (0.615)  (0.221)  (0.197)  (0.387)  (0.370) 

           

           

Alpha  0.014  0.192  0.193  0.095  0.240 

  (0.919)  (0.095)  (0.142)  (0.440)  (0.053) 

MKT  0.076  0.007  0.002  0.022  -0.045 

  (0.156)  (0.772)  (0.931)  (0.466)  (0.168) 

SMB    0.011  0.021  -0.077   

    (0.824)  (0.679)  (0.072)   

HML    -0.229  -0.198  -0.204   

    (0.000)  (0.007)  (0.000)   

MOM      0.001     

      (0.985)     

RMW        0.008   

        (0.893)   

CMA        0.184   

        (0.040)   

ME          -0.048 

          (0.403) 

I/A          -0.163 

          (0.064) 

ROE          -0.102 

          (0.057) 

           

N  347  347  347  347  347 

Adj. R2  0.014  0.102  0.074  0.049  0.030 
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Table 1.11: Value-weighted Temphedge portfolio regression results. The average monthly portfolio returns are shown in 

the first row. The coefficients shown below are the estimated sensitivities of Temphedge to control risk factors. Portfolio 

alphas are shown in the third row. Significantly negative alphas would support the alternative hypothesis. Newey-West 

p-values generated with 5-month lags are reported in brackets below estimates. P-values in bold denote significance at 

the 10% level. 

  Value-weighted Temphedge portfolio results   

           

  CAPM  FF 3  Carhart  FF 5  HXZ 

           

Avg. return  -0.214  -0.079  -0.064  -0.107  -0.030 

  (0.306)  (0.652)  (0.709)  (0.515)  (0.852) 

           

           

Alpha  -0.358  -0.137  -0.209  -0.123  -0.140 

  (0.089)  (0.408)  (0.248)  (0.527)  (0.555) 

MKT  0.220  0.155  0.168  0.062  0.055 

  (0.002)  (0.002)  (0.002)  (0.282)  (0.360) 

SMB    0.007  0.029  -0.044   

    (0.925)  (0.700)  (0.455)   

HML    -0.177  -0.156  -0.172   

    (0.143)  (0.138)  (0.109)   

MOM      0.124     

      (0.145)     

RMW        -0.079   

        (0.385)   

CMA        0.192   

        (0.322)   

ME          -0.001 

          (0.986) 

I/A          -0.072 

          (0.659) 

ROE          0.199 

          (0.095) 

           

N  347  347  347  347  347 

Adj. R2  0.049  0.059  0.088  0.013  0.012 

Average portfolio returns are not significantly negative for either the equal or value-weighted 

portfolios. Based on the expectation of a negative risk premium, the Temphedge portfolios should 

generate negative alphas on average after controlling for other risk factors. Results show very weak 

evidence of Temphedge abnormal returns. The value-weighted Temphedge portfolio strategy has only 
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one significant negative alpha at the 10% level when benchmarked against the CAPM model. 

Surprisingly, two of the equal-weighted portfolios have positive alphas that are significant at the 10% 

level. Returns of the equal-weighted portfolios seem to be negatively driven by the HML factor, and 

only three of the value-weighted portfolios have significant loadings on the market premium factor. 

The SMB and ME factors do not explain much of the variation in Temphedge returns. This is 

interesting as it indicates that there is no correlation between the size factor and the returns associated 

with a low frequency temperature risk strategy; Temphedge portfolios do not behave like either small-

cap or large-cap stocks.  

Figure 1.5 illustrates the average excess returns for value-weighted decile temperature portfolios 

generated with all five benchmark models. The average excess return structure of the decile portfolios 

does not follow a monotonically negative trend as expected under the hypothesis of a negative 

temperature risk premium. Though a negative relationship is evident on average, it is volatile. Results 

overall do not provide any evidence of a priced Temp risk factor. 

Figure 1.5: Average excess returns of value-weighted temperature beta decile portfolios, separately formed using all five 

benchmark models. The thick dark line is the average trend. Higher portfolio numbers have greater temperature sensitivity, 

while lower portfolio numbers have lower temperature sensitivity. 
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1.6. Additional temperature beta tests 

In additional tests, I examine the validity of estimated temperature betas through an event study 

and by comparing estimates with another firm-specific climate risk variable. 

1.6.1. Event study 

I use event study methodology to examine the relationship between industry temperature beta 

estimates and the impacts of environmental regulation. The event study is conducted using the United 

Nations Framework Convention on Climate Change Paris Agreement, adopted by the U.S. on the 12th 

of December 2015. Alternative events are available, such as the Kyoto Protocol, the Copenhagen 

Accord or various physical climate phenomena; however, the Paris Agreement is chosen for its recent 

occurrence and unexpected outcomes.28  

The event study serves as an external validity test of the reliability of estimated industry 

temperature betas. As the Paris Agreement aimed to reduce long-run temperature rise, I test whether 

the impacts of the event on industry returns are correlated with industry exposure to low frequency 

temperature risk. The event is expected to have a greater impact on the realised returns of temperature 

sensitive industries by negatively shocking long-run temperature forecasts, which in turn should 

shock expected future cash flows.29 

Industry exposures to low frequency temperature risk are used to form expectations of event 

abnormal returns. I group industries based on estimated low frequency temperature betas, which I 

calculate using the following 60-month rolling window regression for each industry.  

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝

∗  𝑇𝑒𝑚𝑝𝑡 +  𝛽𝑖,𝑡
𝑚𝑘𝑡 ∗  𝑀𝐾𝑇𝑡 +  𝛽𝑖,𝑡

𝑠𝑚𝑏 ∗  𝑆𝑀𝐵𝑡 +  𝛽𝑖,𝑡
ℎ𝑚𝑙 ∗  𝐻𝑀𝐿𝑡 +  𝛽𝑖,𝑡

𝑚𝑜𝑚 ∗

 𝑀𝑂𝑀𝑡 +  ɛ𝑖,𝑡              (1.16) 

 
28 See "Deal done" (2015) for a discussion of the unexpected outcomes of the Paris Agreement. 
29 Temperature betas are measures of the sensitivity of the unexpected component of realised returns to temperature 

shocks. If the Paris Agreement reduced expectations of future average temperatures, future cash flows and current realised 

returns must also be impacted in the direction of the temperature beta, assuming ex-ante temperature betas are stable 

predictors. 
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Industry monthly excess portfolio returns Ri,t are regressed against Temp and the Carhart 4-factors. 

I store the resulting industry βi,t
temp estimates that fall within an approximate 3-year window prior to 

the event, ranging from the 1st of January 2013 to the 30th of November 2015. I then average the 

monthly βi,t
temp estimates over the 3 years for each industry to generate an ex-ante average temperature 

exposure. Industries with positive betas are expected to benefit from expectations of increasing 

temperature, and suffer when temperatures are expected to fall. As the Paris Agreement aimed to 

reduce long-run temperature rise, I group industries with positive average temperature betas as 

‘expected losers’, and negative average temperature betas as ‘expected winners’.  

Daily value-weighted industry returns are used to estimate the event impact on U.S. industries. I 

follow the multivariate regression model (MVRM) as described by Binder (1998) to estimate 

portfolio abnormal returns.30 The measurement period is set as the year prior to the event, spanning 

from the 30th of November 2014, to the 31st of December 2015. A single event dummy is set to equal 

1 on the 11th and 14th of December 2015.31 The following Newey-West regression with is run with 5-

day lags for each industry to estimate coefficients for the dummy variable.32  

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖
𝑃𝑎𝑟𝑖𝑠 ∗ 𝑃𝑎𝑟𝑖𝑠𝑡 +  𝛽𝑖

𝑚𝑘𝑡 ∗  𝑀𝐾𝑇𝑡 +   𝛽𝑖
𝑠𝑚𝑏 ∗  𝑆𝑀𝐵𝑡 + 𝛽𝑖

ℎ𝑚𝑙 ∗  𝐻𝑀𝐿𝑡 + 𝛽𝑖
𝑚𝑜𝑚 ∗

 𝑀𝑂𝑀𝑡  +  Ƞ𝑖,𝑡           (1.17) 

Rt is the daily excess realised return for a particular industry, α is the estimated constant and ɛt is 

the estimated error term in the regression. I control for the daily returns of the Carhart 4-factor control 

 
30 The MVRM methodology involves running a separate regression for each of the portfolios being examined in the 

event study, and using a dummy variable to capture abnormal returns around the event. Its primary advantages include 

allowing for abnormal return estimates to vary in sign across portfolios, and avoiding contemporaneous correlation and 

heteroskedasticity between the abnormal return estimates. 
31 The 12th and 13th of December 2015 fell on a Saturday and Sunday and have no returns data. Activating the dummy 

variable over the 11th and the 14th allows for some leaked information or delayed reaction impacts to be captured and is a 

relatively conservative approach. 
32 Following the literature I set the lag equal to 4(T/100)a where T = 274 time periods and a = 4/25 using the quadratic 

spectral kernel. The output equals 4.70, which I round up to 5. 
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model. Parist is the event dummy, while βParis is the estimated average daily abnormal return for when 

the dummy variable is activated. This regression is run for each of the 49 industry portfolios.33  

I test the correlation between the Paris dummy coefficients and temperature betas across all 

industries. The Pearson correlation coefficient is 0.13 with a p-value of 0.37, while the Spearman 

correlation is 0.03 with a p-value of 0.85; both estimates are insignificant.  

I present the summarised outcomes of the event study based on ex-ante industry groupings in 

Table 1.12. Out of all 49 industries, only 24 had event abnormal returns consistent with expectations 

based on temperature betas, of which only 13 had significant estimates. 

Table 1.12: A summary of the expected winners and losers from the Paris Agreement event study, grouped by ex-ante 

temperature betas. Presented are a count of the number of industries in both expected winner and loser groups, along with 

a count of the number of industries that have expected event abnormal returns met and a count of the number of 

expectations met with statistically significant event abnormal return estimates at the 10% level. 

Paris Agreement event study summary 
       

Expected winners  Expected losers  Total 
       

Count 26  Count 23  49 

Consistent 

outcomes 
14  Consistent 

outcomes 
10  24 

Significant and 

consistent estimate 
6  Significant and 

consistent estimate 
7  13 

If industry groupings based on temperature beta are unrelated to the event outcome, the 

cumulative probability for 24 or more successfully predicted outcomes out of 49 is 0.612.34 This 

suggests that the observed correct 24 industry predictions are likely due to chance acting alone. 

Results therefore do not provide evidence of a relationship between industry exposure to temperature 

 
33 Abnormal return estimates along with average temperature beta estimates are presented for each of the 49 industries 

in the appendix. 
34 The cumulative probability of observed results under the null hypothesis is calculated by randomly distributing the 

49 industries into one of the two groups with equal probability. The cumulative binomial probability of 24 or more 

successful predictions out of 49 is 0.612. This probability is insignificant in a one-tailed hypothesis test. 
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and the abnormal returns generated around the Paris Agreement. These findings suggest that ex-ante 

temperature betas may be poor forecasts of future temperature sensitivity. 

Alternatively, non-significant results from using industry temperature exposure as the basis of 

predictions may indicate that the Paris Agreement had impacts on industry returns that are not directly 

related to temperature sensitivity. This may be because climate-related industry shocks are channelled 

through regulatory uncertainties (Wellington & Sauer, 2005) as well as exposure to other climate 

phenomena. Temperature risk is only a subset of aggregate climate risk and may not provide a full 

picture, especially if weakly correlated with other types of climate risk. Aside from these 

explanations, it is also possible that the results of the Paris Agreement were already priced through 

information leakage or were not altogether credible. Overall results do not show that historical 

temperature betas are linked to industry abnormal returns generated around the 2015 Paris 

Agreement. 

1.6.2. Climate disclosure tests 

I examine whether estimated temperature betas are associated with ClimateScore, a firm-specific 

proxy for aggregate climate risk of which physical risk is a component. Tests estimate whether firms 

that disclose climate risk in their 10-K filings also have temperature sensitive equity returns, and 

subsequently measure the effectiveness of temperature betas as a proxy for climate risk. I use a 

subsample of CRSP equity data based on firms that have climate disclosures.35 I calculate firm-

specific equity temperature sensitivities with 60-month rolling window regressions and control for 

the Carhart 4-factors. I keep estimated temperature betas for the years 2011 – 2014. 

𝑅𝑖,𝑡 =  𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑡𝑒𝑚𝑝 ∗  𝑇𝑒𝑚𝑝𝑡 +  𝛽𝑖,𝑡

𝑚𝑘𝑡 ∗  𝑀𝐾𝑇𝑡 +  𝛽𝑖,𝑡
𝑠𝑚𝑏 ∗  𝑆𝑀𝐵𝑡 +  𝛽𝑖,𝑡

ℎ𝑚𝑙 ∗  𝐻𝑀𝐿𝑡 +  𝛽𝑖,𝑡
𝑚𝑜𝑚 ∗

 𝑀𝑂𝑀𝑡 +  ɛ𝑖,𝑡              (1.18) 

 
35 Following Berkman et al. (2019), I exclude observations of firms in the financial services industry, firms with 

negative book values of equity, and firms with missing financial data. 
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I then average the monthly temperature betas βt
temp for each of the 4 years for each firm. I estimate 

the Pearson and Spearman correlations between yearly βy
temp and ClimateScore as 0.00 and -0.02, 

with insignificant p-values of 0.96 and 0.18 respectively. I also perform the following yearly 

frequency, industry fixed effects panel regression with yearly clustered standard errors.  

𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑖,𝑦 =  𝜋𝑡𝑒𝑚𝑝  ∗ 𝛽𝑖,𝑦
𝑡𝑒𝑚𝑝 +  𝜋𝑠𝑖𝑧𝑒  ∗  𝑆𝑖𝑧𝑒𝑖,𝑦  +  𝜋𝐵/𝑀  ∗  𝐵/𝑀𝑖,𝑦  + Ƞ𝑖,𝑦  (1.19) 

ClimateScore is regressed against yearly average temperature beta estimates in the panel. The 

regression estimates the relationship between within industry variation in equity temperature betas 

and self-disclosed aggregate climate risk πtemp. I hypothesise a negative relationship between βy
temp 

and ClimateScore. The independent variable Size controls for the natural log of firm market 

capitalisation, while B/M controls for firm book-to-market ratios. I include industry fixed effects in 

the regression using the Fama-French industry 49 classifications. The error terms are captured by Ƞi,t. 

I present the results in Table 1.13. 

Table 1.13: Estimated intercepts and slope coefficients for the ClimateScore regression. I include industry fixed effect 

dummies in the regression. P-values are based on heteroscedasticity-consistent standard errors with clustering by year. P-

values in bold denote significance at the 10% level. There are 4,529 observations in the sample. The regression generates 

an adjusted R2 value of 0.487 and a within R2 value of 0.028. 

Firm climate disclosure and temperature beta 
   

Variable Coefficient P-value 

   
πtemp 0.023 (0.240) 

πsize 4.219 (0.000) 

πB/M 10.874 (0.020) 

   

N 4,529  
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I find no evidence of a relationship between firm-specific climate disclosures and estimated 

temperature sensitivities.36 Results fail to provide evidence that temperature betas are a significant 

contributing factor in explaining total firm-specific climate sensitivity.  

1.7. Discussion 

I find no evidence of a priced cross-sectional temperature risk factor. This is inconsistent with the 

hypothesis developed using consumption and disaster pricing theory.  

Econometric explanations for the non-results include a potential lack of explanatory power in 

Temp. I find that alternative time series models of Temp, listed in the appendix, also generate 

insignificant temperature risk premium estimates. Low frequency temperatures may have low 

correlations with disaster states and other important climate variables such as humidity, wind speed 

and evaporation, which may in turn cause bias in the predicted physical impacts of temperature 

change on business activity (Zhang, Zhang, & Chen, 2017). Variability in temperature and other 

climate variables is also linked to complex climate patterns, such as the El Niño Southern Oscillation 

and solar cycles. These are not explicitly modelled into Temp, which may lead to measurement errors. 

Various estimation issues also arise when using realised returns as a proxy for expected returns.37 

Temperature averages may hide shocks in geospatial cross-sectional temperature volatility; while 

Temp is a measure of shocks to low frequency temperatures around the U.S., it does not capture 

shocks to cross-sectional volatility, which may be more correlated with investor consumption. For 

robustness, I test whether cross-sectional temperature volatility better explains equity risk premia.38 

Results of the pooled panel and Fama-MacBeth regressions using shocks in temperature volatility 

 
36 In unreported results, I also find no evidence of a relationship between industry temperature betas and climate 

disclosure at the industry average level, nor is there evidence of a relationship between firm temperature betas and climate 

disclosure when both variables are standardized by year and industry. 
37 For a greater discussion on the problems of using realised returns as a proxy for expected returns, see Elton (1999), 

Brav, Lehavy, & Michaely (2005), or Berkman (2013). One alternative is the use of analyst forecasts as a proxy for 

expected returns, however this measure comes with its own set of biases. 
38 Donadelli et al. (2019) use time series average temperature volatility, as opposed to the cross-sectional temperature 

volatility robustness check used in this study. 
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instead of Temp are presented in the appendix, which provide no evidence of a premium for cross-

sectional temperature volatility either. 

Alternatively, I reconcile the lack of results with the following three qualitative explanations. The 

first is the very long time horizon in which rare climate disasters are expected to take place. The 

greatest unmanageable climate disasters described by Nordhaus (2013) are more likely to occur in 

distant future states, whereas the immediate consequences of low frequency temperature shocks on 

consumption may be negligible. Dasgupta (2008) argues that the consequences of climate change are 

on both intragenerational and intergenerational welfare. Dasgupta (2008) further points out that the 

considerations behind saving for our children or grandchildren, who are the real losers of climate 

change outcomes, are not the same as saving for personal future consumption. This reasoning could 

influence capital markets if investors do not value the consumption risk of future generations. 

Similarly, the temperature risk premium curve may not be flat. Even if temperature and consumption 

are negatively correlated in the long-term, weak short-term correlations would not justify a monthly 

premium due to a lack of immediate risk. Investors may not price long-term risk within short-term 

horizons, similar to a term structure effect. This logic assumes that markets are efficient, however, 

the market may simply behave irrationally around climate change factors (Liesen, 2015), resulting in 

an irrational or inefficient pricing of temperature risk. 

The second possibility is the diversification potential at the investor and country level. Extending 

the argument of Copeland & Zhu (2007), if investors can diversify away their exposure to temperature 

shocks then there should not be a priced temperature risk factor in equilibrium. Diversification can 

also occur at the country level. If cross-country correlation to climate disasters is less than perfect, 

global investors can reduce portfolio exposure to temperature through diversification. In an efficient 
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market only systematic risks are compensated with returns; if temperature risk is currently 

idiosyncratic then highly exposed stocks may not necessarily be compensated.39  

Lastly, firms have dynamic capabilities. Businesses that can adapt to changing environmental 

factors benefit from built-in real option values (Trigeorgis, 1993) that restrict the negative outcomes 

driven by overall temperature rise. For example, Mendelsohn et al. (1994) illustrate how, in rising 

temperatures, farmers can reallocate their production efforts to differing outputs to avoid large losses. 

Firm adaptabilities constrain the sensitivities of their equity returns to climate shocks in the long-run. 

Even if investors currently price long-term risk, their investments may not be exposed to long-term 

temperature shocks. If the impacts on the manageable activities of Nordhaus (2013) constitute a large 

proportion of total long-run climate change costs, the total cash flow impact of temperature shocks is 

reduced. Aggregate firm adaptability mitigates the long-term value impacts of climate change, and 

thus reduces future costs relative to scenarios with limited firm flexibility. The market may also 

expect technology to improve at a rate which prevents the full scope of climate-related costs from 

affecting firms in the future. Like firm adaptabilities, potential technological advances constrain 

forward-looking temperature betas of firms. As a result of these factors, historical temperature betas 

may be poor estimates of forward-looking temperature sensitivities. 

1.8. Conclusion 

Overall, I find no evidence of the existence of a temperature risk factor in U.S. equity markets. 

Low frequency temperature risk is a subset of total climate risk, which has complex impacts on 

economic variables. Results do not suggest that exposure to low frequency temperature risk is 

correlated with higher excess returns in U.S. equity markets.  

I transform temperature data to create a proxy for low frequency temperature shocks and calculate 

the temperature exposures for industry portfolios. Using pooled panel and Fama-MacBeth 

 
39 Anecdotally this explanation is difficult to justify given the potential wide-scale ramifications of climate disaster, 

of which there are very few, if any, winners in the long-run.  
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regressions, I find no evidence to support a hypothesised negative risk premium for a temperature 

risk factor. Cross-sectional estimates of the temperature risk premium are tested in the time series to 

see whether premiums have increased over time. Contrary to expectations of increasing investor 

awareness of climate risk, I find no evidence for either a negative linear trend in estimated temperature 

risk premiums, or decadal dummy effects. I create portfolios sorted by temperature betas but find no 

evidence that portfolios with higher temperature loadings are outperformed by portfolios formed with 

lower temperature loadings. Neither the equal nor value-weighted Temphedge long-short portfolios 

provide sufficient evidence of negative returns on average, or in excess of control risk factors. Finally, 

I test temperature betas using an event study and a firm-specific climate variable. Surprisingly, results 

indicate that industry temperature betas do not predict the outcomes of the Paris Agreement, nor are 

firm level temperature betas strongly correlated to firm exposure to climate risk, suggesting that 

historic temperature betas may be poor proxies for exposure to temperature risk.  

Further study could engage with the climate science literature to incorporate additional 

environmental factors in asset pricing tests; additional research is necessary to further disentangle the 

impacts of complex climate systems on financial markets. Future research could also take a global 

outlook and estimate the effects of temperature shocks in international markets. 
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2. Chapter 2 

 

Is Pollution a Sin? A Study on the Institutional Ownership of Polluter 

Stocks 
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2.1. Introduction 

Due to the impact of industrial pollution on the environment and human health, many investors 

and institutions now increasingly include non-financial environmental information in their portfolio 

formation process. According to The Forum for Sustainable and Responsible Investment (2016), at 

the beginning of 2016 more than one-fifth of professionally managed portfolios in the U.S. were 

invested according to socially responsible investment (SRI) strategies, equivalent to $8.72 trillion or 

more.40 The importance of environmental performance as a subset of overall corporate social 

responsibility (CSR) is also frequently highlighted in the reports of professional services firms,41 

illustrating the perceived relevance of environmental governance to economic performance.  

The literature has primarily focused on the performance of SRI in financial markets,42 however 

this study examines specific environmental interactions with institutional ownership. I deviate from 

topics on SRI and positive environmental performance, and instead focus on the implications of 

socially irresponsible behaviour on investment; I target environmental ‘sin’ stocks by examining 

polluting firms. Polluters generate negative externalities in markets, impose costs on society, and may 

therefore be discriminated against during the investment decision making process. Using data from 

the Toxic Release Inventory (TRI), I identify the largest relative polluters in the sample and examine 

the relationship between their toxic releases and aggregate institutional ownership. Prior literature 

 
40 The Forum for Sustainable and Responsible Investment (2016) finds that for institutional investors, climate change 

and carbon emissions are the second biggest socially responsible investing criteria following conflict risk, with $2.15 

trillion institutional investor funds tied into related assets in 2016. 
41 For example, a report from Deloitte (2013) states that in order to generate value, firms should be “positioning 

themselves to anticipate the drivers of regulatory and stakeholder expectations”, and “evaluate the company’s readiness 

to respond to the implications of environmental performance”, specifically in relation to “operations, brand image, 

compliance structures and even company valuations” (p. 1). Similarly, a more recent report by Ernst & Young (2017) 

finds that it is "commonly understood that serious reputational and environmental risks can and do surface, and they can 

have very real impacts on the bottom line”; investors who use environmental, social and governance screens in their 

investments point to both the “long-term benefits” and “lower investment risk” of these investments (p. 3). 
42 For example, see Hamilton, Jo, & Statman (1993), Geczy, Stambaugh, & Levin (2005), Galema, Plantinga, & 

Scholtens (2008), Renneboog, Ter Horst, & Zhang (2008) and Derwall & Koedijk (2009). 
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does not focus on polluting as an explicit criterion in the classification of sin stocks;43 this research 

aims to fill that gap.  

The main contribution of this study is to examine whether higher firm pollution levels in the U.S. 

are associated with a reduced proportion of institutional equity ownership. There is plenty of 

anecdotal evidence of an increasing investor awareness of environmental performance and climate 

change, illustrated by the rising prevalence of ‘green funds’ and pollution divestment campaigns. 

Social pressures for SRI and discrimination against polluters may restrict ownership of polluter stocks 

for the average institutional investor. Following Hong & Kacperczyk (2009), financial institutions 

that have diverse constituents, publicly known positions in stocks, or are easily exposed to public 

scrutiny are more likely to be constrained by social norms. In contrast, individual investors and inside 

owners can keep their stock positions relatively opaque and are thus less likely to be affected by social 

norms. 

I hypothesise a negative relationship between pollution and institutional ownership, and test for 

evidence of a social norm against the ownership of polluter stocks. I primarily examine whether 

institutional investors in aggregate have lower equity ownership of public firms with greater toxic 

releases after controlling for other firm level characteristics. Due to an expected increasing awareness 

of the costs of pollution on human health and the environment,44 I hypothesise a negative trend in the 

difference between institutional ownership of polluter and non-polluter stocks over time. The main 

hypothesis also implies that certain types of institutions may disproportionately own polluters, and 

that polluter stocks should be less followed by sell-side analysts, as analyst services tend to cater to 

institutional investors (Hong & Kacperczyk, 2009). Lastly, I hypothesise that polluters generate 

abnormal returns as a result of societal discrimination (Angel & Rivoli, 1997).  

 
43 In the literature, sin stocks are usually defined as stocks in the alcohol, gambling and tobacco industries; see Salaber 

(2007), Fabozzi, Ma, & Oliphant (2008), Hong & Kacperczyk (2009), Salaber (2009), Liston (2016), and Blitz & Fabozzi 

(2017). Some SRI funds also exclude armament producers and nuclear energy. 
44 For example, Flammer (2013) provides empirical evidence of increasing external pressures over time on firms to 

be environmentally friendly. 
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Results are consistent with the hypothesis that polluter stocks are associated with reduced 

institutional ownership. I find that on average, institutional investors have approximately 4.5% 

reduced equity in firms in the top yearly quintile of polluters after controlling for ownership trends 

and various firm and stock characteristics. There is a positive trend on overall institutional ownership; 

however, when interacted with pollution the coefficient becomes negative, revealing that institutions 

are increasingly reluctant to invest in polluting firms. Upon disaggregating toxic releases by chemical 

classification, I find that dioxins and dioxin-like compounds are the most significantly associated 

with reduced institutional ownership. 

This study also contributes by examining the relationship between social norms and the differing 

types of institutional investors. I repeat ownership tests after disaggregating institutional ownership 

based on the institutional investor classifications of Bushee (2001). Results reveal that all three 

Bushee institutional investor groups have varied relative reductions in their ownership of polluter 

stocks, suggesting that the impacts of environmental social norms are heterogeneous among 

institutions. Institutions characterised by long-term, diversified buy-and-hold strategies have the most 

reduced ownership of polluters. A similar result is found if ownership is separated by 13F institution 

type; banks, insurance companies, endowments and pension funds on average have a reduced 

ownership of polluters, while mutual funds and independent investment advisers do not. Using 

security analyst data, I also find a reduced level of analyst coverage for polluter stocks. 

I test whether the institutions that own polluter stocks are more likely to have shorter investment 

horizons due to their role as market arbitrageur. Using a firm level quarterly churn variable as a proxy 

for average investor horizons, results reveal that polluter stocks are indeed disproportionately held by 

institutions with shorter investment horizons. Finally, I test whether polluter firms earn abnormal 

returns due to the shunned-stock effect (Angel & Rivoli, 1997). I create a long-short polluter portfolio 

and test for abnormal returns benchmarked against popular risk factor models, however, I find no 

evidence of abnormal returns. 
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2.2. Literature review 

I review the literature by first defining societal discrimination within an economic context. I then 

examine the relationships between social norms and SRI. Lastly, I review studies on sin stocks. 

2.2.1. Societal discrimination 

In a seminal contribution, Becker (2010) describes how market participants are willing to incur 

financial costs in order to avoid things they dislike. This discriminatory behaviour is linked to 

disutility generated through contact or association. Societal discrimination can create social norms, 

which are standards that constrain society members from contact with the discriminated. Akerlof 

(1980) and Romer (1984) show that social norms are insensitive to arbitrage; social norms may persist 

if they cause a loss of reputation for the party engaging in discriminatory behaviour that outweighs 

the benefits of the same behaviour. In the context of this study, social norms refer to the public 

pressure on investors to divest from socially discriminated polluting firms. 

2.2.2. Socially responsible investing 

Pollution is modelled as a negative externality in economics; related investments can be thought 

of as socially irresponsible. While SRI is an example of investor discrimination based on ethical 

values, it is also sometimes justified as a portfolio performance enhancer. A large portion of the 

literature is dedicated to the investment returns of SRI; theoretical and empirical studies have 

contrasting conclusions on the relationship between SRI and portfolio returns (Galema, Plantinga, & 

Scholtens, 2008). Hamilton, Jo, & Statman (1993) and Statman (2000) reveal that SRI equity funds 

do not generate significantly different risk-adjusted abnormal returns relative to conventional funds. 

Similarly, Derwall & Koedijk (2009) find that SRI fixed income funds perform approximately the 

same as their peers. Renneboog, Ter Horst, & Zhang (2008) find an insignificant SRI fund alpha in 

most countries. In contrast, Geczy, Stambaugh, & Levin (2005) show that imposing SRI constraints 

on investments negatively impacts returns, consistent with the theory of reduced opportunity sets in 

standard portfolio theory. Von Wallis & Klein (2015) provide a comprehensive literature review, 
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listing the various hypotheses of SRI over, under, and in-line performance, along with empirical 

evidence for each. Von Wallis & Klein’s (2015) review illustrates the lack of academic consensus on 

the consequences of SRI on performance. 

Investment strategies may be influenced by social norms which are often motivated by ethics, 

values and biases. For example, Ivković & Weisbenner (2005) find that individual investors exhibit 

a preference for local investments. Different groups of discriminating investors have varying 

preferences for specific stock characteristics; women place greater weighting on stocks with 

progressive gender policies, while younger investors avoid firms with poor environmental records 

(Hood, Nofsinger, & Varma, 2014). Similarly, in a study focusing on the importance of political 

values as a cultural factor that influence asset allocation, Hong & Kostovetsky (2012) find that 

institutions with liberal values are more likely to discriminate against investments that are deemed 

socially irresponsible, such as tobacco, natural resource overexploitation, and weapons. Using 

investor holdings turnover as a proxy for investor horizons, Starks, Venkat, & Zhu (2017) find that 

institutional investors with longer-term horizons prefer firms with higher ESG scores. These results 

indicate that socially responsible investors are not a single homogeneous group, but instead exhibit 

varied discriminatory behaviour. Societal discrimination has thus been found to affect the investment 

decisions of not only particular groups of individual investors, but also institutions. 

2.2.3. Sin stocks 

The study of investment ‘sin’ is a relatively new branch of the literature in economic 

discrimination; examining social perceptions of ‘bad’ activities or participants, the subject area is 

inversely related to SRI. The financial literature focuses on the performance and behaviour of 

financial assets that are perceived as sinful, such as the shares of tobacco or gaming firms. Sin stocks 

are more likely to be scrutinised by society, and attract a disproportionate level of discrimination. For 

example, Kim & Venkatachalam (2011) find that financial reporting quality is greater for sin firms, 

possibly to compensate for their poor public perception. Additionally, audit and consulting fees are 
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found to be higher for companies that deviate from social norms (Leventis, Hasan, & Dedoulis, 2013), 

suggesting that discriminated firms are penalised with various additional costs. 

Institutional ownership studies have investigated the drivers of institutional interest in equity 

investments. In their seminal paper, Gompers & Metrick (2001) find a set of financial variables that 

explain variation in total institutional ownership of a stock; I use these variables in my models. Hong 

& Kacperczyk (2009) specifically examine the effect of sin on institutional ownership. Identifying 

alcohol, gambling and tobacco as sin stocks, they find that both the institutional ownership and analyst 

coverage of sin stocks is reduced due to social norms that target specific sub-industries. Specifically, 

the effects of social norms are found to constrain publicly scrutinised investors that include banks, 

insurance companies and endowments; however, there is no evidence to suggest that arbitrageur 

institutions are similarly constrained in their investments.45 Arbitrageurs may be less likely to care 

about social norms, or be unwilling to sacrifice good investment opportunities to satisfy society. Liu, 

Lu, & Veenstra (2014) also explore the interactions between sin stocks and investment, finding that 

the institutional ownership and analyst coverage of sin stocks are positively correlated with the degree 

of social acceptance of the specific sin. This is of relevance to environmental sinners, since social 

acceptance of polluters is likely to diminish as environmental issues become more pertinent over 

time. 

Polluter stocks are not included in the set of sin stocks within the studies by Hong & Kacperczyk 

(2009) or Liu et al. (2014). Unlike firms operating in the alcohol, gambling and tobacco industries, 

polluters can change their pollution levels over time, generating time-variation in their sinner status. 

Fernando, Sharfman, & Uysal (2017) consider the effects of ‘greenness’ on institutional ownership. 

Using KLD data, firms that are identified as both ‘green’ and ‘toxic’ are found to have lower 

institutional ownership. I similarly consider environmental performance in relation to institutional 

ownership; however, I avoid using KLD data as the discrete environmental scores have limited 

 
45 Arbitrageur institutions are loosely defined as those with primary aim of exploiting security mispricing. 
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variation, and lead to clustered observations. I instead opt for continuous, audited and more objective 

data on pollution, sourced from the TRI, which allows for more granular analysis.  

Kim, Wan, Wang, & Yang (2019) also use TRI data in an institutional ownership study. They 

argue that a prevalence of local institutional investors leads to reduced pollution at the facility level; 

pollution abatement efforts are also found to increase firm value when there is an increased proportion 

of local investors relative to firm facilities. Their research considers an opposing causal driver to my 

study and is accordingly conducted at the facility level. I argue that investment decisions are more 

likely to be made at the firm level, and therefore environmental screens are more likely to drive lower 

investment in polluting firms, rather than local shareholder pressure reducing aggregate firm level 

pollution. I do, however, test the latter channel in three robustness tests of reverse causality, but find 

no evidence of institutional ownership driving firm pollution.  

The shunned-stock hypothesis assumes that the shortage of demand for sin stocks will impact the 

behaviour of their prices (Derwall, Koedijk, & Ter Horst, 2011). Angel & Rivoli (1997) extend 

Merton’s (1987) segmented information model to argue that shunned controversial stocks generate 

higher expected returns in proportion to the level of socially responsible investors in the market. Hong 

& Kacperczyk (2009) argue that institutional aversion to sin stocks causes their prices to be relatively 

cheaper, and subsequently generate higher expected returns. Consistent with the hypothesis of Becker 

(2010), Hong & Kacperczyk’s (2009) empirical results support the theory that institutions incur 

opportunity costs in abstaining from stocks which are shunned by society. Similarly, Salaber (2007), 

Fabozzi, Ma, & Oliphant (2008), Statman & Glushkov (2009) and Derwall et al. (2011) also find that 

controversial sin stocks produce abnormally high returns. However, Lobe & Walkshäusl (2016) and 

Blitz & Fabozzi (2017) contrastingly find no evidence of a risk adjusted alpha for sin. Motivated by 

the shunned-stock literature and subsequent conflicting empirical findings, I test for evidence of 

polluter abnormal returns with a long-short portfolio of polluter stocks. 
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2.3. Hypothesis 

Institutions are hypothesised to be constrained by social norms, and are expected to abstain from 

investing in firms that are discriminated by society as environmental sinners. In contrast, individual 

investors can hide their holdings with relative ease (Hong & Kacperczyk, 2009), and as a result are 

able to own more equity of polluter firms. Due to reduced institutional interest in these stocks, I also 

expect reduced analyst coverage of polluters. I further hypothesise that institutions investing in 

polluters have shorter investment horizons, and that polluter stocks earn abnormal returns through the 

shunned-stock effect. 

2.4. Data 

Data used in this study is sourced from four primary sources: the TRI, Compustat, CRSP and 

Thomson Reuters institutional holdings. I use IBES for security analyst data. 

2.4.1. Pollution and fundamentals data  

I obtain data on firm releases of pollutants from the Environmental Protection Agency's (EPA) 

Toxic Release Inventory database.46 The TRI contains information on the releases of toxic chemicals 

in the U.S. that may damage the environment and human health. Toxic releases include carcinogens 

and persistent bio-accumulative toxic chemicals.47 Release disclosure via TRI is a mandatory program 

that covers over 50,000 industrial facilities and 500 different chemicals. Firms are required to disclose 

annual releases of toxic chemicals to the EPA if they employ 10 or more full-time employees, operate 

in a pollution prone industry, and handle or manufacture TRI-listed chemicals above threshold levels. 

The EPA releases the yearly TRI National Analysis dataset during December or the following 

January. The toxic releases data dates to 1987 and covers industries, including mining, utilities, 

 
46 The TRI was initially established under the 1986 Emergency Planning and Community Right-to-Know Act of 

1986, and later expanded with the Pollution Prevention Act of 1990. The TRI was established in reaction to an industrial 

disaster in Bhopal, India in December 1984, along with a similar chemical release that occurred in West Virginia, 1985. 
47 The chemicals covered by the TRI program are generally those that are linked with cancer and other chronic health 

effects, significant acute health effects or significant environmental damages. Greenhouse gas emission is not explicitly 

covered by the TRI program which instead focuses on toxic chemicals, though is some overlap between the two. 
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manufacturing, publishing, and hazardous waste.48 TRI data has been used by regulators, media, and 

environmental activists (Hamilton, 1995), while the economic and financial literature has also used 

toxic releases from the database to study CSR activity.49  

The sum of total facility on-site releases, off-site releases, and transfer of releases to public owned 

treatment works is stored as Total Releases, measured in millions of pounds.50 I aggregate Total 

Releases by firm and year.  

I use the Compustat database to source fundamental accounting variables as at the end of year t. 

I merge firm TRI data with firm fundamentals using the CRSP/Compustat merged database, and 

create a dummy variable named Polluterdummy to identify the largest relative polluters. 

Polluterdummyi,t is activated if firm i is in the top quintile of polluters in year t in the TRI database. 

The primary advantage of using a dummy variable is to avoid imposing any assumptions about the 

structural relationship between pollution and institutional ownership; instead, my main models simply 

focus on the characteristics of the worst polluters. Using CRSP, I then merge market data on firm 

equities with the TRI-Compustat dataset. I only include securities with CRSP share codes of 10 or 

11, and store returns in percentage format. To be included in the final sample, a firm must exist on 

all three of these databases.51 I drop firms that operate in the financial services industries with one 

digit SIC codes of 6 from the sample (Hong & Kacperczyk, 2009).52 This provides a total of 8,954 

firm-year observations in an unbalanced panel over the final sample period of 1987 to 2014.  

 
48 One limitation of the TRI is that data is self-reported, however measurement error is mitigated through audits run 

by the EPA. The data also focuses on manufacturing industries; however, it is not immediately clear as to why estimates 

can not be extrapolated to other sectors. For greater discussion of limitations, see Kim et al. (2019). 
49 For example, see Dooley & Lerner (1994), Hart & Ahuja (1996), Maxwell, Lyon, & Hackett (2000), and King & 

Lenox (2001).  
50 I avoid transforming Total Releases with a natural log as it imposes a structural relationship between pollution and 

institutional ownership which has not previously been theorised or identified in the literature. However, I find that all 

tests that use log Total Releases generate consistent results; I present some of these tests in the appendix.  
51 I only sample firms with calendar year-end financial reporting dates to match the timing of variables in the cross-

section. I find that results are largely constant if I include firms with earlier financial year-ends. 
52 I find that main results are consistent if firms with book values of less than $10m are excluded. 
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I illustrate the distribution of polluters in the sample by plotting the yearly median and cumulative 

distribution of Total Releases in Figures 2.1 and 2.2. 

 

Figure 2.1: The time series of the median yearly values of Total Releases. Total Releases is the total toxics released by a 

firm in a single year, measured in millions of pounds. I source data from the Toxic Release Inventory Program, URL: 

https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2016. 
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Figure 2.1 reveals that the median toxic releases fall sharply in the early 1990’s following the 

introduction of the TRI program, and then becomes relatively stationary. This is possibly due to 

increasing environmental regulation, increasing abatement efficiency or a different sample of firms 

in the data. Figure 2.2 highlights how a minority of polluting firms are accountable for a 

disproportionately large amount of toxins in the sample. The top quintile of polluters within 

Polluterdummy therefore consists of these extreme firms as well as relatively moderate polluters.  

2.4.2. Institutional ownership and analyst coverage data  

I obtain data on institutional holdings of equity from the Thomson Reuters Institutional 13F 

Holdings database.53 The 13F database contains information about institutional investors with $100 

million or more in assets under management. Institutions comprise of banks, insurance companies, 

mutual funds, investment advisers, and others.54 IOi,t measures the percentage of firms i’s shares 

outstanding that are owned by an institution at the end of year t; despite being a quarterly report, most 

firms only file timely 13F reports in June and December (Hong & Kacperczyk, 2009). Firms with a 

missing value of IO are assumed to have 0 institutional ownership.55  

I follow Hong & Kacperczyk (2009) in their choice of control variables used in institutional 

ownership regressions. INDBETAi,t is the CAPM beta for firm i’s industry and controls for industry 

level market risk.56 LOGSIZEi,t is calculated by taking the natural logarithm of firm i’s market 

capitalisation plus 1 at the end of year t, and is a measure of firm size. LOGBMi,t is calculated by 

taking the natural logarithm of 1 plus firm i’s annual book value of equity divided by market 

 
53 The database contains several issues that are highlighted in Geertsema (2014). I follow his methodology in 

addressing these issues. 
54 ‘Investment advisers’ includes hedge funds along with an assortment of other institutions. ‘Others’ includes 

pension funds, foundations, endowments and universities.  
55 There are only 33 observations in the final sample which have missing values for IO. Primary results are unchanged 

if these observations are excluded. 
56 Industry betas are calculated by regressing each of the Fama-French 49 industry portfolio excess returns (Fama & 

French, 1997) against market excess returns in 60-month rolling window regressions. The monthly betas of each industry 

are then averaged by year to convert INDBETA to a yearly frequency. I choose industry betas over firm betas to present 

results that are robust to the controls used in Hong & Kacperczyk (2009), and because some individual firms have less 

than 60 months of returns data. Industry betas are also less noisy estimates than firm betas. However, I still find that main 

results are consistent when INDBETA is replaced with firm-specific market betas. 
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capitalisation as at the end of year t.57 STDi,t is the standard deviation of daily returns for the shares 

of firm i for year t and measures return volatility. PRINVi,t is the inverse of firm i’s share price at the 

end of year t and controls for raw price effects. RETi,t is the average monthly return for firm i’s shares 

during year t. I also use two dummy variables, NASDi,t and SP500i,t which are respectively activated 

if firm i is listed on the Nasdaq or is a constituent of the S&P 500 index during year t. 

In tests examining analyst coverage, I use a panel dataset of the number of analysts that cover a 

stock, obtained from IBES.58 LOGCOVi,t is the natural logarithm of 1 plus the monthly average 

number of analysts who cover firm i during year t and have provided a forecast for the next annual 

earnings announcement.59 Stocks that are not included in the IBES dataset are assumed to have 0 

average analyst coverage. I use the same control variables from institutional ownership tests in analyst 

coverage regressions. Summary statistics of ownership variables and analyst coverage are presented 

in Table 2.1. 

 

 

 

 

 

 

 
 

 
57 For firms with negative book values of equity, I set the book-to-market ratio as 0. Results are also consistent if I 

instead drop these firms from the sample. 
58 The number of analyst forecasts made for a stock in a month is sourced from the IBES summary file, which is 

desirable as it excludes outlier estimates in the data and represents only realistic forecasts. In unreported results, I find 

that recreating data using the IBES detail file and including outlier forecasts generates qualitatively similar results as 

found in the reported analyst forecast tests.   
59 Setting LOGCOV equal to average monthly coverage is preferred to using the total number of analysts following 

a firm; observations with one analyst covering a firm once in the year would otherwise be treated equivalent to those with 

one analyst covering the firm for the entire year. The monthly average method is also preferred to using total analyst 

coverage as at year-end due to mitigate heterogeneous seasonality effects.  
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Table 2.1: Summary statistics for the sample panel data used in institutional ownership and analyst coverage regressions. 

Variable means are presented for the full sample and for the subset of polluters and non-polluter observations. Polluters 

are identified with Polluterdummy. Explanatory variables are reported below the dependent variables. Significant 

differences in averages between polluters and non-polluters at the 10% level is denoted with *, at the 5% level with ** and 

at the 1% level with ***. 

Sample summary statistics 

         

Variable   
Full 

sample 
 Polluters  Non-

polluters  Difference 

         
IO  0.58  0.58  0.58  0.00 

LOGCOV  1.72  1.94  1.66  0.29*** 

         

INDBETA  1.04  0.89  1.08  -0.19*** 

LOGSIZE  20.88  21.90  20.63  1.27*** 

LOGBM  0.42  0.42  0.43  0.00 

STD (%)  2.58  2.25  2.67  -0.42*** 

PRINV  0.08  0.06  0.09  -0.03*** 

RET (%)  1.31  1.24  1.33  -0.09 

NASD  0.17  0.06  0.20  -0.14*** 

SP500  0.36  0.60  0.30  0.29*** 

N   8,954  1,809  7,145   

In a simple test of averages, there is no difference between institutional ownership based on 

polluter status, however polluters have greater analyst coverage. In line with expectations, polluters 

are larger in size and are more likely to be listed on the S&P 500. Polluter firms also have lower 

standard deviation of returns and operate in industries with lower market betas. The price of polluter 

stocks also tends to be higher, however, there is no significant difference between the returns of 

polluter firms and non-polluters.  

2.4.3. Polluter performance data  

To test the validity of the shunned-stock hypothesis for polluter stocks, I examine the performance 

of polluter portfolios. I source stock return data from CRSP. I exclude returns on non-domestic 

equities. I follow Shumway (1997) in correcting for delisting biases.60 Benchmark factor models used 

include the Capital Asset Pricing Model, the Fama-French 3-factors (Fama & French, 1993) and the 

 
60 If delisting returns in the panel data have a delisting stock code of 500, 520, between 551 and 573 inclusive, 574, 

580 or 584, returns are set to -30%; while a missing delisting return with an available delisting code has returns set to        

-100%.  
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Carhart 4-factors (Carhart, 1997). I source risk factor data from Kenneth French’s data library.61 

Realised stock returns and benchmark risk factors are of monthly frequency in portfolio tests. 

2.5. Main results 

The main tests in this study examine the relationship between firm pollution, institutional 

ownership, and analyst coverage in accordance with the societal discrimination hypothesis. 

2.5.1. Institutional ownership of polluter stocks 

I primarily consider whether firm pollution is negatively associated with institutional ownership 

of the polluter’s stocks. I hypothesise that institutional investors shy away from investing in firms 

that pollute heavily due to social norms. Also, with increasing environmental concerns among the 

public and institutions (Flammer, 2013), societal discrimination against pollution is likely to increase 

over the sample period; I therefore expect decreasing institutional ownership in polluter stocks over 

time. In a preliminary test, I use a simple yearly average of the IO variable for polluters and non-

polluters classified by Polluterdummy. I also generate a yearly average IO for the aggregate sample. 

I present the time series of yearly averages across groups in Figure 2.3. 

 
61 Kenneth French data library URL: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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The average IO for both the non-polluters and the aggregate sample is increasing over the sample 

period. These two time series follow each other closely as there are far more non-polluters in the 

sample that contribute to aggregated sample averages. There is a large increase of ownership leading 

up to the global financial crisis of 2008, which then levels off following the aftermath. Interestingly, 

the institutional ownership of polluter stocks starts off higher than non-polluter stocks and is also 

increasing over the time period, though at a slower rate than that of non-polluters and the aggregate 

sample. 1998 is the point of intersection between the series, one year after the Kyoto Protocol. The 

time series are generated without controlling for firm size or stock returns, and hence may be the 

result of a confounding variable driving differences in the time series.  

I run the following fixed effects panel regression to estimate the negative relationship between 

institutional ownership and Polluterdummy, after accounting for ownership control factors. 

𝐼𝑂𝑖,𝑡 =  𝛽𝑝𝑜𝑙𝑢𝑡𝑒𝑟  ∗  𝑃𝑜𝑙𝑙𝑢𝑡𝑒𝑟𝑑𝑢𝑚𝑚𝑦𝑖,𝑡  +   𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒊,𝒕  +  𝜀𝑖,𝑡     (2.1) 

Figure 2.3: A time series of the average institutional ownership of firms by Polluterdummy classification. The trendlines 

are generated by taking an average of IO for both polluters and non-polluters, as well as the entire aggregated sample. 
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Institutional ownership of a stock is regressed against the Polluterdummy, which is equal to 1 if 

the firm is in the top quintile polluters in the sample in a given year, and is equal to 0 otherwise. 

CONT is a vector of control variables that include LOGSIZE, LOGBM, STD, INDBETA, PRINV, RET, 

NASD and SP500.62 The parameter of interest is βpolluter, which is the estimated impact on institutional 

ownership of being a large polluter. Under the alternative hypothesis, βpolluter is negative. On average, 

aggregate IO has a positive trend; I account for time heterogeneity in the dependent variable by 

including yearly fixed effects (Gormley & Matsa, 2013). Hong & Kacperczyk (2009) use the “ultra-

conservative” (p. 24) approach of adjusting standard errors by clustering on Fama-French (1997) 

industry groups. I follow their approach and additionally include clustering by year in a panel 

regression, thus making significance estimates even more conservative (Petersen, 2009).  

I repeat regression (2.1) with Total Releases as an independent variable in place of 

Polluterdummy. Using Total Releases tests for a linear relationship between pollution and 

institutional ownership.63 Using Polluterdummy, I also implement industry fixed effects in the 

regression based on the Fama & French (1997) industries; this model examines whether polluters 

have reduced institutional ownership within their industry groups.  

For robustness, I also repeat regression (2.1) with a linear trend variable as an alternative control 

for time-varying heterogeneities. I then interact the linear trend with Polluterdummy to test whether 

institutional reluctance to invest in the largest polluters has changed over time. If societal 

discrimination of polluter stocks has increased over the sample period, the estimated interaction 

coefficient should be negative. Though yearly fixed effects provide greater flexibility in the model 

specifications, using a simple yearly trend is useful in estimating a smoothed average in ownership 

 
62 I avoid including corporate governance variables in main tests due to concerns of simultaneity with IO and a 

reduced sample size; however, in a robustness test I find a consistent relationship between IO and Polluterdummy after 

controlling for KLD governance variables, which include managerial compensation, low governance reporting 

transparency, total number of governance strengths and total number of governance concerns. I report the results of the 

robustness test in the appendix. Another potential robustness test could include firm R&D controls, however, R&D data 

stored in Compustat is largely unrelated to the type of R&D that is relevant to pollution abatement. 
63 Polluterdummy identifies the top 20% of polluters by year which is not necessarily the same top 20% of polluters 

in aggregate. Estimated coefficients for Polluterdummy thus have a slightly different interpretation to estimates for the 

top quintile of Total Releases on its own, albeit marginally. 
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trends along with interactions with Polluterdummy. I present the results of all five specifications of 

regression (2.1) in Table 2.2. 

Table 2.2: Results of the institutional ownership panel regressions where the dependent variable is IO. I present regression 

coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with two-way clustering on industry 

and year. There are 8,954 firm-year observations in the sample for each specification. Significance at the 10% level is 

denoted with *, at the 5% level with ** and at the 1% level with ***. 

Institutional ownership panel regression results 

           

Variable  (1)  (2)  (3)  (4)  (5) 

           

Polluterdummy  -0.0429***    -0.0267  -0.0448***  0.0131 

  (-3.03)    (-1.52)  (-3.24)  (0.91) 

Total Releases    -0.0003       

    (-1.35)       

t        0.0098***  0.0107*** 

        (6.39)  (7.02) 

Polluterdummy * t          -0.0040*** 

          (-5.60) 

INDBETA  0.1052***  0.1110***  0.0310*  0.0902***  0.0868*** 

  (3.70)  (3.52)  (1.71)  (3.65)  (3.66) 

LOGSIZE  0.0428***  0.0411***  0.0489***  0.0464***  0.0459*** 

  (6.37)  (5.97)  (5.97)  (6.47)  (6.37) 

LOGBM  0.0186  0.0129  0.0466**  0.0174  0.0180 

  (0.91)  (0.60)  (2.38)  (0.79)  (0.84) 

STD  -0.0129*  -0.0131*  -0.0142**  -0.0028  -0.0029 

  (-1.71)  (-1.69)  (-2.20)  (-0.39)  (-0.40) 

PRINV  -0.1076**  -0.1102**  -0.0855*  -0.1322**  -0.1322** 

  (-2.16)  (-2.17)  (-1.78)  (-2.49)  (-2.50) 

RET  -0.0013  -0.0014  -0.0006  -0.0028*  -0.0028* 

  (-1.22)  (-1.27)  (-0.65)  (-1.91)  (-1.91) 

NASD  -0.0554***  -0.0531***  -0.0561***  -0.0575***  -0.0578*** 

  (-3.96)  (-3.78)  (-3.97)  (-4.15)  (-4.16) 

SP500  -0.0246  -0.0265  -0.0290  -0.0315  -0.0318 

  (-1.27)  (-1.34)  (-1.44)  (-1.59)  (-1.61) 

           

Fixed effects  Year  Year  
Year & 

Industry 
 None  None 

N  8,954  8,954  8,954  8,954  8,954 

Adjusted R2  0.4068  0.4027  0.4505  0.3737  0.3764 

Results are consistent with hypotheses of societal discrimination against polluters and increasing 

environmental awareness. In columns (1) and (4), the estimated Polluterdummy coefficients are 
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significantly negative, revealing that institutions own proportionately less equity in firms that pollute 

the largest quantities in a year, as expected. Polluting firms are associated with approximately 4.5% 

less institutional ownership of their stocks on average compared to the institutional ownership of non-

polluters within any year. Interestingly, the association between pollution and ownership appears to 

be non-linear; results of the Total Releases regression does not generate a statistically significant 

coefficient. I explore this non-linearity in the next section. 

The use of yearly fixed effects generates a statistically significant coefficient for Polluterdummy. 

However, once industry fixed effects are included,  significance disappears. The industry and yearly 

fixed effects model provides no evidence that polluters have reduced institutional ownership once 

industry averages are accounted for. This finding suggests that average industry pollution matters, 

but the within-industry effects of pollution are insignificant. In a similar model reported in the 

appendix, I use firm fixed effects instead of industry fixed effects. The results of this additional test 

provide no evidence to suggest that deviation from firm averages in pollution is associated with 

within-firm variation in institutional ownership. The weak relationships at the within-industry and 

within-firm levels indicate that institutional reluctance to own polluters is not granular enough to 

specifically target polluting activity, but rather is a broader social stigma which appears to affect 

industries and firms that are perceived as polluters. 

Consistent with Gompers & Metrick (2001), the linear trend in columns (4) and (5) is positive 

and statistically significant, indicating that after controlling for firm characteristics, institutions are 

increasing their proportional holdings of equity by approximately 1% each year on average. However, 

the polluter-time interaction is significantly negative, revealing that institutions are reducing their 

holdings of polluters relative to non-polluters by approximately 0.4% each year on average; or 

equivalently, institutional ownership of polluters is also increasing but at a slower rate than that of 

non-polluters. Consistent with growing environmental awareness, this interaction effect absorbs 

significance from the Polluterdummy coefficient, and with 28 years in the sample, reverses the 
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positive coefficient too. The interaction estimate is also consistent with Figure 2.3, where initially the 

ownership of polluter stocks is higher than non-polluters, but then reverses in the late 90’s.  

Consistent with the literature, industry beta and size appear to have a positive association with 

institutional ownership, while being listed on the NASDAQ has a negative association. STD has a 

negative coefficient, revealing that volatile stocks are associated with reduced institutional ownership 

on average; however, the effect is only significant in fixed effects models. The coefficient of PRINV 

suggests that institutions hold more expensive shares. Ownership is also found to be negatively related 

to the stock’s average performance in the past year, but only when fixed effects are excluded. The 

main results are overall in line with the hypothesised social norms on polluter stocks and provide 

evidence of a reduced institutional ownership of polluter firms.  

In an additional test, I repeat the yearly fixed effects regression (2.1) and include Sindummy, a 

dummy variable activated for the list of firms included by Hong & Kacperczyk (2009) in the 

‘Triumvirate of Sin’. I present the results of this test in the appendix. Estimated coefficients for 

Sindummy are also negative and almost three times as high as those for Polluterdummy, indicating 

that polluter investments are relatively less discriminated against compared to traditional sin 

industries. 

I examine the association between IO and Total Releases by repeating the fixed effects panel 

regression (2.1) but with 9 polluter decile dummy variables; one for each yearly decile of Total 

Releases relative to other firms in the TRI. Firms that pollute in the lowest decile in a year have no 

dummy variable activated, while firms that pollute in the 2nd decile (Total Releases is between the 

10th and 20th percentile) have the corresponding 2nd decile dummy variable activated, and so on. I use 

the complete set of control variables shown in Table 2.2, and use the yearly fixed effects model. I 

graph the estimated dummy coefficients from this test in Figure 2.4. This test highlights the average 

relation between firm yearly rankings of Total Releases and institutional ownership. 
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Results reveal a non-monotonic relationship between toxic releases and institutional ownership, 

explaining the insignificant estimated coefficient for Total Releases in Table 2.2 column (2). Figure 

2.4 suggests that institutional holdings are more sensitive to pollution once toxic releases exceed a 

threshold, shown by the sharp decrease in coefficients following decile 7 firms. Institutions appear to 

prefer firms with moderate levels of toxicity. Figure 2.4 suggests that the greatest polluters are 

disproportionately discriminated against relative to moderate polluters. Consistent with Fernando et 

al. (2017), relatively green firms in the lowest decile of pollution also appear to have reduced 

institutional ownership relative to the middle deciles, suggesting a negative institutional reaction to 

firm pollution being on either extreme of the spectrum. 

Given the presence of extreme polluters as seen in Figure 2.2, I repeat the yearly fixed effects 

regression (2.1) with clustered standard errors, and include two additional dummy variables for the 

top 5% and 1% of polluters by year. The coefficients of these dummy variables represent the marginal 

reduction in institutional ownership for more extreme polluter percentiles. The estimated coefficient 

Figure 2.4: Pollution decile dummy coefficients, estimated from a yearly fixed effects panel regression with IO as the 

dependent variable. Decile 1 has no active dummy, and is therefore the benchmark against which the following dummy 

coefficients are compared against. 
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for the original Polluterdummy is -0.037 with significance at the 5% level, and -0.021 and -0.07 for 

the 95th and 99th percentile polluter dummy variables respectively, both of which are insignificant at 

the 10% level. Figure 2.4 and these insignificant estimates suggest that the most extreme polluters do 

not have further reduced institutional ownership compared to firms in the top quintile of pollution. It 

is possible that the original Polluterdummy benchmark closely approximates the average institutional 

pollution thresholds used in negative screens; firms that pollute in greater percentiles may already be 

excluded by most institutional investors and thus experience limited marginal decreases in ownership. 

As seen in Table 2.2 column (5), the polluter-time interaction is significantly negative, revealing 

that institutions have reduced their ownership of polluter stocks over time relative to their holdings 

of non-polluters. However, the interaction is a smoothed slope and does not explicitly show yearly 

changes in the gap between the institutional ownership of polluters and other firms. I estimate annual 

differences in the ownership of polluters relative to non-polluters by conducting the yearly fixed 

effects panel regression (2.1) and interacting each of the yearly dummy variables with 

Polluterdummy. The year 1987 has no dummy and is therefore the benchmark to which the fixed 

effect interaction coefficients are compared against. I plot the interaction coefficients generated by 

both the linear trend and yearly fixed effects models in a time series, illustrated in Figure 2.5. The 

estimated coefficients can be interpreted as marginal yearly effects on the difference in institutional 

ownership between polluters and non-polluters. 
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Results reveal that the largest decrease in the interaction coefficients occurred in the period 

between 1994 and 2003; this is roughly consistent with Figure 2.3. Institutions decreased their 

holdings of polluter firms relative to non-polluters in the early 1990’s, and then maintained the 

ownership gap after the mid 2000’s. From the mid 2000’s onwards, the difference in institutional 

ownership between polluter and non-polluters is more stationary, with the estimated Polluterdummy 

and yearly fixed effects interaction coefficients falling within the approximate band of -0.09 and -

0.12. These estimates reveal that after the early broadening of the ownership gap between polluters 

and non-polluters, there has not been much of a further decline from 2005 onwards. Results are overall 

consistent with the hypothesis of growing environmental sentiment over the sample. 

In Table 2.2, I show that institutional ownership of polluters is reduced relative to non-polluters. 

However, within the group of polluter firms, some firms may be perceived to generate enough 

positive economic value to offset the social externalities of pollution. Some firms may also operate 

in sectors that generate valuable output but cannot avoid polluting in their operations. In contrast, 

Figure 2.5: Estimated interaction coefficients between Polluterdummy and time, where the dependent variable is IO. 

Coefficients are estimated using the Polluterdummy-time interaction trend in the main regression, as well as 

Polluterdummy-yearly fixed effects interactions. 1987 has no active dummy, and is therefore the benchmark from which 

the dummy interaction coefficients are compared against. The estimated Polluterdummy coefficient is 0.0131 when using 

the linear trend interaction model and is 0.0339 when using the fixed effects interaction model. 
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some inefficient polluting firms may pollute at high levels which cannot be justified by their low 

levels of positive economic output. I therefore test whether inefficient polluters, defined relative to 

their positive economic output, are associated with reduced institutional ownership.  

I proxy for polluter efficiency by scaling yearly Total Releases by the latest annualised net sales 

of the firm in year t. Dividing Total Releases by net sales produces a ratio of negative to positive 

outputs. An inefficient polluter is defined as having a high ratio, while efficient polluters have a low 

ratio. I create a new dummy variable labelled Scaledpolluter, which is activated if a firm has a 

pollution to sales ratio that is within the top quintile for a year.64 Scaledpolluter and Polluterdummy 

are positively correlated, with a correlation coefficient of 0.60 significant at the 1% level,65 indicating 

that the largest absolute polluters are also likely to be the least efficient polluters. I rerun the yearly 

fixed effects panel regression (2.1) with Scaledpolluter; this regression estimates whether institutions 

hold fewer stocks of firms that are relatively inefficient in their toxic releases. A negative estimated 

coefficient for Scaledpolluter would imply that society discriminates against polluters after 

considering the economic value that these firms may otherwise generate. I also include 

Polluterdummy and industry fixed effects in two additional regression specifications. Results of the 

three regressions are presented in Table 2.3. 

 

 

 

 

 

 
64 I set Scaledpolluter to 1 for firms that have positive pollution in the numerator but a net sales value of 0 or less in 

the denominator; there are only two observations for which this is necessary. Alternatively, I find near exactly similar 

results if these observations are dropped instead. 
65 Pearson and Spearman coefficients are identical when estimating correlations between two dummy variables. 
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Table 2.3: Results of the polluter efficiency fixed effects panel regressions where the dependent variable is IO. I present 

regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with two-way clustering 

on industry and year. There are 8,954 firm-year observations in the sample for each specification. Significance at the 10% 

level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

 Polluter efficiency panel regression results 

      

Variable (1)  (2)  (3) 

      

Scaledpolluter -0.0419**  -0.0261  -0.0152 

 (-2.70)  (-1.34)  (-0.81) 

Polluterdummy   -0.0254  -0.0176 

   (-1.50)  (-0.89) 

INDBETA 0.1040***  0.1029***  0.0307* 

 (3.72)  (3.73)  (1.69) 

LOGSIZE 0.0392***  0.0410***  0.0479*** 

 (5.60)  (6.20)  (6.03) 

LOGBM 0.0134  0.0168  0.0453** 

 (0.63)  (0.81)  (2.29) 

STD -0.0130*  -0.0128*  -0.0142** 

 (-1.75)  (-1.74)  (-2.21) 

PRINV -0.1105**  -0.1089**  -0.0866* 

 (-2.21)  (-2.19)  (-1.80) 

RET -0.0012  -0.0013  -0.0006 

 (-1.19)  (-1.19)  (-0.63) 

NASD -0.0570***  -0.0570***  -0.0570*** 

 (-4.06)  (-4.06)  (-4.08) 

SP500 -0.0261  -0.0249  -0.0290 

 (-1.32)  (-1.27)  (-1.44) 

      

Fixed effects Year  Year  
Year & 

Industry 

N 8,954  8,954  8,954 

Adjusted R2 0.4070  0.4078  0.4508 

Results indicate that the institutional ownership of inefficient polluters is also reduced, by a 

similar level as that of the greatest absolute polluters. When Polluterdummy is included as an 

explanatory variable in the regression, the estimated coefficients of both Polluterdummy and 

Scaledpolluter are negative, however neither has statistical significance. This is likely a result of the 

high correlation between these two variables; both explanatory variables are competing to explain the 

same variation in institutional ownership. Though results find a negative relationship between 

inefficient pollution and institutional ownership, they are unable to differentiate between the effects 



  

74 

 

of absolute pollution and inefficient pollution on ownership. Similar to results shown in Table 2.2, I 

find no evidence to indicate that either Polluterdummy or Scaledpolluter are associated with reduced 

within-industry institutional ownership. 

2.5.2. Disaggregated toxic releases test 

An advantage of the Toxic Release Inventory is the data granularity; unlike environmental scores 

such as from KLD, the dataset breaks down the various types of releases by chemical group. By 

disaggregating Total Releases by chemical classification, I test which toxic substances have the 

greatest negative association with institutional ownership. This test serves to examine the varying 

effects of toxic chemical groups on institutional ownership.  

Total Releases is disaggregated into one of three mutually exclusive chemical groups. The first 

classification consists of standard TRI chemicals, which comprise of general toxic chemicals such as 

certain forms of ammonia, aluminium, phosphorus and zinc. These chemicals may significantly 

damage human health, wildlife, and the external environment. The second category consists of 

persistent bio-accumulative chemicals (PBT) such as lead or mercury compounds, which accumulate 

in body tissue over time, cause lasting damage to the environment and are not easily destroyed. The 

final category of chemicals consists of separately identified persistent toxins, labelled as dioxin and 

dioxin-like compounds. These are trace level by-products of combustion or industrial processes. 

Dioxins are extremely toxic, and human exposure mostly occurs through food products.  

TRI chemicals are generally released in larger quantities and are relatively less harmful than PBT 

and dioxin chemicals, which have lower reporting thresholds. PBT and dioxin chemicals have the 

potential to cause significant environmental and health damage from lower releases (EPA, 1999). In 

particular, dioxins have the greatest toxicity, and as a result have the lowest reporting thresholds 

measured in grams released. I hypothesise a negative relationship between institutional ownership 

and all chemical groups; however, I expect the strongest negative relationship to be with dioxins, and 

the weakest negative relationship with TRI chemicals. 
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I run the institutional ownership regression below with TRI, PBT and Dioxin as individual 

explanatory variables. These are set as either the continuous firm-year releases of their respective 

chemical classifications, or as dummy variables which are activated for the top yearly quintile of 

polluters for that chemical group. 

𝐼𝑂𝑖,𝑡 =  𝛽𝑇𝑅𝐼  ∗  𝑇𝑅𝐼𝑖,𝑡  + 𝛽𝑃𝐵𝑇  ∗  𝑃𝐵𝑇𝑖,𝑡  +  𝛽𝐷𝑖𝑜𝑥𝑖𝑛  ∗  𝐷𝑖𝑜𝑥𝑖𝑛𝑖,𝑡  +  𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒊,𝒕  +  𝜀𝑖,𝑡  

            (2.2) 

Continuous pollution variables are stored in millions of pounds, except for Dioxin releases which 

are stored in pounds. Data on Dioxin only begins from the year 2000 onwards and therefore reduces 

the panel size. The average values for the continuous TRI, PBT and Dioxin releases are 3.47, 0.26 and 

0.03 respectively, and the Pearson correlations between the three variables range from 0.02 to 0.54. I 

use the full set of control variables in the primary ownership tests, and include yearly fixed effects. 

Results of the regression are presented in Table 2.4. 
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Table 2.4: Results of the institutional ownership fixed effects panel regression disaggregated by chemical classification, 

where the dependent variable is IO. TRI, PBT and Dioxin measure either the continuous toxic releases of their respective 

chemical classification, or are dummy variables activated for the top yearly quintile polluters of that subcategory. The 

continuous versions of TRI and PBT are measured in millions of pounds, while Dioxin is measured in pounds. I present 

regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with two-way clustering 

on industry and year. There are 4,778 firm-year observations in the sample. Significance at the 10% level is denoted with 

*, at the 5% level with ** and at the 1% level with ***. 

Toxic releases disaggregated by chemical classification 

     

Variable   Continuous  Dummy 

     

TRI  -0.0002  -0.0305 

  (-0.60)  (-1.36) 

PBT  -0.0013  0.0097 

  (-0.77)  (0.55) 

Dioxin  -0.0424***  -0.0598** 

  (-2.88)  (-1.99) 

INDBETA  0.0968***  0.0786*** 

  (3.42)  (3.75) 

LOGSIZE  0.0425***  0.0425*** 

  (5.16)  (5.99) 

LOGBM  -0.0386  -0.0196 

  (-1.61)  (-0.91) 

STD  -0.0013  -0.0013 

  (-0.14)  (-0.15) 

PRINV  -0.1163**  -0.1115** 

  (-2.04)  (-2.00) 

RET  -0.0032**  -0.0030* 

  (-2.05)  (-1.82) 

NASD  -0.0756***  -0.0802*** 

  (-4.03)  (-4.30) 

SP500  -0.0804***  -0.0770*** 

  (-3.04)  (-3.14) 

     

Fixed effects  Year  Year 

N  4,778  4,778 

Adjusted R2   0.2649  0.2735 

Results reveal a negative association between institutional ownership and releases of all three 

chemical categories; however, only Dioxin is statistically significant. The magnitude of the Dioxin 

coefficient is much larger than that of the other two groups using either continuous or dummy 

variables. In an unreported test, I find that using the natural log of the continuous pollution variables 

as independent variables generates similar results. Results indicate that despite having the lowest 
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average releases, the marginal impact of Dioxin releases on institutional ownership is significantly 

greater than that of the other two chemical groups. 

2.5.3. Disaggregated ownership tests 

While institutions in aggregate may be constrained in owning polluter stocks, some may be less 

sensitive to social norms. I hypothesise that institutions that face relatively less public scrutiny, have 

less social accountability, trade more aggressively, attempt to exploit market inefficiencies, and rely 

less on passive negative investment screens are less likely to be constrained by social norms and have 

relatively greater polluter stock ownership. These institutions may be less exposed to social pressures 

or may be willing to accept the trade-off between the potential pecuniary benefits derived from 

polluter equity and costs of deviating from social norms. 

In the following two tests I break down the dependent variable IO by institution type; in the first 

test I separate institutions by their Bushee (2001) classification, while in the second test I disaggregate 

institutions based on their 13F classes. These tests reveal which institution groups are most associated 

with reduced ownership of polluter firms relative to their holdings of non-polluters. 

I first use Bushee institutional investor classifications to disaggregate institutions into separate 

groups.66 Institutions are grouped by Bushee (2001) using a cluster analysis on a set of factors that 

measure past characteristics of investment behaviour.67 As described in Bushee (1998), these factors 

are generated from variables that measure the level of portfolio concentration and the degree of 

 
66 I thank Brian J. Bushee for access to his institutional investor database, which includes data on investor type and 

a permanent investor unique identifier. The classification cluster analysis is the same as described in Bushee (1998) but 

with the momentum variables excluded, as in Bushee & Noe (2000) and Bushee (2001). I avoid using the permanent 

investor type classification and instead opt for the dynamic classification to account for changes in institutional behaviour. 

Not all investors in the database are given a classification, and therefore some manager holdings observations are excluded 

from all subsamples. Investor classification data URL: http://acct.wharton.upenn.edu/faculty/bushee/IIclass.html. 
67 The classification approach of Bushee (2001) uses principle factor analysis to generate PTURN and BLOCK, 

which are measures of institutional portfolio turnover and diversification. A k-means cluster analysis is then run on these 

factor scores to separate institutions into the three Bushee groups. Bushee (2001) describes the mean portfolio 

characteristics of the three types of institutions as follows. Transient institutions have high portfolio turnover, diversified 

portfolios and a preference for smaller firms. Dedicated institutions have low turnover and low diversification. Quasi-

indexer institutions have low turnover, diversified holdings, and a preference for larger firms. 
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portfolio turnover. Disaggregation by these factors allows for tests to estimate the association between 

firm pollution and ownership between different institutional profiles.  

Institutions are segregated into three groups. Institutions are classified as either ‘dedicated’, 

‘quasi-indexer’ or ‘transient’. By construction, dedicated institutions have the highest portfolio 

concentration and low portfolio turnover (Bushee, 1998). Dedicated investors invest large amounts 

in a small number of firms and have a ‘relationship’ approach to their investments; dedicated investors 

are not frequent traders and have long-term stable equity holdings in relatively fewer firms (Bushee 

& Noe, 2000). Quasi-indexers also have low turnover, but tend to hold large, diversified portfolios, 

consistent with index-like, buy-and-hold, value strategies (Bushee, 1998). Quasi-indexers are the 

largest class of institutional investors. Both dedicated and quasi-indexers are characterised by long-

term investment horizons. Lastly, transient institutions have the greatest portfolio turnover and exhibit 

relatively high diversification (Bushee, 1998). Transient institutions trade aggressively on short-term 

strategies and focus on generating short-term returns (Bushee, 2001). Transient ownership is also 

associated with future changes in stock price volatility (Bushee & Noe, 2000). 

Bushee institution types have varied investment strategies that may impact their holdings of 

polluter stocks. Because of their short-term strategies and aggressive trading behaviour, I hypothesise 

that transient institutions are more likely to play the role of arbitrageur in the market and be relatively 

indifferent to social constraints on polluter ownership. Transient institutions may also be less exposed 

to public scrutiny as their investments are not held for extended periods of time. In contrast, quasi-

indexers are anecdotally more likely to avoid polluter stocks for ethical and reputational reasons, and 

may use passive negative investment screens that reduce polluter ownership. Due to their long-term, 

value-driven, buy-and-hold strategies, quasi-indexers are expected to be more sensitive to public 

scrutiny and social norms that influence the long-run value of their investments. Dedicated 

institutions also have long-term investment horizons which may similarly influence their preference 

for non-polluting firms. 
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Each firm-year observation of IO is separated into three observations based on the total holdings 

of each Bushee institution subcategory. I conduct a separate yearly fixed effects panel regression for 

each subcategory of institutional ownership by regressing the disaggregated IO for each Bushee 

institution type x on Polluterdummy, as follows.  

𝐼𝑂𝑖,𝑥,𝑡 =  𝛽𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑟  ∗  𝑃𝑜𝑙𝑙𝑢𝑡𝑒𝑟𝑑𝑢𝑚𝑚𝑦𝑖,𝑡  +  𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒊,𝒕  + 𝜀𝑖,𝑡    (2.3) 

I control for the full set of control variables from regression (2.1) in the vector CONT, and two-

way cluster standard errors by industry and year. I present the results of each of the three regression 

in Table 2.5. 
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Table 2.5: Results of the institutional ownership fixed effects panel regressions disaggregated by Bushee institution type, 

where the dependent variable is IO for that institution type. I present regression coefficient estimates with t-statistics in 

brackets below. Standard errors are adjusted with two-way clustering on industry and year. There are 8,954 firm-year 

observations in the sample for each specification. Significance at the 10% level is denoted with *, at the 5% level with ** 

and at the 1% level with ***. 

Institutional ownership disaggregated by Bushee institution type 
       
  Bushee institution type 
       
Variable   Dedicated  Quasi-indexer  Transient 
       

Polluterdummy -0.0121***  -0.0601***  -0.0106* 

  (-2.89)  (-5.98)  (-1.92) 

INDBETA  0.0131***  0.0804***  0.0381*** 

  (2.80)  (3.34)  (3.94) 

LOGSIZE  -0.0030*  0.0145***  0.0080*** 

  (-1.79)  (2.88)  (3.37) 

LOGBM  -0.0003  -0.0107  -0.0117 

  (-0.04)  (-0.51)  (-1.25) 

STD  -0.0072***  -0.0211***  0.0005 

  (-3.02)  (-4.85)  (0.22) 

PRINV  -0.0131*  -0.0716*  -0.0379*** 

  (-1.75)  (-1.86)  (-3.33) 

RET  -0.0001  -0.0014  0.0026*** 

  (-0.44)  (-1.55)  (4.42) 

NASD  -0.0062  -0.0258*  -0.0099 

  (-1.25)  (-1.83)  (-1.46) 

SP500  0.0135*  0.0390*  -0.0145 

  (1.85)  (1.81)  (-1.52) 

       

Fixed effects  Year  Year  Year 

N  8,954  8,954  8,954 

Adjusted R2 0.2082  0.4237  0.2652 

Results reveal that all three Bushee institution types have significantly reduced ownership of 

polluters. Estimates show that quasi-indexers are the most averse to polluter stocks, followed by 

dedicated and then transient institutions. Though both dedicated and transient institutions have a 

similar estimated coefficient for Polluterdummy, the estimate is more significant for dedicated 

institutions. This reveals that transient institutions display relatively more dispersion in their 

investments in polluter stocks compared to dedicated investors. Quasi-indexers have both the greatest 

magnitude and statistical significance in their estimated reduced polluter ownership. 
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Some control variables, such as LOGSIZE and RET, change significance and sign dependent on 

the institutional group; this is expected due to the differences in trading strategies between 

institutional groups. As expected, the adjusted R2 is much higher for quasi-indexers than transient 

investors, likely due to the diverse trading strategies used by the latter. Dedicated investors have the 

lowest adjusted R2, implying greater variation in their relatively smaller breadth of niche investments. 

Following Hong & Kacperczyk (2009) I again disaggregate institutions in the next test, but by 

13F class. The 13F dataset classifies institutions into five types; type 1 are banks, type 2 are insurance 

companies, type 3 are mutual funds, type 4 are independent investment advisers which include hedge 

funds, and type 5 are other which include universities, endowments, and pension funds. I restrict my 

Thomson Reuters institutional holdings sample to 1987 - 1997 due to mapping issues in the data post 

1997, in which many institutions are incorrectly stored as type 5 (Hong & Kacperczyk, 2009).  I 

classify type 1, 2 and 5 as ‘Type A’ institutions, and type 3 and 4 as ‘Type B’ institutions. On average, 

Type A institutions are more likely to be socially constrained investors with greater visibility and 

public accountability, while Type B institutions are less likely to be constrained by social norms and 

may act as arbitrageurs if polluter stocks are ignored by other market participants (Hong & 

Kacperczyk, 2009). I hypothesise a negative coefficient on Polluterdummy for Type A institutions 

only, due to their greater sensitivity to social pressures. I repeat the disaggregated institutional 

ownership fixed effects panel regression (2.3) for both 13F institution groups. Results of the 

regressions are presented in Table 2.6. 
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Table 2.6: Results of the institutional ownership fixed effects panel regressions disaggregated by 13F institution type, 

where the dependent variable is IO for that institution type. ‘Type A’ consists of banks, insurance firms, pension plans, 

endowments, universities and employee-ownership plans. ‘Type B’ consists of mutual funds and independent investment 

advisers. I present regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with 

two-way clustering on industry and year. Data is limited to the range 1987 to 1997. There are 3,471 firm-year observations 

in the sample. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Institutional ownership disaggregated by 13F institution type 

  13F institution type 

Variable   Type A  Type B 

     

Polluterdummy  -0.0352***  0.0665** 

  (-3.46)  (2.49) 

INDBETA  0.0186  0.0016 

  (0.75)  (0.03) 

LOGSIZE  0.0079*  0.0520*** 

  (1.65)  (3.99) 

LOGBM  -0.0130  0.0775 

  (-0.94)  (1.50) 

STD  -0.0178***  -0.0005 

  (-4.50)  (-0.03) 

PRINV  -0.0204  0.2176** 

  (-0.95)  (2.19) 

RET  -0.0016**  0.0017 

  (-2.18)  (0.74) 

NASD  -0.0220*  0.0171 

  (-1.75)  (0.35) 

SP500  0.0622***  -0.1191*** 

  (3.33)  (-2.66) 

     

Fixed effects  Year  Year 

N  3,471  3,471 

Adjusted R2   0.1954  0.0503 

The estimated coefficients reveal that on average, Type A institutions have reduced levels of 

polluter ownership while Type B institutions have relatively more; coefficients are estimated at the 

1% and 5% significance levels respectively. Due to the lack of clean data post 1997, the effects of 

more recent environmental awareness and anti-polluter sentiment are not seen in the results. Despite 

this, the estimated coefficients themselves are in line with expectations. Type A investors are 

generally less aggressive in their trading strategy and more prone to public scrutiny, whereas Type B 

investors are expected to experience less public scrutiny, try arbitrage price inefficiencies, and be 
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indifferent to social norms. Type B investors also have more varied trading strategies within the 

group, supported by a dramatically lower adjusted R2 compared to Type A. In this reduced sample, 

results provide evidence of polluter stocks being ignored by publicly scrutinised institutional 

investors, and in contrast are invested in relatively more by aggressive institutions. 

2.5.4. Analyst coverage 

Following the logic of Hong & Kacperczyk (2009), analyst coverage of sin stocks should be 

reduced due to the relationship between sell-side analysts and institutional investors; if institutions 

are reluctant to own polluter stocks, there will be reduced demand for coverage of polluters. I test 

whether analyst coverage is negatively associated with total firm pollution with the following fixed 

effects panel regression. 

𝐿𝑂𝐺𝐶𝑂𝑉𝑖,𝑡 =  𝛽𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑟  ∗  𝑃𝑜𝑙𝑙𝑢𝑡𝑒𝑟𝑑𝑢𝑚𝑚𝑦𝑖,𝑡  +  𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒊,𝒕  +  𝜀𝑖,𝑡     (2.4) 

LOGCOV is regressed against the full set of control variables from institutional ownership 

regressions and the Polluterdummy variable. I first employ a yearly fixed effects model to test the 

association between analyst coverage and pollution using Polluterdummy and Total Releases 

separately. I also add industry fixed effects in the Polluterdummy model to test for within-industry 

relationships between pollution and institutional ownership. In my final two model specifications, I 

use an independent trend variable t instead of fixed effects, and then include a polluter-time 

interaction effect between Polluterdummy and t. 

I control for the same variables used in ownership regressions (Hong & Kacperczyk, 2009), 

represented by the vector CONT. T-stats are calculated using two-way clustered standard errors, with 

clustering on year and industry. I present the results of all five regression specifications in Table 2.7. 
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Table 2.7: Results of the analyst coverage panel regressions where the dependent variable is LOGCOV. I present 

regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with two-way clustering 

on industry and year. There are 8,954 firm-year observations in the sample for each specification. Significance at the 10% 

level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Analyst coverage panel regression results 

           

Variable   (1)  (2)  (3)  (4)  (5) 

           

Polluterdummy  -0.1412**    -0.1329  -0.1391**  -0.2462* 

  (-2.05)    (-1.44)  (-2.08)  (-1.76) 

Total Releases    -0.0012       

    (-0.51)       

t        -0.0065  -0.0081** 

        (-1.55)  (-2.25) 

Polluterdummy * t          0.0074 

          (1.12) 

INDBETA  0.2834***  0.3022***  0.0928  0.3282***  0.3345*** 

  (6.47)  (6.02)  (1.55)  (6.85)  (6.57) 

LOGSIZE  0.3306***  0.3250***  0.3605***  0.3269***  0.3279*** 

  (10.51)  (9.76)  (12.55)  (10.47)  (10.66) 

LOGBM  -0.0677  -0.0863  0.0027  -0.0048  -0.0058 

  (-0.61)  (-0.75)  (0.02)  (-0.05)  (-0.05) 

STD  0.0220*  0.0212  0.0225**  0.0129  0.0129 

  (1.67)  (1.57)  (2.08)  (1.05)  (1.06) 

PRINV  -0.0357  -0.0441  0.0100  0.0063  0.0064 

  (-0.44)  (-0.53)  (0.14)  (0.09)  (0.09) 

RET  -0.0296***  -0.0298***  -0.0297***  -0.0256***  -0.0255*** 

  (-8.21)  (-8.32)  (-8.59)  (-8.19)  (-8.21) 

NASD  0.0624  0.0701  0.0360  0.0582  0.0586 

  (0.78)  (0.87)  (0.44)  (0.72)  (0.72) 

SP500  0.2576**  0.2515**  0.2128**  0.2827***  0.2833*** 

  (2.42)  (2.35)  (2.05)  (2.64)  (2.64) 

           

Fixed effects  Year  Year  Year & 

Industry 
 None  None 

N  8,954  8,954  8,954  8,954  8,954 

Adjusted R2   0.4174  0.4154  0.4562  0.4122  0.4126 

Results are consistent with the hypothesised relationship between polluter firms and analyst 

coverage. I find that after controlling for various firm level variables, firms that pollute in the top 

quintile in a year have reduced analyst coverage on average. Estimates generated with using the linear 

trend and yearly fixed effects in columns (1) and (4) are similar and significant at the 5% level.  
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Like estimates from regression (2.1), the estimated coefficient of Total Releases is insignificant, 

suggesting a non-linear relationship between analyst coverage and pollution levels. The polluter-time 

interaction coefficient is also insignificant, providing no evidence that analyst coverage for polluters 

is diverging from that of other stocks over time. 

The estimated coefficient of Polluterdummy is statistically insignificant when industry fixed 

effects are included, providing no evidence of a within-industry relationship between polluters and 

analyst coverage, similar to results from the primary institutional ownership test. I conduct a separate 

regression in the appendix by replacing the industry fixed effects for firm fixed effects, but again find 

no evidence to suggest there is a within-firm relationship between pollution and analyst coverage. 

These findings are consistent with the institutional ownership results and reinforce the notion that 

societal discrimination does not appear to specifically target pollution levels, but instead appear to 

penalise polluting industries or firms. As a result, within-industry and within-firm relationships 

between pollution, institutional ownership and analyst coverage are weak. 

Though average LOGCOV is increasing with time in the sample, the regression coefficient of the 

linear trend is negative; this is a result of the marginal effect of time after controlling for other factors 

such as firm size.68 The coefficient of LOGSIZE is positive and estimated with significance, and along 

with the coefficients of INDBETA and SP500, reveals that firms that are large, operate in market-

sensitive industries, or are listed on the S&P 500 receive greater analyst coverage. The coefficient of 

RET is also estimated with significance, however, has a negative sign indicating that firms that have 

more analyst coverage generate lower returns. Overall estimates are consistent with Hong & 

Kacperczyk (2009) and support the hypothesis that polluters have reduced analyst coverage, albeit 

with weaker significance than in ownership tests. 

 
68 The Pearson correlation coefficient between LOGSIZE and the trend is 0.30, and is statistically significant at the 

1% level. This is not high enough to create severe multicollinearity problems in regressions; however, if LOGSIZE is 

removed from the vector of control variables, the estimated sign of the trend coefficient reverses. 
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In an additional test, I repeat the yearly fixed effects regression (2.4) with Sindummy, presented 

in the appendix. Estimated coefficients for Sindummy are more negative than those of Polluterdummy, 

but are estimated without statistical significance. 

To illustrate the relationship between pollution and analyst coverage, I recreate Figure 2.4 except 

with analyst coverage as the dependent variable. Specifically, I regress LOGCOV on 9 pollution 

decile dummies based on yearly rankings of Total Releases, using yearly fixed effects and the same 

control variables from Table 2.7. I graph the estimated polluter decile coefficients in Figure 2.6. 

Like Figure 2.4, Figure 2.6 depicts a non-monotonic relationship between the LOGCOV and 

pollution levels on average. Unlike Figure 2.4, however, Figure 2.6 portrays a relatively flatter 

relationship, without an abrupt reduction in analyst attention at the higher pollution deciles. This is 

consistent with a weaker significance of Polluterdummy coefficient estimates from Table 2.7 

compared to the primary estimates obtained from the main ownership regressions in Table 2.2. 

Figure 2.6: Pollution decile dummy coefficients, estimated from a yearly fixed effects panel regression with LOGCOV as 

the dependent variable. Decile 1 has no active dummy, and is therefore the benchmark against which the following dummy 

coefficients are compared against. 
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Consistent with tests on IO, repeating regression (2.4) with 5% and 1% pollution percentile dummies 

also generates negative but insignificant coefficient estimates, suggesting that extreme polluters in 

excess of Polluterdummy do not have a significant further reduction in analyst coverage. 

2.6. Additional tests 

In auxiliary tests I examine the institutional churn of polluter stocks, and test a long-short trading 

strategy derived from the shunned-stock hypothesis. I also search for evidence of reverse causality in 

the hypothesised relationship between firm pollution and institutional ownership. 

2.6.1. Investor churn 

Institutional ownership of polluting firms may be influenced specifically by institutional investor 

horizons. I test whether polluter firms are owned by investors with relatively short-term investment 

horizons. In previous results I find that quasi-indexers, which are associated with long-term 

investment horizons, are more reluctant to own polluter stocks compared to transient institutions, 

which are associated with aggressive short-term trading strategies. However, unlike the disaggregated 

ownership tests, this additional test serves to explicitly estimate the relationship between institutional 

investment horizon and polluter stocks. This test also indirectly examines which institutions hold less 

polluter stocks relative to each other, as opposed to the disaggregated institutional tests which instead 

examine which investors own less polluter stocks relative to their other holdings. 

I hypothesise that institutions with short-term horizons are more likely to exhibit arbitrage 

strategies for sin stocks, and exploit mispricing from the shunned-stock effect. Due to the potential 

for tail event regulatory shocks to cash flows, institutions may also be reluctant to hold polluter stocks 

over long periods, and instead use these stocks in a ‘hot-potato’ momentum strategy. If true, these 

channels will inflate the quarterly trading churn of polluter stocks, ceteris paribus, which will be 

disproportionately held by institutions with relatively short-term investment horizons.  

I test the short-horizon investor hypothesis by aggregating average investor horizons at the firm 

level. I use a churn variable to proxy for investor horizons as a function of their trading activity. 
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Following Gaspar, Massa, & Matos (2005) I first generate an investor churn variable to measure 

average institutional investment horizons. 

𝐼𝐶ℎ𝑢𝑟𝑛𝑗,𝑞 =  
∑ |𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞 ∗ 𝑃𝑟𝑖𝑐𝑒𝑖,𝑞 − ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞−1∗ 𝑃𝑟𝑖𝑐𝑒𝑖,𝑞|𝑖∈𝐼

∑ (𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞 ∗ 𝑃𝑟𝑖𝑐𝑒𝑖,𝑞+ 𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞−1∗ 𝑃𝑟𝑖𝑐𝑒𝑖,𝑞−1)/2𝑖∈𝐼
     (2.5) 

IChurnj,q is a weighted average measure of the turnover of institution j at quarter q. Sharesi,j,q 

represents institution j’s holdings of firm i’s shares at the end of quarter q. Pricei,q represents the price 

of firm i’s shares at the end of quarter t. The ratio is bounded by 0, with a higher ratio indicating a 

greater turnover of holdings. I then aggregate the IChurn ratio at the firm-quarter level with the 

following equation. 

𝐹𝑖𝑟𝑚𝑐ℎ𝑢𝑟𝑛𝑖,𝑞 =  
∑ (𝐼𝐶ℎ𝑢𝑟𝑛𝑗,𝑞∗ 𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞)𝑗∈𝐽

∑ 𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑗,𝑞𝑗∈𝐽
       (2.6) 

Firmchurni,q is a weighted average measure of the institutional churn of the shares of firm i at the 

end of quarter q, with weightings proportional to the number of shares held by institution j as a 

percentage of total shares of firm i held by institutions. Finally, I take a yearly average of Firmchurn 

for each firm to use as the dependent variable in tests. 

𝐹𝑖𝑟𝑚𝑐ℎ𝑢𝑟𝑛𝑖,𝑡 =  
∑ 𝐹𝑖𝑟𝑚𝑐ℎ𝑢𝑟𝑛𝑖,𝑞,𝑡

4
𝑞=1

4
        (2.7) 

In a fixed effects panel model, I regress Firmchurn on Polluterdummy and a set of control 

variables. 

𝐹𝑖𝑟𝑚𝑐ℎ𝑢𝑟𝑛𝑖,𝑡  =  𝛽𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑟  ∗  𝑃𝑜𝑙𝑙𝑢𝑡𝑒𝑟𝑑𝑢𝑚𝑚𝑦𝑖,𝑡  +  𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒊,𝒕  +  𝜀𝒊,𝒕  (2.8) 

I control for the firm level independent variables used in ownership regressions, represented by 

the vector CONT. I also include DIVYIELDi,t as an additional control variable (Starks et al., 2017), 

set as the annual dividend yield for firm i during year t.69 To control for the impacts of yearly business 

 
69 DIVYIELDi,t is generated by dividing the total dividends paid by firm i in year t by the closing share price at the 

end of the year. Starks et al. (2017) also include TURNOVERi,t as an explanatory variable, which is the average monthly 

stock turnover ratio in year t, calculated by dividing the monthly trading volume of stock i by the shares outstanding at 
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cycle fluctuations and industry averages, I incorporate yearly and industry fixed effects. I adjust 

standard errors with two-way clustering on Fama-French industry and year.70 Results of the 

regression are presented in Table 2.8. 

Table 2.8: Results of the investor horizons fixed effects panel regression, where the dependent variable is Firmchurn. I 

present regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted with two-way 

clustering on industry and year. There are 7,732 firm-year observations in the sample. Compared to main tests, the sample 

is smaller because only stocks that have institutional ownership greater than 0 and have unique Bushey permanent key 

identifiers are included. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with 

***.  

Investor horizons panel regression results 

     

Variable  (1)  (2) 

     

Polluterdummy  0.0103**  0.0120*** 

  (2.24)  (2.88) 

INDBETA  0.0085  0.0020 

  (1.62)  (0.38) 

LOGSIZE  0.0019  0.0014 

  (0.96)  (0.61) 

LOGBM  -0.0151*  -0.0123 

  (-1.66)  (-1.47) 

STD  0.0108***  0.0094*** 

  (4.54)  (4.28) 

PRINV  -0.0283**  -0.0244** 

  (-2.27)  (-2.17) 

RET  0.0016**  0.0017*** 

  (2.58)  (2.77) 

DIVYIELD  0.0082***  0.0077*** 

  (4.25)  (3.85) 

NASD  -0.0027  -0.0041 

  (-0.50)  (-0.69) 

SP500  -0.0365***  -0.0363*** 

  (-7.85)  (-7.08) 

     

Fixed effects  Year  Year & Industry 

N  7,732  7,732 

Adjusted R2  0.8002  0.8048 

 
the end of the month. I omit TURNOVER from the set of control variables due to potential simultaneity concerns; however 

I find a positive coefficient for Polluterdummy that is significant at the 10% level if TURNOVER is used as the dependent 

variable instead of Firmchurn in the following regression. 
70 I also find that the Polluterdummy coefficient is significant if only industry fixed effects are included.  
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Results for the Polluterdummy coefficient estimate is consistent with both a priori expectations 

and the findings of Starks et al. (2017). Polluter firms have a significantly higher weighted average 

churn from their institutional investors compared to non-polluters, indicating that institutions 

investing in polluter stocks generally have shorter investment horizons and higher holdings turnover 

on average. The estimated Polluterdummy coefficient remains significant within both regressions, 

suggesting that firm pollution is associated with both within-year and within-industry higher 

ownership from short-horizon investors. Results are consistent with the hypothesised relation 

between polluter sin stocks and short-term investor horizons. 

2.6.2. Polluter portfolio returns 

Hong & Kacperczyk (2009) find that a portfolio of sin stocks outperforms comparables. 

Following the prior findings of reduced institutional ownership and analyst coverage of polluters, 

similar to traditional sin stocks, I test whether polluter stocks also outperform due to the shunned-

stock effect. If arbitrage of mispricing for sin stocks is truly limited due to societal discrimination 

(Akerlof, 1980), polluter stocks should generate abnormal returns over time.  

I test whether polluter stocks outperform in the market on average using a portfolio approach. I 

create a long-short Toxicportfolio that is long the stocks with the highest yearly quintile of toxic 

releases and short the remaining stocks, and is rebalanced every month.71 I use both equal-weights 

and value-weights for robustness.72 

Inconsistent with expectations, I find that the equal-weighted Toxicportfolio generates -0.138% 

average returns a month with a Newey-West t-stat of -1.25, while the value-weighted Toxicportfolio 

generates -0.115% average returns a month with a Newey-West t-stat of -0.91. The time series of the 

equal-weighted Toxicportfolio monthly returns are illustrated in Figure 2.7.  

 
71 Portfolio sorting and weights are calculated based on ex-ante 1-month lagged information. 
72 I exclude micro-cap stocks from the equal-weighted portfolio. Micro-caps are defined as the shares of firms with 

very low market capitalisations of less than $250m (Lins, Servaes, & Tamayo, 2017). 
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The strategy returns are volatile and show no clear evidence of positive abnormal performance. 

The equal-weighted Toxicportfolio returns become more volatile from 2000 onwards; I find that this 

is also true for the value-weighted portfolio. This volatility increase may indicate an increased 

difficulty in the valuation of polluters relative to non-polluters. Alternatively, Toxicportfolio volatility 

may be driven by the volatility of the risk factors the strategy is exposed to. 

I regress the returns of Toxicportfolio against three popular benchmark risk models in the 

following time series regression to test for abnormal returns. 

𝑅𝑡  =  𝛼 +   𝜷𝒄𝒐𝒏𝒕𝒓𝒐𝒍  ∗  𝑪𝑶𝑵𝑻𝒕  +  𝜀𝑡        (2.9) 

The returns of Toxicportfolio, Rt, are regressed against three sets of benchmark models which 

consist of the CAPM, the Fama-French 3-factors and the Carhart 4-factors. The variable of interest is 

α, which is a measure of abnormal returns generated by the Toxicportfolio in excess of the benchmark. 

Figure 2.7: The time series of monthly holding period returns of the long-short equal-weighted Toxicportfolio over the 

sample period.  
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I adjust standard errors using Newey-West corrections for 5-month lags.73 Results of the portfolio 

regression are shown in Table 2.9. I repeat the regression for both equal-weighted and value-weighted 

Toxicportfolio returns. 

Table 2.9: Regression results for both equal-weighted and value-weighted long-short Toxicportfolio returns. I present the 

abnormal return estimates along with factor sensitivities to the benchmark models. Standard errors are presented in 

brackets below. Standard errors are adjusted for Newey-West 5-month lags. There are 335 monthly observations. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Toxicportfolio regression results 
       

Equal-weighted   CAPM  FF 3-factors  Carhart 4-factors 

       

α  -0.073  -0.093  -0.139 
  (-0.62)  (-0.88)  (-1.22) 

MKT  -0.105**  -0.062  -0.047 
  (-2.48)  (-1.54)  (-1.15) 

SMB    -0.204***  -0.210*** 
    (-4.89)  (-5.49) 

HML    0.063  0.082 
    (1.15)  (1.51) 

MOM      0.058 
      (1.71) 
       

N  335  335  335 

Adjusted R2 0.0503  0.1667  0.1809 

      

Value-weighted CAPM  FF 3-factors  Carhart 4-factors 

      

α 0.000  -0.037  -0.065 

 (0.00)  (-0.33)  (-0.60) 

MKT -0.188***  -0.160***  -0.150*** 

 (-5.17)  (-4.00)  (-3.86) 

SMB   -0.068  -0.072 

   (-1.33)  (-1.36) 

HML   0.112  0.124* 

   (1.42)  (1.69) 

MOM     0.037 

     (1.03) 

      

N 335  335  335 

Adjusted R2 0.1076  0.1321  0.1338 

Results provide no evidence of polluter outperformance on average. All three benchmark models 

provide insignificant estimates of abnormal returns for both portfolios. Contrary to the hypothesis, 

 
73 Following the literature I set the lag equal to 4(T/100)a where T = 335 time periods and a = 4/25 using the quadratic 

spectral kernel. The output equals 4.85, which I round up to 5. 
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estimates of portfolio alpha are mostly negative for both equal-weighted and value-weighted 

portfolios. The equal-weighted portfolio loads negatively and significantly on the market and SMB 

factors. These negative factor loadings indicate that polluter firms have lower market betas and 

behave more like large-cap firms. This is both intuitive and consistent with the summary statistics 

presented in Table 2.1. On average, polluter firms in the sample have lower market sensitivity and 

are larger in size. The market beta of the equal-weighted portfolio becomes statistically insignificant 

as additional risk factors are added. The value-weighted portfolio has a stronger negative loading on 

the market factor that survives as additional risk factors are included, but has an insignificantly 

negative size loading and a marginally significant value loading when using the Carhart 4-factor 

model only. 

Results are overall inconsistent with the shunned-stock hypothesis. This may be due to weak 

limits to arbitrage of polluter stocks; as Angel & Rivoli (1997) suggest, in order to observe a material 

pricing effect there must be a large restriction on discriminated stocks. There is no evidence to suggest 

that Type B investors from the previous disaggregated ownership tests are constrained in their 

investment in polluter firms; similarly, transient and dedicated institutions are not as reluctant to hold 

polluter stocks as quasi-indexers. These types of investors may contribute to the lack of 

outperformance of polluter stocks through their arbitrage efforts. 

2.6.3. Robustness reverse causality tests 

I consider potential reverse causality in my model. Reverse causality may pose problems of 

simultaneity in models that estimate the relationship between institutional ownership and firm 

pollution. One might argue that it is not firm pollution that drives institutional ownership, but instead 

institutional ownership that affects toxic releases through institutional oversight and pressures that 

may encourage a firm to adopt greener policies; however, this is unlikely to invalidate results for the 

following reasons. There is no obvious rationale for why aggregate institutional ownership, as a 

proportion of total ownership, should be correlated with abatement pressures. Aggregate institutional 
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pressures on polluters depend on constituent institutions, which may individually promote or 

discourage pollution based on their own incentives. Furthermore, there may also be pressure from 

retail or public sector owners to reduce pollution, mitigating reverse causal effects. Due to the high 

dollar and time costs required to develop efficiency in pollution, potential institutional pressure to 

reduce toxic releases are also more likely to occur over a longer time-frame compared to a 

contemporaneous year. IO is measured at year-end, whereas Total Releases is based on pollution 

throughout the year, further weakening the likelihood of the ownership variable having a causal 

relationship with the firm pollution measure used in tests.  

In a robustness check of the reverse causality hypothesis, I use a panel VAR (PVAR), a change-

on-change analysis, and a natural experiment to test for any evidence of IO influencing Total 

Releases.  

I first estimate the following PVAR model to test for simultaneity in my main results. To account 

for non-stationarity, I model the first order differences of all variables. The PVAR simultaneously 

estimates the effects of lagged changes in institutional ownership on changes in pollution and vice 

versa, whilst also controlling for exogenous variables and autocorrelations in dependent variable.  

𝒀𝒊,𝒕  =  𝜶 +  𝜷𝟏  ∗  𝒀𝒊,𝒕−𝟏  +  𝜷𝟐  ∗  𝒀𝒊,𝒕−𝟐  +  𝜷𝟑  ∗  𝒀𝒊,𝒕−𝟑  + 𝜷𝟒  ∗  𝑿𝒊,𝒕  +  𝜺𝒕  (2.10) 

The matrix Yi,t consists of the variables ΔIOi,t and ΔTotal Releasesi,t, while the exogenous Xi,t 

consists of the first order differences in control variables used in ownership tests. I drop ΔNASD from 

the set of control variables as it does not vary within the sample. I control for 3 lags of dependent 

variables in the model. If reverse causality is present, coefficients of ΔIO or its lags should be 

estimated with statistical significance, and the impulse response function (IRF) should show 

statistically significant effects of shocks in ΔIO on ΔTotal Releases. I illustrate the results of the 

PVAR and corresponding IRF’s in the following tables and figures.  

 



  

95 

 

Table 2.10: PVAR regression results testing for reverse causality in the institutional ownership regressions. I use STATA 

code for the PVAR developed in Abrigo & Love’s (2015) working paper. Dependent variables are ΔIO and ΔTotal 

Releases, with 3 lags. The exogeneous ΔNASD dummy is omitted from the regression due to no variation in the reduced 

sample of 5,542 observations. I present PVAR coefficient estimates with t-statistics in brackets below. Significance at the 

10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

PVAR estimates 

     

Independent variables Dependent variables 

  ΔIO  ΔTotal Releases 

ΔIO(-1)  -0.1284***  0.3352 

  (-5.22)  (0.88) 

ΔIO(-2)  0.0150  0.2351 

  (0.81)  (0.55) 

ΔIO(-3)  0.0168  0.6003 

  (0.75)  (1.55) 

ΔTotal Releases(-1)  -0.0004**  0.1186 

  (-2.00)  (0.55) 

ΔTotal Releases(-2)  0.0000  -0.0817 

  (0.27)  (-0.54) 

ΔTotal Releases(-3)  -0.0001  0.1015 

  (-1.44)  (1.53) 

ΔINDBETA  0.0975***  0.5025 

  (6.74)  (0.61) 

ΔLOGSIZE  0.0838***  -0.0288 

  (10.06)  (-0.15) 

ΔLOGBM  0.0052  -0.1655 

  (0.30)  (-0.57) 

ΔSTD  -0.0028*  -0.0268 

  (-1.85)  (-0.50) 

ΔPRINV  0.0084  0.0458 

  (0.52)  (0.15) 

ΔRET  -0.0034***  -0.0012 

  (-7.33)  (-0.08) 

ΔSP500  0.0124  -0.5823 

    (0.90)  (-1.37) 

     

N  5,542 
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Table 2.11: Impulse response results of the PVAR model in tabulated format.  

Impulse response function 
     

Response variable and forecast horizon  Impulse variables 

     

ΔIO  ΔIO  

ΔTotal 

Releases 

0  1  0 

1  -0.1284  -0.0004 

2  0.0314  0.0000 

3  0.0108  -0.0001 

4  -0.0033  0.0000 

5  0.0011  0.0000 

6  0.0000  0.0000 

7  -0.0001  0.0000 

8  0.0000  0.0000 

9  0.0000  0.0000 

10   0.0000   0.0000 

     
ΔTotal Releases     

0  0  1 

1  0.3352  0.1186 

2  0.2318  -0.0678 

3  0.5808  0.0837 

4  0.0179  0.0272 

5  -0.0016  -0.0105 

6  0.0633  0.0050 

7  0.0077  0.0042 

8  -0.0038  -0.0010 

9  0.0053  0.0000 

10   0.0017   0.0005 

Figure 2.8: Impulse response function for the PVAR model. The impulse variable is ΔIO while the response variable is 

ΔTotal Releases. The dark bands around the impulse response estimate represent 95% confidence intervals generated with 

bootstrapped standard errors from 1000 random draws. 
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Results provide evidence that ΔIO is positively affected by one-year lagged values of ΔTotal 

Releases, suggesting the presence of short-run causality consistent with my primary hypothesis. More 

importantly, there is no evidence of a relation between ΔTotal Releases and lagged values of ΔIO. 

The t-stat of the estimated effect of one-year lagged ΔTotal Releases on ΔIO is much higher than vice 

versa. Furthermore, Figure 2.8’s IRF graph illustrates that the 95% confidence interval contains 0, 

and therefore provides no evidence of a causal short-term effect of ΔIO shocks on ΔTotal Releases. 

For robustness I conduct the same test using only the subsample of firms that have a value of 1 for 

Polluterdummy, and again find no evidence of reverse causality. 

I additionally use a change-on-change analysis to test for Granger causality and estimate whether 

lagged changes in IO lead to changes in Total Releases.74 I conduct this test with the following 

specification. 

 
74 For example, see Aggarwal, Erel, Ferreira, & Matos (2011), Chhaochharia, Kumar, & Niessen-Ruenzi (2012) or 

Kim et al. (2019). 

Figure 2.9: Impulse response function for the PVAR model. The impulse variable is ΔTotal Releases while the response 

variable is ΔIO. The dark bands around the impulse response estimate represent 95% confidence intervals generated with 

bootstrapped standard errors from 1000 random draws. 
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∆𝑌𝑖,𝑡  =  𝛼 +  𝛽𝑥  ∗  ∆𝑋𝑖,𝑡−1  +  𝜷𝒄𝒐𝒏𝒕  ∗  ∆𝑪𝑶𝑵𝑻𝒊,𝒕−𝟏  +  𝜀𝑖,𝑡     (2.11) 

The change in the dependent variable from t-1 to t is regressed on the change in the independent 

variable and vector of control variables from t-2 to t-1. I run this regression twice, first with ΔIO as 

the dependent variable and ΔTotal Releases as the independent variable, and then vice versa. I also 

include yearly fixed effects to control for time-varying heterogeneities. I present results of the two 

regressions in Table 2.12. 

Table 2.12: Change-on-change analysis fixed effect panel regression results. ΔIO is regressed against lagged ΔTotal 

Releases, and ΔTotal Releases is regressed against lagged ΔIO. I control for lagged changes in prior ownership variables. 

The exogeneous ΔNASD dummy is omitted from the regression due to no variation in the reduced sample of 7,363 firm-

year observations. I present coefficient estimates with t-statistics in brackets below. Standard errors are calculated with 

clustering on industry and year. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level 

with ***. 

Change-on-change analysis 

     

Independent variables Dependent variables 

  ΔIOt  ΔTotal Releasest 

     

ΔTotal Releasest-1  -0.0001**   

  (2.59)   

ΔIOt-1    0.1240 

    (0.98) 

ΔINDBETAt-1  0.0061  0.8711 

  (0.38)  (1.01) 

ΔLOGSIZEt-1  -0.0032  -0.2216 

  (-0.68)  (-0.97) 

ΔLOGBMt-1  -0.0072  0.2318* 

  (-0.53)  (1.72) 

ΔSTDt-1  0.0003  -0.0010 

  (0.12)  (-0.01) 

ΔPRINVt-1  -0.0389**  -0.4454 

  (-2.63)  (-0.76) 

ΔRETt-1  0.0010*  0.0063 

  (1.98)  (0.52) 

ΔSP500t-1  -0.0043  -0.1857 

    (-0.48)  (-1.40) 

     

Fixed effects  Year  Year 

N  7,363  7,363 

Adjusted R2  0.1155  0.0011 

Results again do not provide any evidence of a relationship between lagged changes in ownership 

and current changes in firm pollution. While the negative effect of lagged changes in pollution on 



  

99 

 

contemporaneous changes in institutional ownership is estimated with significance at the 5% level, 

estimates of the reciprocal relationship are insignificant. For increased robustness, I also repeat this 

test with the subsample of firms with a value of 1 for Polluterdummy, but find a consistent lack of 

results.  

In a final robustness test, I use a natural experiment which is assumed to cause independent 

variation in IO. Specifically, I examine whether firms that have been added to or removed from the 

S&P 500 index have significant changes in their pollution. I hypothesise that inclusion or exclusion 

from the index affects the institutional ownership of the stock, and test for a corresponding effect on 

Total Releases to provide evidence of reverse causality. Filtering by firms that have had a change in 

the value of SP500 from the previous year, I generate a sample of 55 firms that have been included 

in the index in the previous year and 22 firms that have been removed as index constituents in the 

previous year, for a total of 77 firm-year observations.  I then compare the changes in institutional 

ownership to changes in pollution levels with the following yearly fixed effects panel regression. 

∆𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑖,𝑡  =  𝛽 ∗  ∆𝐼𝑂𝑖,𝑡  +  𝜀𝑖,𝑡        (2.12) 

I regress contemporaneous changes in pollution levels on the changes in institutional ownership 

following this exogeneous shock on the S&P 500 index constituent status. If there is a causal 

relationship between IO and Total Releases, I expect a statistically significant negative coefficient 

estimate. In order to capture time heterogeneities I include yearly fixed effects, and use two-way 

clustered standard errors on year and industry.75 I present the results of this regression in Table 2.13, 

along with the average changes in IO and Total Releases following inclusion or exclusion from the 

S&P 500. 

 

 

 
75 I find similar non-results if I include industry fixed effects or drop fixed effects from the panel altogether. 
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Table 2.13: S&P 500 constituent change analysis. I limit the sample to firms that have been recently included or excluded 

as constituents of the S&P 500 index in the prior year, grouped as recent inclusions, exclusions or both. I present the mean 

ΔIO and ΔTotal Releases for the year following the status change. In the bottom half of the table are regression coefficients 

generated by regressing ΔTotal Releases on contemporaneous ΔIO with yearly fixed effects. I present coefficient 

estimates with t-statistics in brackets below. Standard errors are calculated with clustering on industry and year. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

S&P 500 constituent change analysis 
       

    Recently included  Recently excluded  Total sample 
       

Mean ΔIOt 
 0.0394**  -0.0103  0.0252* 

  (2.36)  (-0.33)  (1.72) 

Mean ΔTotal Releasest 
 -0.3160  -0.1741  -0.2754 

  (-0.61)  (-0.59)  (-0.73) 

       
       

ΔIOt 
 -6.3445  1.0342  -1.1323 

  (-1.25)  (0.69)  (-0.40) 

       

N  55  22  77 

Fixed effects  Year  Year  Year 

Following shocks to firm S&P 500 constituent status, I find no evidence of any effect of a change 

in institutional ownership on firm pollution levels. This test provides no evidence of reverse causality 

between the variables. The estimated coefficient sign is negative for only two out of the three samples, 

and in the ‘recently excluded’ subsample the sign is positive. All three estimated regression 

coefficients are insignificant. In an unreported test, I find that replacing the dependent variable with 

any one or the sum of ΔTotal Releasest+1, t+2, t+3 also generates insignificant results. 

Overall, robustness tests provide no evidence of a relationship flowing from IO to Total Releases; 

none of the results highlight institutional ownership affecting firm toxic releases.  

2.7. Conclusion 

I argue that institutional investors are constrained through social norms, which limits institutional 

investment in polluter stocks. Social norms are more likely to constrain institutions due to their large 

public profiles which are more exposed to public scrutiny than individual investors, who are more 

easily able to keep their positions in sin stocks out of the public eye. Overall, results reveal that 

polluter stocks are shunned by institutional investors, like the sin stocks of tobacco, alcohol and 

gambling (Hong & Kacperczyk, 2009). Results also reveal that while institutional equity in firms is 
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increasing over the sample period, ownership of polluter firms is increasing at a significantly slower 

rate. I attribute these findings to growing environmental sentiment, which include concerns relating 

to human health and environmental damage. When disaggregated by Bushee (2001) groups, all three 

institution groups are found to have reduced holdings of polluter stocks at varying levels. Similarly, 

disaggregation by 13F institution type reveals that institutions more likely to be constrained by society 

also have reduced polluter ownership, while institutions with relatively more opaque or aggressive 

strategies have increased ownership. Following findings of reduced institutional ownership, I also 

find that polluter stocks receive relatively less analyst coverage.  

Auxiliary tests reveal that polluter stocks are held by investors with shorter investment horizons, 

measured by the quarterly churn in their holdings. However, tests do not provide evidence of either 

underperformance or outperformance of polluter stocks.  

The results of this study are consistent with the theory that society shuns environmental sin stocks 

as a reaction to their costs on social welfare; ownership of polluter stocks generates disutility or costs 

from association that exceed their benefits.  

Studies on the impacts of environmentalism on corporate finance are gaining traction. Further 

research could incorporate a higher frequency of pollution and investor trading data to estimate causal 

drivers in investor decision making, or alternatively examine potential window dressing in holdings 

disclosures. The reduced institutional ownership of polluter firms implies that the remainder of the 

stocks are held by either retail investors, the public sector or insiders; these ownership channels 

should also be investigated. Further research could also study how the physical consequences of 

pollution (i.e. smog, health problems, toxic spills) affect the decision making of investors that suffer 

the consequences. Finally, the role of regulation is crucial to assessing the performance of both 

polluter and green stocks; research into environmental-regulatory risk channels and expected stock 

returns is a developing field of asset pricing with scope for further study.  
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3. Chapter 3 

 

Toxic Expectations: Analyst Forecasts and Firm Pollution 
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3.1. Introduction 

The impact of environmental performance on economic value is a developing field in the 

economic literature.76 Firms that release toxic emissions are exposed to future regulatory and 

compliance costs, as well as potential consumer backlash.  

Pollution regulation is primarily designed to reduce negative externalities through internalisation 

mechanics. Abatement and compliance activities are expensive by nature. Abatement often involves 

large investments and running costs to sustain reduced emissions, while compliance costs may be 

borne by polluters to accurately measure and monitor emissions. If polluters fail to meet regulations, 

they may be taxed or fined. Polluters are thus exposed to increasing abatement and compliance costs, 

which reduce their expected earnings relative to comparable firms. Polluter revenues are also 

sensitive to consumers switching away from ‘dirty production’ (Fraj & Martinez, 2007). Consumers 

may become more concerned about environmental degradation and display preferences towards 

environmentally friendly products (Do Paço, Raposo, & Leal Filho, 2009). As consumers demand 

‘green’ products, polluters face pressure to reduce emissions in their production processes; failing to 

do so decreases revenues and earnings. Polluters are thus exposed to earnings losses driven by shifting 

consumer demand. 

Predicting the future consequences of pollution on earnings is a complicated task which may be 

influenced by behavioural biases present in the forecaster. This research examines security analysts’ 

views on the effects of pollution on firm profitability. Analysts play an important role in financial 

markets by collecting, processing and forecasting economic information which is ultimately used in 

setting expectations and pricing assets. Analyst forecasts provide a dimensionality of market 

expectations from the viewpoint of professional estimators of firm value. Examining pollution from 

the outlook of analysts provides insight into how industry experts believe toxic emissions interact 

 
76 For example, see Horváthová (2010), Fisher-Vanden & Thorburn (2011), Guenster, Bauer, Derwall, & Koedijk 

(2011), Berkman, Jona, & Soderstrom (2019), or El Ghoul, Guedhami, Kim, & Park (2018). 
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with future profitability, and how accurate these beliefs are. This study has implications on the 

valuation of pollution costs and polluter securities in the private market, and adds to the 

environmental debate by assessing whether the analyst-predicted consequences of pollution on 

earnings are rational. 

The contribution of this study is threefold. Firstly, I introduce firm pollution as a variable that is 

associated with forecast errors through behavioural biases. Polluter firms differ from regular firms as 

they are exposed to potential regulatory costs and consumer backlash, however these effects may be 

mis-estimated. I show that investment professionals set systematically pessimistic forecasts for firms 

with poor environmental performance. Secondly, this research provides a novel example of 

behavioural factors constraining firm valuation experts by promoting inaccuracy in their forecasts of 

polluters. This is of relevance to the literature, as it provides additional empirical examples of 

longstanding behavioural theories. Lastly, I take both a macro and micro approach by examining both 

the average bias in all forecasts and the bias of individual analysts, and test whether polluter bias is 

profitable through a trading strategy. 

The rational expectations hypothesis assumes that reality only diverges randomly from forecasts. 

Behavioural finance argues that individuals may deviate from setting rational expectations. As 

illustrated in various (and sometimes contradictory) behavioural arguments, individuals might be 

influenced by cognitive constraints. Security analysts often display bounded rationality; the literature 

has found evidence of systematic analyst irrationalities and subsequent forecast errors.77 Analyst 

irrationalities can be explained through behavioural biases, which include analysts overweighting 

low-probability shocks (Kahneman & Tversky, 1979), analysts being biased through the availability 

of dramatic and recent information (Tversky & Kahneman, 1974), or analysts failing to generate true 

conditional expectations (Tversky & Kahneman, 1981). These biases all imply that analysts may 

 
77 For example, see De Bondt & Thaler (1990), De Bondt & Forbes (1999), Amir & Ganzach (1998), Park & 

Sabourian (2011), or Fujiwara, Ichiue, Nakazono, & Shigemi (2013).  
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overshoot in their expectations of firm costs of pollution, resulting in systematic pessimism for 

polluter firms.78   

The primary hypothesis of this study examines whether the aggregate forecasts made by analysts 

for polluting firms are associated with pessimism, as each behavioural channel suggests. I test this 

hypothesis using firm pollution data from the Toxic Release Inventory (TRI). Results indicate that in 

aggregate, analyst forecasts have a significantly pessimistic bias for polluters, ceteris paribus. After 

controlling for other factors associated with forecast bias and accuracy, analyst forecasts tend to 

undershoot actual polluter annual earnings on average. I find evidence of analyst pessimism for firms 

that generate high levels of absolute pollution. However, if pollution is scaled by sales, the estimated 

pessimism loses statistical significance. This suggests that analyst biases are more influenced by 

information on total pollution, which is more easily noticeable compared to sophisticated information 

on pollution efficiency. Furthermore, I find that the primary category of chemicals listed in the TRI 

are the most strongly associated with analyst pessimism. The primary category of chemicals are 

generally less toxic than the other categories, but are usually released in larger quantities and are 

again likely to be more noticeable and attract bias.   

In a secondary hypothesis, I examine whether forecast errors made by individual analysts are 

persistent as suggested by the conservatism bias, which proposes that individuals may be slow to 

update their beliefs. Consistent with the hypothesis, I find that ex-ante identified green (grey) analysts 

are consistently pessimistic (optimistic) in their forecasts for polluters ex-post. I examine how the 

bias by analyst type changes for polluter forecasts with shorter horizons; results indicate that both 

green and grey analysts become more pessimistic closer to the earnings date. 

 
78 In this study, forecast bias is defined as the directional errors in analyst forecasts when compared to actual realised 

earnings. Forecast bias is therefore a measure of the signed miscalculation made by an analyst in their predictions of firm 

earnings. A green analyst is defined as one who is pessimistic about polluters, while a grey analyst is defined as one who 

is optimistic about polluters. 
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Lastly, I test whether the pessimistic forecasts for polluters leads to positive returns around 

earnings announcements. If investors form earnings expectations which are closely tied to analyst 

forecasts, systematic pessimism for polluting firms should generate systematic positive earnings 

surprises. Results provide no evidence in favour of this hypothesis; firm pollution is not significantly 

associated with abnormal returns around either annual or quarterly earnings announcements. 

3.2. Literature review 

I review the literature by first examining studies on the psychology of security analysts, which 

include theories on behavioural constraints and cognitive biases in analysts’ forecasts for polluter 

firms. I then review studies on the various sources of analyst bias and identify variables that have 

been associated with forecast errors. Lastly, I explore prior studies on the relationships between 

analyst forecast errors, earnings surprises and stock returns.  

3.2.1. Security analyst psychology  

The psychology of security analysts is important as it comprises of the behavioural factors which 

drive forecasts and forecast errors. The task of security analysts is often complex, involving the 

appraisal of various interlinked business activities. Due to the vast amounts of available data and 

limited processing capacity, decisions may be reduced to simple heuristic procedures that result in 

bias (Wright, 1980). De Bondt & Thaler (1985) find that investors tend to overreact when 

incorporating dramatic variables into their forecasts; evidence of stock price reversion is consistent 

with market overreactions (De Bondt & Thaler, 1987). Analyst forecasts are important inputs for the 

formation of market expectations and may introduce bias. Furthermore, cognitive biases may persist 

if individuals are unaware that they are influenced by them (Wright, 1980). 

As highlighted under prospect theory (Kahneman & Tversky, 1979), financial forecasts may be 

biased by attributing disproportionately large probability weights to events that are eye-catching but 

unlikely to occur, whilst underweighting more probable events. Because low probability events are 

infrequently encountered, individuals often have little experience in dealing with them (Burns, Chiu, 
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& Wu, 2010). Burns et al. (2010) give examples of heuristics through which the overweighting of 

low probability events may occur; these include anchoring on prior ignorance and sorting outcomes 

into coarse probabilistic groups. Anchoring on prior ignorance occurs when there are a limited 

number of future outcomes which are not understood well. Forecasters may begin by assigning each 

outcome approximately equal probabilities of occurring, and then insufficiently adjust the 

probabilities as they collect more information, and hence be ‘anchored’ to their initial estimates. 

Coarse probabilistic grouping occurs when the finer categories of the probability interval, 

representing unlikely events, are clumped together with more likely outcomes.  

The representativeness heuristic occurs when individuals overreact to the ‘law of small numbers’ 

and fail to account for true probability distributions (Ritter, 2003). Representativeness is broken down 

into two subset biases, known as the availability bias and base rate fallacy. The availability bias theory 

suggests that individuals find it easier to recall and process information around past events that are 

dramatic, recent or resonate with the individual. As a result, this information is overly weighted when 

making judgements (Tversky & Kahneman, 1974). Availability of information in recent memory 

affects forecasts when analysts give too much importance to memorable events. Analysts may also 

suffer from a cognitive bias known as the base rate fallacy (Tversky & Kahneman, 1981). The base 

rate fallacy theory suggests that individuals may fail to account for conditional probability when 

analysing data.  

Amir & Ganzach (1998) find that analysts display characteristics that are consistent with the 

representativeness heuristic. Under these cognitive constraints, analysts choose extreme prediction 

values that match the extremity of the predictive information, which leads to an overestimation of 

effect. Amir & Ganzach (1998) argue that analysts are likely to use salient information as an anchor, 

from which new information is adjusted.  

Analysts may also exhibit the conservatism bias, in which individuals are slow to update their 

beliefs over time despite being proven wrong in the past (Ritter, 2003). Analysts may anchor on their 
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previous forecasts, exhibiting tendencies of belief perseverance. Fujiwara, Ichiue, Nakazono, & 

Shigemi (2013) provide evidence of analyst stubbornness, such that analyst forecasts are anchored to 

prior predictions and slow to change with new information. 

3.2.2. Analyst forecast bias 

While research on security analysts initially focused on the viability of forecasts as a proxy for 

market expectations compared to time series models, the literature has moved on to assessing sources 

of analyst bias and inaccuracy (Bradshaw, 2011).  

Prior empirical studies have examined whether analysts are effective at analysing information and 

generating forecasts. The literature finds that security analysts tend to generate forecasts which are 

systematically optimistic when compared to actual results.79 Under the hypothesis of analyst 

rationality, forecast errors should not be predictable. De Bondt & Thaler (1990) find evidence that on 

average, forecasts are optimistic when compared to actual results; De Bondt & Thaler (1990) attribute 

this to the bounded rationality of security analysts.  

Systematic optimism is attributed to a general analyst underreaction to prior optimistic forecast 

errors and information on stock prices and fundamentals (Abarbanell, 1991; Mendenhall, 1991; Ali, 

Klein, & Rosenfeld, 1992). Easterwood & Nutt (1999) find that a source of analyst optimism and 

inaccuracy is a general overreaction (underreaction) to positive (negative) information. Easterwood 

& Nutt’s (1999) study does not explicitly consider what causes analysts to overreact (underreact) to 

positive (negative) information. From a behavioural perspective, it may be that analysts are 

incentivised to be optimistic, exhibiting confirmatory bias around new information to reach their 

desired conclusion. 

McNichols & O’Brien (1997), Lin & McNichols (1998), and Hong & Kubik (2003) suggest that 

analysts avoid reporting negative forecasts for firms that are investment banking clients of their firm. 

 
79 For example, see O’Brien (1988), Butler & Lang (1991), Brous (1992), Brous & Kini (1993), Kang, O'Brien, & 

Sivaramakrishnan (1994), Duru & Reeb (2002), Beckers, Steliaros, & Thomson (2004), Ding, Charoenwong, & Seetoh 

(2004), Irvine (2004), Marsden, Veeraraghavan, & Ye (2008), So (2013). 
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Francis & Philbrick (1993) and Lim (2001) argue that analyst optimism results from analyst 

incentives to maintain access to managerial information. Motivations for systematic analyst optimism 

also include the incentives to generate commissions through trading clientele (Hayes, 1998; Irvine, 

2004; Groysberg, Healy, & Maber, 2011).  

O’Brien (1988) finds that the most recent analyst forecasts have the greatest forecast accuracy, 

consistent with the notion that later forecasts incorporate the most up-to-date information. Barron, 

Byard, & Liang (2013) provide an alternative explanation, arguing that pessimistic analysts are 

unlikely to issue early forecasts; early forecasts generated from the same public information tend to 

be more optimistic due to managerial influence and analyst self-selection. Barron et al. (2013) explain 

that analysts may accommodate managerial pressures for late, pessimistic forecasts which generate 

easier hurdles to beat. Also, early analyst pessimism is less profitable; the difficulties in shorting 

potentially underperforming stock constrain brokerage profits and disincentivise early pessimism.  

Bradshaw (2011) argues that the general optimism in forecasts is due to a sample bias resulting 

from a conflict of interest. Analysts with pessimistic views may be reluctant to issue negative 

recommendations if they feel that this may damage their relationships with the target firm, and 

ultimately their own business.80  

3.2.3. Variables linked to forecast error 

This study aims to isolate the effects of pollution on analyst forecasted earnings and irrationality. 

Over time, the literature has identified specific variables associated with analyst bias and accuracy.  

The literature finds that longer forecast horizons are associated with forecast bias and inaccuracy 

(O’Brien 1988; Richardson, Teoh, & Wysocki, 1999; Burgstahler & Eames, 2003; Eames & Kim, 

2012; Barron et al., 2013; Hutira, 2016). Firm size has been documented to influence forecast errors 

 
80 Following Bradshaw’s (2011) logic, the results of this study should not be extrapolated as the effect of pollution 

on the opinions and errors of all analysts, but rather only those who issue forecasts.  



  

110 

 

(Brown, 1998); larger firms usually have less biased forecasts through extensive coverage, greater 

scrutiny, stable earnings and more comprehensive disclosure by management (Hutira, 2016).  

Alford & Berger (1999) suggest that each analyst contributes new information to the consensus 

estimate which eventually reduces inaccuracy. Merkley, Michaely, & Pacelli (2017) find 

complementary empirical evidence suggesting a negative relationship between analyst coverage and 

forecast bias. Mikhail, Walther, & Willis (1997, 2003) show that analysts with more experience in 

researching a firm produce more accurate forecasts; experienced analysts better interpret changes in 

earnings information, contributing to their increased accuracy. 

The direction and magnitude of earnings forecasts are also associated with analyst accuracy. 

Analysts that issue negative forecasts risk their long-term relationship with the management of the 

firm and may lose this source of information (Hutira, 2016). Das, Levine, & Sivaramakrishnan (1998) 

argue that analysts may issue strong forecasts to coax information from the management of firms 

which are difficult to forecast for. Hayes (1998) argues that stocks that are expected to perform well 

generally have lower forecast errors, as analysts pay greater attention to these stocks. Brown (1998), 

among others, finds that analysts are systematically optimistic for firms that ex-post report losses. 

Both Hutira (2016) and Capstaff & Paudyal Rees (1998) find lower forecast accuracy for firms that 

report lower earnings than the previous year.  

Brown (1997) finds that certain industries, including oil and gas extraction and primary metals, 

have poorer analyst forecast accuracy on average. Similarly, Coën, Desfleurs, & L’Her (2009) 

provide evidence of industry effects on forecast errors. Ciccone (2005) finds evidence of forecast 

errors decreasing over time, while Espahbodi, Espahbodi, & Espahbodi (2015) show that regulations 

aimed at aligning analyst incentives in the early 2000’s improved forecast accuracy over the short-

term. These studies conclude that forecast errors have structural variation between industries and 

time. 
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3.2.4. Earnings surprises and stock returns 

Brown & Rozeff (1978) argue that analyst forecasts are a good proxy for market expectations. In 

an efficient market with rational expectations, earnings expectations should be based on the best 

available forecasts. To remain employed, analysts must generate value by providing more accurate 

forecasts than predictive models. Brown & Rozeff (1978) find evidence in favour of this, suggesting 

that analysts generate value as both acquirers and processors of information. Fried & Givoly (1982) 

find that analyst forecast errors are more correlated with security price movements than errors from 

predictive models, suggesting a strong link between analyst and market expectations. 

3.3. Hypothesis 

Based on the behavioural theories of over-weighting tail event probabilities, the availability bias, 

and the base rate fallacy, I primarily hypothesise that toxic emissions are associated with a negative 

bias in analyst forecasts. By sorting on prior ignorance, analysts may expect polluters earnings to fall 

through regulatory or environmental campaigns, and initially assign a high probability to this state, 

failing to sufficiently reduce probabilities with new information. By creating coarse probabilistic 

groups for polluters, the unlikely but disastrous costs for polluters may be grouped with more likely 

outcomes, leading to underestimated earnings. Due to the availability bias and recent trends in 

environmental finance,81 analysts may pay too much attention to historical firm costs of pollution or 

anti-polluter stigma, and incorrectly extrapolate it into the future. Lastly, as pollution is usually 

negatively framed, through the base rate fallacy analysts may perceive of polluters as unpopular and 

heavily regulated firms, failing to notice the true costs of pollution across firms in the 

contemporaneous economic environment. I avoid testing any singular behavioural theory, and instead 

test whether the average observed polluter bias is indeed pessimistic as suggested by each channel. 

 
81 For example, Flammer (2013) shows that various stakeholders have exerted increasing pressures over time on 

firms to be environmentally responsible.  



  

112 

 

I additionally hypothesise that the most biased analysts display conservatism, in which they 

anchor on previous forecasts and generate persistent forecast errors. As a result, individual analysts 

that have displayed prior bias towards polluters are expected to continue to be biased in the same 

direction, despite having been proven wrong in their previous predictions. However, when forecasts 

are made nearer to the earnings date, there is less probability for tail events and more information 

available. I also test whether biased analysts walk down their extreme forecasts over time. 

The final hypothesis is that of positive abnormal returns around polluter earnings announcements. 

Polluters may generate abnormal returns around earnings announcements if analysts are found to be 

pessimistically biased in predicting their earnings, as expected under the primary hypothesis. If 

analyst forecast errors are tied to market earnings surprises, and polluters have systematically 

pessimistic forecasts, polluters are expected to experience abnormally positive returns around 

earnings announcements. 

3.4. Data and research methodology 

I focus my methodology at the analyst-level due to the behavioural motivation of polluter 

pessimism. The final unbalanced panel dataset is of firm, analyst and month dimensionality. 

3.4.1. Polluter data 

I use the Toxic Release Inventory database to source data on toxic emissions at the firm-year 

level. The TRI program is managed by the Environmental Protection Agency (EPA), containing data 

on the releases of toxins within the contiguous U.S. that are believed to harm the natural environment 

or human wellbeing. The chemicals covered by the TRI are associated with cancer, chronic and acute 

health effects, and environmental damages. Firm disclosure to the program is a mandatory and audited 

program covering over 500 different chemical types and over 50,000 industrial facilities. Firms must 

disclose their toxic releases if they employ 10 or more full-time employees, operate in specific 

pollution prone industries, and handle or manufacture listed chemicals above specified thresholds. 
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Data ranges from 1987 to 2017.82 TRI emissions data has been used by groups that include regulators, 

the media, and environmental activists (Hamilton, 1995).83 

At the firm-year level, I sum on-site, off-site and transferred releases to generate Toxic Releases, 

measured in billions of pounds. I use contemporaneous releases and assume that analysts are aware 

of the level of a firm’s pollution activity. The role of a security analyst often requires in-depth research 

of target firms; therefore, it is reasonable to assume that analysts are aware of the polluting activity 

of their research targets. The primary limitation of this assumption is that estimated contemporaneous 

relationships between Toxic Releases and analyst forecast bias are associative and not predictive.84 

3.4.2. Analyst forecast data  

I obtain data on analyst forecasted earnings per share (EPS) from the Institutional Brokers 

Estimate System (IBES) dataset. IBES stores estimates from sell-side brokerage institutions which 

often employ multiple analysts. I source data on actual EPS through the IBES actuals file. 

In this study, the term forecast date refers to the point in time that an individual analyst announced 

their predicted EPS for a firm, while earnings date refers to the point in time for which the analyst 

believes the firm will achieve their predicted EPS. Forecast horizon refers to the difference in time 

between the forecast and earnings dates. The earnings announcement date is the date on which the 

firm’s management make the realised earnings as at the earnings date public information. 

Using the detail historical file on IBES, I source data on all analyst forecasts of EPS for every 

firm in the database, in monthly frequency. I focus on EPS forecasts for the next financial year-end. 

 
82 One limitation of the TRI is that data is self-reported, however measurement error is mitigated through audits run 

by the EPA. The data also focuses on manufacturing industries. For greater discussion of limitations, see Kim et al. (2019). 
83 KLD scores provide a popular alternative of firm-level data on environmental performance. I opt for TRI emissions 

over KLD scores as the latter are discrete, clustered with limited cross-sectional variation, and subjectively measured. 

TRI emissions also allow for more granular analysis. 
84 An alternative to this assumption is to match Toxic Releases to analyst forecasts after the TRI has released data. 

However, this often occurs around the second calendar year after the pollutants are released, resulting in stale data. 

However, for robustness, I rerun tests on the primary hypothesis using one-year and two-year lagged Toxic Releases; tests 

generate similar estimates. The one-year lagged pollution coefficient is significant at the 5% level, while the two-year 

lagged pollution coefficient is only marginally insignificant. Robustness regressions are presented in the appendix. 
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Some analysts have multiple forecasts for the same firm and earnings date in the same month; I store 

the last of such forecasts to capture individual analysts’ latest revisions for that month.  

I collapse the data into an unbalanced panel of firm, analyst, and month dimensions. The panel 

includes monthly forecast updates if they exist.85 Forecast observations are interpreted as the monthly 

expectations of a firm’s annualised earnings per share as set by an individual analyst. 

3.4.3. Fundamentals and market data 

I obtain data on firm fundamentals from Compustat. I use annual fundamentals over quarterly as 

the former are not subject to intra-year seasonality, and match the periodicity of annual EPS.  

I source data on firm institutional ownership from the Thomson Reuters Institutional 13F 

Holdings database.86  

I obtain stock market returns data from the CRSP database. I exclude data on non-domestic 

equities, and follow Shumway (1997) in adjusting for delisting biases. Returns are stored in 

percentage format. 

I source abnormal returns around earnings announcements from Event Study by Wharton 

Research Data Services (WRDS). WRDS provides risk factor adjusted abnormal returns for equities 

around specified event dates. Using the U.S. daily event study file, I obtain stock abnormal returns 

around earnings announcement dates, benchmarked to the CAPM and Carhart 4-factors (Carhart, 

1997). Abnormal returns are calculated as the error terms of the estimated benchmark model. Factor 

exposure is estimated using the previous 365 days of return history from 10 days prior to the earnings 

announcement. Firms with less than 70 days of return history in this window are excluded. 

 
85 Some analysts have irregular forecast updates. Monthly observations exist when any analyst has newly announced 

their forecast for a firm. Months with no new forecasts have no observations. I find similar results if the sample is restricted 

to monthly forecasts that have at least 2 other competing forecasts by other analysts. 
86 The database contains a number of issues that are highlighted in Geertsema (2014). I follow his methodology in 

addressing these issues. 
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3.4.4. Variables and summary statistics 

I match data on analyst forecasts, firm fundamentals and firm pollution within the unbalanced 

panel, and generate the following dependent and independent variables. 

I generate FERROR as a function of FEPS and Actual, the forecasted earnings per share and actual 

earnings per share respectively. 

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡 =  
𝐴𝑐𝑡𝑢𝑎𝑙𝑗,ℎ− 𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ

|𝐴𝑐𝑡𝑢𝑎𝑙𝑗,ℎ|
          (3.1) 

FERROR is calculated as the difference between Actual and analyst i’s FEPS for firm j, as at 

forecast date t, for earnings date h, scaled by Actual. FERROR captures the signed error of analyst 

expectations of earnings, relative to ex-post realised earnings. A positive (negative) value indicates a 

pessimistic (optimistic) outlook of firm earnings. FERROR is a measure of directional bias in analyst 

forecasts of earnings.  

Very low absolute values of Actual inflate FERROR; when Actual is 0, FERROR cannot be 

calculated at all. To account for this, I winsorize FERROR within the range of ±2. Observations 

with Actual values of 0 are also set at ±2 dependent on whether the forecast was optimistic or 

pessimistic.87 The maximum absolute value of 2 for FERROR generously limits analyst forecast 

errors to 200% of actual earnings. The winsorized outlier observations account for approximately 

3.7% of the entire sample. I present a histogram of FERROR in Figure 3.1.  

 
87 Observations that have both 0 values for FEPS and Actual have FERROR set to 0 in main tests as well as in 

winsorization robustness tests. 
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Figure 3.1 reveals that forecast errors are approximately 0 on average. However, there are 

instances where forecast errors are 200% of actual earnings per share; the winsorization results in 

frequency spikes at these values. Prior to winsorization, extreme forecast errors are simply 

diminishing extensions to the tails and are infrequent at individual points. The histogram illustrates 

slight spikes in FERROR frequency at positive and negative values of 0.5, 1, and 1.5. 

For robustness, I recreate FERROR using alternative deflators in the denominator of equation 

(3.1). I find that these alternative measures of FERROR produce estimates of polluter pessimism 

similar to primary results. I present the results of these robustness tests in the appendix. 

Figure 3.1: Histogram illustrating the percentage distribution of FERROR, the measure of analyst forecast bias. Extreme 

observations with absolute values greater than 2 have been winsorized in creating this sample. These extreme 

observations represent approximately 3.7% of the total sample. There are 425,621 observations in the sample. 
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Toxic Releases is the independent variable of interest. Toxic Releases is the total amount of 

pollutants released by a firm in a calendar year, measured in billions of pounds. I present the 

cumulative distribution of Toxic Releases at the firm-year level in Figure 3.2, illustrating the toxic 

emissions emitted by most firms, along with the maximum emissions observed in the sample. 

The cumulative distribution graph illustrates that most observations of Toxic Releases range from 

0 to 0.1 billion pounds; however, there are some observations of emissions as high as 0.5 billion 

pounds. There are 591 firm-years with 0 Toxic Releases; when expanded to the forecast-month level, 

observations of firms that do not pollute at all are approximately 4.8% of the full sample. The firm-

year Pearson autocorrelation coefficients with one-year and two-year lags of Toxic Releases are 0.97 

and 0.93 respectively, both significant at the 1% level. Correlations support the assumption of analyst 

awareness of contemporaneous firm pollution; estimates imply that toxic releases are strongly 

predictable over time. 

Figure 3.2: Cumulative distribution function of Toxic Releases at the firm-year level. Toxic Releases are represented 

by the x-axis, while the cumulative proportion of observations that have equal or lower values of Toxic Releases are 

represented by the y-axis. 
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In primary tests, I control for firm, analyst, and earnings-related independent variables, motivated 

by prior research as highlighted in the literature review.  

Firm controls include LOGSIZE, set as the natural log of 1 plus the market capitalisation of the 

firm as at the beginning of the month. LOGSIZE controls for the effects of firm size on forecast errors 

(Brown, 1998; Hutira, 2016). I control for book-to-market value using LOGBM, measured as the 

natural log of 1 plus the most recent book value of equity divided by market capitalisation, as at month 

start. I control for firm leverage with LEV, set as the most recent book value of debt divided by book 

value of total assets as at the beginning of the month.88 

Analyst independent variables include FPERIOD, measured as the gap between the forecast date 

and earnings date in hundreds of days (Richardson et al., 1999; Burgstahler & Eames, 2003; Eames 

& Kim, 2012; Barron et al., 2013; Hutira, 2016). COV is the number of analysts that cover firm i in 

month t (Alford & Berger, 1999; Merkley et al., 2017). SPREAD is the total number of firms covered 

by the forecasting analyst in the month. The more firms that are researched by an analyst, the less 

attention that can be given to an individual firm; SPREAD is therefore expected to correlate negatively 

with accuracy. EXP controls for analyst experience (Mikhail et al., 1997, 2003), and is set as the gap 

between the current forecast date and the first forecast date for the same analyst-firm forecast in IBES 

in hundreds of days. 

FTE controls for the earnings bias found to vary with analyst forecasted total earnings due to 

greater attention paid to high forecasts (Hayes, 1998), or greater access to managerial information in 

exchange for generous forecasts (Das et al., 1998; Easterwood & Nutt, 1999; Hutira, 2016). FTE is 

generated as the natural log of 1 plus the forecasted total firm earnings in hundreds of billions of 

dollars.89 I include the dummy variable LOSS, which is activated if actual earnings per share are 

 
88 Financial statement book values are lagged 4 months from Compustat year-end as a conservative estimate of the 

lag between the financial year-end and financial statement release. I exclude observations with negative book values of 

equity to avoid skewing estimates with distressed firms (Berkman, Dimitrov, Jain, Koch, & Tice, 2009). 
89 Forecasted total firm earnings are measured as FEPS multiplied by the adjusted number of shares outstanding. In 

unreported tests, I avoid using a natural log transformation on FTE and find similar results. 
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negative (Brown, 1998). Following Capstaff & Paudyal Rees (1998) and Hutira (2016), I include the 

dummy ECHANGE, activated for firms reporting lower earnings than the previous year.90  

I present summary statistics on the final sample of 1987 to 2017 by Toxic Releases quartiles in 

Table 3.1. 

Table 3.1: Summary statistics of variables used in tests of analyst bias. There are 425,621 observations in the sample 

ranging from 1987 to 2017. Toxic Releases is measured in billions of pounds. The mean of all variables used in the full 

regression sample are presented in the top half, disaggregated by quartiles of Toxic Releases. Quartile 1 consists of firms 

the lowest 25% of Toxic Releases, while quartile 4 consists of the top 25%. The bottom half is the pairwise Pearson 

correlation coefficients between variables. Correlations with significance at the 10% are bolded.  

 Quartile (N) FERROR Toxic Releases LOGSIZE LOGBM LEV FPERIOD COV SPREAD EXP FTE LOSS ECHANGE 

1 (106,321) -0.08 0.00000 21.92 0.33 0.19 181 9.96 7.72 15.46 0.006 0.07 0.30 

2 (106,488) -0.10 0.00004 22.13 0.37 0.19 179 10.45 7.67 16.20 0.010 0.07 0.32 

3 (106,374) -0.11 0.00033 22.20 0.36 0.22 178 8.86 7.98 17.39 0.010 0.06 0.31 

4 (106,438) -0.13 0.01489 22.69 0.42 0.23 175 9.40 8.68 16.87 0.017 0.07 0.37 

             

FERROR 1            

Toxic Releases 0.01 1           

LOGSIZE 0.16 0.08 1          

LOGBM -0.15 0.03 -0.40 1         

LEV -0.04 0.04 -0.10 0.04 1        

FPERIOD -0.11 -0.01 0.05 -0.04 -0.02 1       

COV 0.07 0.02 0.54 -0.14 -0.12 0.03 1      

SPREAD 0.01 0.01 0.06 0.05 0.02 -0.05 0.06 1     

EXP 0.04 0.03 0.20 -0.05 0.01 0.01 0.12 0.08 1    

FTE 0.05 0.03 0.55 -0.13 -0.14 0.02 0.27 0.05 0.08 1   

LOSS -0.33 -0.01 -0.21 0.36 0.08 0.00 -0.02 -0.01 -0.03 -0.11 1  

ECHANGE -0.30 0.03 -0.09 0.29 0.03 0.00 0.06 0.03 0.02 -0.03 0.29 1 

Summary statistics reveal that Toxic Releases exponentially increase by pollution quartile. 

LOGSIZE increases monotonically with the groups, suggesting the polluter firms tend to be larger in 

size. FERROR decreases by pollution quartile; this effect may be driven by correlations between 

Toxic Releases and other variables. The overall negative values for FERROR across all groups support 

previous findings that analyst forecasts are optimistic on average (Easterwood & Nutt, 1999).  

 
90 FTE and LOSS do not cause look-ahead bias as the dependent variable itself is a function of realised earnings. 

While these variables may appear to have a mechanical relationship with FERROR, this assumes that FEPS and Actual 

are completely uncorrelated; rational expectations would suggest that the two are strongly positively correlated. Including 

FTE and LOSS in regressions allows for imperfect correlations between the components of FERROR. I avoid using 

earnings quality variables in regressions due to simultaneity concerns between forecast accuracy and earnings 

management (Embong & Hosseini, 2018). 
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3.5. Polluter forecast bias 

In this section I test for evidence of an average and systematic earnings forecast pessimism 

associated with polluting firms, as theorised under the primary hypothesis. 

3.5.1. Panel regressions 

In the unbalanced panel there are unique observations of FERROR for each forecast made by 

analyst i, for firm j, in month t. I test whether analyst forecasts for polluting firms exhibit systematic 

pessimism using the following fixed effects panel regression. 

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡 =  𝛽𝑇𝑅 ∗  𝑇𝑜𝑥𝑖𝑐 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑗,𝑡 + 𝜷𝑿 ∗  𝑿𝒊,𝒋,𝒕 +  𝜀𝑖,𝑗,𝑡      (3.2) 

FERROR is regressed on Toxic Releases and a vector of control variables, X. The coefficient of 

interest is TR, which measures the linear association between the FERROR and Toxic Releases. I 

include industry and monthly fixed effects to control for heterogeneities (Gormley & Matsa, 2013) 

across industry (Brown, 1997; 1998; Coën, Desfleurs, & L’Her, 2009) and time (Ciccone, 2005; 

Espahbodi, Espahbodi, & Espahbodi, 2015). I two-way cluster standard errors by firm and month 

(Petersen, 2009).91 Results of the regressions are presented in Table 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
91 Results are similar if standard errors are instead clustered by analyst and firm or firm and year dimensions. 
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Table 3.2: Results of the analyst forecast bias panel regression. The dependent variable is FERROR, while the independent 

variable of interest is Toxic Releases. There are 425,621 observations in the sample of data. Toxic Releases is measured 

in billions of pounds. I present regression coefficient estimates with p-values in brackets below. Standard errors are 

adjusted with two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level with 
** and at the 1% level with ***. 

Firm toxicity and analyst forecast bias 

               

    (1)  (2)  (3)  (4) 

         

Toxic Releases 1.198***  0.804***  0.795***  0.603*** 

  (0.000)  (0.001)  (0.001)  (0.004) 

LOGSIZE    0.023***  0.030***  0.026*** 

    (0.000)  (0.000)  (0.000) 

LOGBM    -0.202***  -0.197***  0.124*** 

    (0.000)  (0.000)  (0.001) 

LEV    -0.116***  -0.118***  -0.047 

    (0.003)  (0.003)  (0.227) 

FPERIOD      -0.066***  -0.063*** 

      (0.000)  (0.000) 

COV      -0.003***  0.001 

      (0.000)  (0.252) 

SPREAD      0.000  0.000 

      (0.499)  (0.610) 

EXP      0.0002*  0.0004*** 

      (0.069)  (0.000) 

FTE         -0.988** 

        (0.014) 

LOSS        -0.506*** 

        (0.000) 

ECHANGE       -0.245*** 

        (0.000) 

         

Fixed effects Industry & Month  Industry & Month  Industry & Month  Industry & Month 

N 425,621  425,621  425,621  425,621 

Adjusted R2 0.0715  0.0878  0.0977  0.2162 

Results are consistent with the hypothesised pessimistic polluter forecast bias. Estimated 

coefficients of Toxic Releases reveal that pollution is positively related to FERROR, and is thus 

associated with systematically pessimistic analyst forecasts for polluting firms on average. 

Significance for the polluter bias coefficient marginally decreases as variables are added to the model, 

but maintains over 1% significance. Based on the final coefficient from column (4), increasing 

emissions by one standard deviation leads to an approximate 1.26% increase in the within-industry 
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and month forecast error percentage.92 I find consistent estimates with 1.1% statistical significance 

if Toxic Releases is transformed with a logarithmic function. Removing either industry or monthly 

fixed effects generates insignificant estimates, suggesting that the relationship between analyst 

pessimism and toxic emissions only occurs within-industry and month. I find consistent estimates 

with 5.1% statistical significance if analyst fixed effects are added to the model. 

Estimated control variable coefficients are mostly consistent with the literature. As hypothesised 

by Brown (1998) and Hutira (2016), larger firms have significantly less optimistic forecasts. The 

LOGBM coefficient retains significance but switches sign once FTE, LOSS and ECHANGE are 

included, indicating that optimistic forecasts for high book-to-market stocks become pessimistic once 

other variables are accounted for. Forecasts made closer to the earnings date are less optimistic 

(Richardson et al., 1999; Burgstahler & Eames, 2003; Eames & Kim, 2012; Barron et al., 2013; 

Hutira, 2016). Analyst coverage is associated with forecast optimism until FTE, LOSS and 

ECHANGE are controlled for. Analyst experience is associated with pessimistic and more accurate 

forecasts (Mikhail et al., 1997, 2003). Lastly, the FTE, LOSS and ECHANGE coefficients are 

statistically significant, indicating that analysts are optimistic for firms with high expected earnings 

(Das et al., 1998; Hayes 1998; Hutira, 2016), that eventually report losses (Brown, 1998), or report 

earnings lower than the previous year (Capstaff & Paudyal Rees, 1998; Hutira, 2016).93   

The adjusted R2 reveals that the full model accounts for approximately 22% of the variation in 

forecast bias. I find that excluding Toxic Releases from the full model generates approximately the 

same adjusted R2, suggesting that pollution contributes little to the explanatory power of the model. 

I conduct four robustness regressions in which FERROR is winsorized differently. In the first of 

these tests, I avoid winsorizing data altogether and exclude observations in which the denominator 

Actual is 0. In the second and third of these tests, I winsorize FERROR at the 0.5% and 5% levels on 

 
92 The standard deviation of Toxic Releases for the regression sample is 0.0209. 
93 In a robustness test presented in the appendix, I rerun regression (3.2) and control for corporate governance 

variables. Results show that the Toxic Releases coefficient is positive and significant at the 1% level. 
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both sides respectively. Lastly, I replace FERROR with a rank variable of 1 to 10, dependent on the 

decile ranking of FERROR over the entire sample. Using these robustness FERROR’s, I rerun 

regression (3.2) with all control variables, fixed effects and two-way clustered standard errors. I 

present the estimated robustness coefficients for Toxic Releases in Table 3.3. 

Table 3.3: Robustness tests using alternative winsorization schemes for FERROR. I run 4 separate regressions in these 

tests. The first test avoids winsorizing at all and excludes observations in which the actual earnings per share reported by 

a firm is 0. The second and third tests symmetrically winsorize FERROR at the 99.5% and 0.5% and 95% and 5% levels 

respectively. The last method creates new variables that correspond to the sample decile ranking of FERROR. I present 

estimated coefficients for Toxic Releases below, which are generated after repeating regression (3.2) with all control 

variables and industry and monthly fixed effects. P-values are shown in brackets below. Standard errors are adjusted with 

two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 

1% level with ***. 

Winsorization robustness test regression estimates 

 
  

Non-winsorized 1.126 

 
 (0.113) 

Winsorized at 0.5% on both sides 1.229* 

 
 (0.081) 

Winsorized at 5% on both sides 0.344** 

  (0.046) 

Decile rankings 3.537*** 

    (0.000) 

Robustness estimates are mostly consistent with main results. Apart from marginally insignificant 

estimates using non-winsorized FERROR, robustness winsorization techniques yield qualitatively 

similar significant estimates in the same direction, and support primary regression estimates.  

As an additional test, I estimate the regression coefficient for Toxic Releases when regressed 

against FERROR in subsamples of observations by yearly pollution quintiles. This estimates whether 

the polluter pessimism association is stronger within specific polluter groups. Behavioural biases are 

unlikely to operate in a smooth manner across all firms. Analysts may generate differing levels of 

pessimism through variation in pollution within these groups. As behavioural biases are irrational by 

definition and a product of subconscious heuristic-driven processes, it is reasonable to expect the 

strongest biases within extreme polluter quintiles which are the most noticeable. 
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I sort observations into quintile groups based on firm pollution relative to other observations in the 

same year. A higher quintile indicates greater yearly pollution. I then run regression (3.2) by quintile. 

I include all control variables from regression (3.2), and control for monthly and industry fixed 

effects. Significance is estimated using two-way clustered standard errors. All five estimated 

regression coefficients for Toxic Releases are presented in Table 3.4. 

Table 3.4: Analyst forecast bias by polluter quintile. I generate quintile subsamples based on the ranking of a firm’s Toxic 

Releases relative to other firms in a year. I run regression (3.2) for all five subsamples. I present estimated coefficients 

for Toxic Releases below, which are generated after including all control variables from regression (3.2) with industry 

and month fixed effects. P-values are shown in brackets below. Standard errors are adjusted with two-way clustering on 

firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. I also 

present the subsample means and standard deviations of Toxic Releases by quintile. 

Polluter quintile subsample regressions 

Quintile 

 

Estimate 

 

Toxic Releases mean 

 

Toxic Releases std dev 

 

    

        

1  -2610.055  0.00000  0.00000  

  (0.618)      

2  -210.760  0.00001  0.00001  

  (0.796)      

3  43.048  0.00007  0.00005  

  (0.874)      

4  47.408  0.00036  0.00021  

  (0.235)      

5  0.556**  0.01439  0.03912  

  (0.015)      

Results of the polluter quintile test reveal that a linear relationship between Toxic Releases and 

FERROR is only significant for the largest polluting quintile. Most striking is the range of magnitudes 

of regression coefficients. Lower quintiles of Toxic Releases have exponentially lower subsample 

averages and standard deviations of pollution, creating estimates of greatly varying magnitudes. 

Results show that for firms in quintile 5, increases in pollution leads to a significant increase in 

forecast pessimism; however, this does not hold for firms outside the top polluter quintile.  

From a behavioural perspective, this result may be explained by analysts being more sensitive to 

increases in pollution of the most toxic firms. Analysts may not notice or scrutinise the emissions of 

moderate polluters, but may be more influenced by information on the dramatic toxic emissions of 
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the most extreme polluters. This information is likely to be more attention-grabbing and hence 

generate the most bias. Pollution for the top quintile is more likely to be salient information, and as 

Amir & Ganzach (1998) suggest, this is more likely to generate analyst overreaction. 

I examine the interaction between polluter pessimism and time to test for a trend in pessimism. 

This test aims to illustrate whether polluter pessimism has always been prevalent throughout the 31 

years included in the sample, or if it is relatively recent phenomenon. Both hypotheses are plausible; 

pollution has been on the minds of businesses and policymakers much prior to 1987;94 however, 

recent sentiment for pollution abatement (Flammer, 2013) may generate additional forecast bias. I 

repeat regression (3.2) with all control variables, industry and yearly fixed effects, and an interaction 

term between Toxic Releases and the yearly dummies. Yearly fixed effects are used in place of 

monthly fixed effects as the latter leads to noisier interaction estimates, from which a trend is less 

discernible. Along with the estimated slope for Toxic Releases, the panel regression yields 30 

interaction coefficients between the yearly dummies and Toxic Releases; one for each of the 31 years 

in the sample except 1987, which has no dummy and is the benchmark to which the estimates are 

compared against. I present the estimated interaction coefficients in Figure 3.3. 

 
94 For example, Eisenhower’s Air Pollution Control Act of 1955 provided funds for federal research in air pollution, 

while Nixon’s Clean Air Act of 1963 allowed federal programs to monitor and control air pollution. 
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While the interaction estimates appear greater in magnitude than the original coefficient found in 

regression (3.2), after adjusting for the standalone Toxic Releases coefficient of approximately -7, the 

total pessimism approaches the ballpark of the initial estimate. Though estimated coefficients are 

volatile early on, they become relatively stable from 1994 onwards. The initial volatility may be due 

to the launch of the TRI program, in which reporting standards, chemical lists, and federal compliance 

laws were being updated. There is a slight upwards drift in yearly interaction coefficients; an 

estimated trend of 0.05 indicates greater pessimism over time, however, this is economically 

insignificant given the overall scale of Toxic Releases and FERROR. Estimates of this test imply that 

analyst pessimism is largely stable throughout the sample. 

3.5.2. Scaled pollution 

In primary tests, absolute pollution is compared to forecast bias. However, some polluters may 

generate enough societal benefits to justify their pollution. For example, a pharmaceutical company 

which creates valuable medical products that are needed by society but also releases substantial toxins 

Figure 3.3: Estimated interaction coefficients between Toxic Releases and yearly fixed effects, where the dependent 

variable is FERROR. Coefficients are estimated using Toxic Releases-yearly fixed effects interactions. 1987 has no 

active dummy, and is therefore the benchmark to which the dummy interaction coefficients are compared against. The 

estimated Toxic Releases coefficient is -6.834 in this industry and yearly fixed effects interaction model. The points on 

the thick black line are the estimated interaction coefficients, while the dotted black line is a fitted trend. The fitted 

coefficients of the trend are shown in the bottom right corner of the figure. 
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may not be perceived as poorly by analysts as a failing metals firm that creates little value but also 

pollutes heavily. Therefore, I test the association between inefficient pollution and forecast 

pessimism. 

I create a measure of pollution inefficiency, labelled Scaled Releases, by dividing Toxic Releases 

by the most recent annualised net sales of the firm.95 When constructing Scaled Releases, both Toxic 

Releases and sales are measured in total pounds and dollars respectively. The Pearson correlation 

coefficient between Toxic Releases and Scaled Releases at the firm-year level is measured as 0.41 

and is significant at the 1% level, indicating absolute polluters are generally also inefficient polluters.  

I conduct the following fixed effects panel regression to test the association between pollution 

inefficiency and forecast bias.  

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡 =  𝛽𝑆𝑅 ∗  𝑆𝑐𝑎𝑙𝑒𝑑 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑗,𝑡 + 𝜷𝑿 ∗  𝑿𝒊,𝒋,𝒕 +  𝜀𝑖,𝑗,𝑡    (3.3) 

FERROR is regressed on Scaled Releases along with a set of control variables. I also rerun the 

regression and include Toxic Releases as an additional independent control variable. I use industry 

and monthly fixed effects, and cluster standard errors by firm and month. I present the results of the 

polluter efficiency regression in Table 3.5. 

 

 

 

 

 

 

 

 

 

 
95 As with other firm-specific fundamental variables, I use a 4-month lag to account for the gap in time between the 

balance sheet year-end date and the release of the financial data. I exclude observations in which net sales are zero or 

negative. There are only 20 observations in the entire sample for which this is necessary. 
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Table 3.5: Results of the polluter efficiency panel regressions. The dependent variable is FERROR, while the independent 

variables of interest is Scaled Releases. There are 425,601 observations in the sample. Scaled Releases is measured as the 

ratio of Toxic Releases in pounds to the most recently announced net sales of the firm in dollars, while Toxic Releases is 

measured in billions of pounds. I present regression coefficient estimates with p-values in brackets below. Standard errors 

are adjusted with two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level 

with ** and at the 1% level with ***. 

Polluter efficiency regression results 

     

Variable   (1)  (2) 

     

Scaled Releases  0.623  0.415 

  (0.153)  (0.188) 

Toxic Releases    0.486** 

    (0.028) 

LOGSIZE  0.027***  0.027*** 

  (0.000)  (0.000) 

LOGBM  0.127***  0.126*** 

  (0.001)  (0.001) 

LEV  -0.043  -0.046 

  (0.275)  (0.243) 

FPERIOD  -0.063***  -0.063*** 

  (0.000)  (0.000) 

COV  0.001  0.001 

  (0.259)  (0.261) 

SPREAD  0.000  0.000 

  (0.586)  (0.609) 

EXP  0.0004***  0.0004*** 

  (0.000)  (0.000) 

FTE   -0.990**  -0.992** 

  (0.015)  (0.014) 

LOSS  -0.508***  -0.506*** 

  (0.000)  (0.000) 

ECHANGE  -0.245***  -0.245*** 

  (0.000)  (0.000) 

     

Fixed effects  
Industry & 

Month 
 

Industry & 

Month 

N  425,601  425,601 

Adjusted R2   0.2162  0.2164 

Results of the polluter efficiency regressions reveal that while Toxic Releases is significantly 

associated with increased forecast pessimism, Scaled Releases is not. Despite having a positive 

coefficient like Toxic Releases, Scaled Releases does not display statistical significance. A lack of 

significance cannot be attributed to the collinearity with Toxic Releases, as Scaled Releases is 
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insignificant even when Toxic Releases is excluded from the regression. Including Scaled Releases 

also leaves the adjusted R2 virtually unchanged from primary tests.  

Estimates reveal that absolute releases have a stronger relationship with forecast pessimism than 

scaled releases, implying that analyst bias is not influenced by polluter efficiency, but is by absolute 

pollution. By nature, analyst behavioural biases are unlikely to be sophisticated, and instead are likely 

to be affected by naïve and eye-catching information around absolute pollution, consistent with these 

results. Though Scaled Releases is more informative and comparable across firms, forecast bias is 

more strongly associated with Toxic Releases, which is a more immediately salient variable. 

3.5.3. Disaggregated toxic releases 

Toxic Releases is identified as the sum of all chemical groups that are classified by the EPA as 

hazardous to human health or to the external environment. This includes over 500 different chemical 

groups which may individually have differing consequences when released. Toxic Releases implicitly 

assigns equal weights to these chemicals, but can be broken down into the major chemical groups to 

examine their disaggregated, and potentially unequal, associations with forecast bias. 

I disaggregate Toxic Releases into three chemical subgroups, TRI, PBT and Dioxin. TRI consists 

of the standard chemicals covered by the Toxic Release Inventory, including certain forms of 

ammonia, aluminium, phosphorus, zinc, and related by-products. These chemicals are detrimental 

when exposed to humans or the environment. PBT, the second category of chemicals, is named after 

persistent bio-accumulative chemicals which include lead and mercury compounds. These chemicals 

are known to have long lasting effects on human health and the environment, and are not easily 

removed or destroyed. The final chemical group is Dioxin, which comprises of trace level quantities 

of pollutants generated as by-products of combustion and other industrial processes. Despite being 

released in small quantities, dioxins are highly toxic and cause a variety of health complications 

including reproductive, developmental, immune system or hormonal damage; dioxins may also cause 
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cancer. As dioxins are released in very small quantities, their contribution to Toxic Releases and 

forecast pessimism is effectively ignored in primary regressions.  

PBT and Dioxin chemicals are generally more harmful to the environment and human health 

(EPA, 1999), but are released in significantly lower quantities than TRI.  

TRI, PBT and Dioxin measure the yearly releases of their respective chemicals by a firm in 

continuous terms. Data on pollutants are stored in billions of pounds, except for Dioxin which is 

measured in pounds. I shorten the sample period as data on Dioxin only begin from 2000 onwards. 

At the firm-year level, the Pearson correlation coefficients for TRI, PBT and Dioxin range from 0.03 

to 0.55. 

I conduct the following regression to test for the relationships between individual chemical groups 

and analyst forecast bias. 

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡 =  𝛽𝑇𝑅𝐼 ∗  𝑇𝑅𝐼𝑗,𝑡 +  𝛽𝑃𝐵𝑇 ∗  𝑃𝐵𝑇𝑗,𝑡 +  𝛽𝐷𝑖𝑜𝑥𝑖𝑛 ∗  𝐷𝑖𝑜𝑥𝑖𝑛𝑗,𝑡 +  𝜷𝑿 ∗  𝑿𝒊,𝒋,𝒕 +  𝜀𝑖,𝑗,𝑡  

            (3.4) 

I regress FERROR on the firm releases of each of TRI, PBT and Dioxin. I include prior control 

variables and industry and monthly fixed effects. Standard errors are adjusted with two-way 

clustering by firm and month. I present the results of the test in Table 3.6. 
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Table 3.6: Results of the disaggregated toxic releases panel regression. The dependent variable is FERROR, while the 

independent variables of interest are TRI, PBT and Dioxin, which sum up to equal Toxic Releases. There are 283,707 

observations in the sample from 2000 to 2017. TRI and PBT are measured in billions of pounds, while Dioxin is measured 

in pounds. I present regression coefficient estimates with p-values in brackets below. Standard errors are adjusted with 

two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 

1% level with ***. 

Disaggregated toxic releases regression 

Variable   Coefficient 

   

TRI  0.661*** 

  (0.003) 

PBT  0.897 
  (0.695) 

Dioxin  0.004 
  (0.126) 

LOGSIZE  0.019*** 
  (0.000) 

LOGBM  0.132*** 

  (0.005) 

LEV  -0.011 
  (0.807) 

FPERIOD  -0.053*** 
  (0.000) 

COV  0.002*** 
  (0.008) 

SPREAD  0.000 
  (0.575) 

EXP  0.0003*** 
  (0.003) 

FTE   -0.718* 
  (0.063) 

LOSS  -0.435*** 
  (0.000) 

ECHANGE  -0.203*** 
  (0.000) 
   

Fixed effects  Industry & Month 

N  283,707 

Adjusted R2 0.1795 

Results of the disaggregated toxic releases test suggest that analysts are more pessimistic for firms 

with greater levels of TRI than the other two chemical groups. While all three chemical group 

variables have positive coefficients, only TRI is estimated with statistical significance. Despite being 

the most released pollutants, TRI chemicals are usually relatively less harmful than the other two 

categories. Again, it may be that TRI chemicals are the most noticed by analysts as they are generally 
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released in greater quantities, and generate the most pessimism as a result of being attention-

grabbing.96  

3.6. Analyst-specific tests 

Behavioural biases revolve around the tendencies of individual agents which are likely 

heterogenous. In this section I test the biases of individual analysts towards polluters.97 

3.6.1. Analyst conservatism 

I test whether prior analyst-specific biases on polluters are associated with similar future bias. I 

hypothesise that green and grey analysts display persistence in their bias towards polluters, and 

generate forecasts that are consistently biased in the same direction.  

I identify individual analysts as green or grey dependent on their relative attitudes towards 

polluting firms. This procedure involves identifying polluting firms, identifying analyst biases 

towards polluters, and finally testing for a relationship between ex-ante and ex-post biases. 

I start by sorting firms into yearly quintiles of Toxic Releases. Quintile 5 represents the highest 

yearly ranked polluters, while quintile 1 represents the lowest.  

Analysts can only be identified as having been biased in their forecasts once realised firm earnings 

have been announced; therefore, I estimate observed biases as at earnings announcements. I calculate 

the average observed bias displayed by an analyst for a given firm and earnings announcement as the 

simple mean bias in all forecasts made over t months by analyst i, for firm j, for earnings 

announcement month h, as follows. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,ℎ =  
∑ 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡,ℎ

𝑇
𝑡= 1

𝑇
         (3.5) 

 
96 I find that transforming the disaggregated pollution variables with a natural log function generates insignificant 

estimates for all three coefficients. 
97 Analysts may individually vary in exhibiting behavioural biases. While in aggregate, analyst forecast bias is found 

to be negatively associated with firm pollution, individual analysts may exhibit forecast optimism through various factors, 

which include opposing behavioural biases, personal incentives or political beliefs. 
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Observed FERROR is the realised average bias of all forecasts made by an analyst for a specific 

firm-earnings announcement month. I then take the average of Observed FERROR made by analyst 

i for all firms in polluter quintile q over the last year.  

𝑄 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑞,ℎ =  
∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑞,ℎ

ℎ
𝑦= ℎ−11

𝑛
  𝑓𝑜𝑟 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑟 𝑞𝑢𝑖𝑛𝑡𝑖𝑙𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 

      (3.6) 

This process generates a rolling window of the observed average bias of individual analysts by 

polluter quintile for every month h in which there was an earnings announcement for a covered firm. 

For all months in between earnings announcements by firms covered by analyst i, I set the value of 

Q FERROR as its last known analyst-specific value. 

I rank individual analysts based on their average bias towards firms in quintile 5. Only analysts 

that produce forecasts for the top polluter quintile are eligible to be defined as green or grey. Q 

FERROR for quintile 5 polluting firms is labelled Polluter FERROR.  

𝑃𝑜𝑙𝑙𝑢𝑡𝑒𝑟 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,ℎ =  𝑄 𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑞,ℎ  𝑖𝑓 𝑞 = 5        (3.7) 

Analysts with the highest 20% values of Polluter FERROR in a month are labelled as Green, the 

lowest 20% are labelled Grey, and those in the middle 60% or that do not forecast for quintile 5 

polluters are labelled Neutral. Green and Grey analysts are identified with two separate dummy 

variables. Of the 7,428 analysts in the entire sample, there are 1,439 (1,243) analysts who are 

considered Green (Grey) analysts in at least one month. 

This dynamic analyst identification strategy sorts analysts using the most recent realisation of 

their bias. The primary advantage of this dynamic structure is that analyst identifiers are updated 

every month following earnings announcements; analysts that display new evidence of bias around 

polluters can be classified appropriately. A disadvantage of this strategy is that the Green and Grey 

identifiers may be volatile.  
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I test whether Green and Grey analysts display persistent biases when forecasting for extreme 

polluters with the following fixed effects panel regressions. 

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡 =  𝛽𝐺𝑟𝑒𝑒𝑛𝑄5  ∗  (𝐺𝑟𝑒𝑒𝑛𝑖,𝑡−1  ∗  𝑄5𝑗,𝑡)  +  𝛽𝐺𝑟𝑒𝑒𝑛𝑄1  ∗  (𝐺𝑟𝑒𝑒𝑛𝑖,𝑡−1  ∗  𝑄1𝑗,𝑡)  + 𝛽𝐺𝑟𝑒𝑦𝑄5  ∗

 (𝐺𝑟𝑒𝑦𝑖,𝑡−1  ∗  𝑄5𝑗,𝑡)  +  𝛽𝐺𝑟𝑒𝑦𝑄1 ∗ (𝐺𝑟𝑒𝑦𝑖,𝑡−1  ∗   𝑄1𝑗,𝑡)  +  𝜷𝑿 ∗ 𝑿𝒊,𝒋,𝒕 +  𝜀𝑖,𝑗,𝑡   (3.8) 

I regress FERROR on Green and Grey, along with Q5 and Q1, representing the top and bottom 

quintile of polluting firms respectively. I lag the analyst identifier dummies to capture analyst 

identifications ex-ante. If an analyst was identified as Green (Grey) in the previous month, all 

observed forecasts in the following month made by the analyst have a value of 1 for the Green (Grey) 

dummy, and otherwise 0. The variables of interest are the interaction terms between the analyst 

identifiers and the polluter quintiles. The hypothesis suggests that the Green (Grey) dummy should 

have a positive (negative) interaction coefficient with Q5. I include interactions with polluter Q1 to 

test whether estimates reverse for the least polluting firms. Forecasts made by Neutral analysts are 

the benchmark to which the standalone dummy and interaction coefficients are compared against. 

The vector X consists of the standalone dummy variables, as well as all previously included 

control variables. These include LOGSIZE, LOGBM, LEV, FPERIOD, COV, SPREAD, EXP, FTE, 

LOSS, ECHANGE. I also include industry and monthly fixed effects. Standard errors are adjusted 

using two-way clustering by firm and month. Estimated coefficients for the analyst identifier and 

polluter quintile dummy variables and their interaction coefficients are presented in Table 3.7. 
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Table 3.7: Analyst-specific bias persistence regression. Analysts are identified as Green or Grey dependent on their 

relative bias for polluting firms. Firms identified with the Q5 and Q1 dummy variables are the top and bottom yearly 

quintiles of polluters respectively. Analyst identifier and polluter quintile interactions are reported below. I control for all 

independent variables used in primary regressions and use industry and monthly fixed effects. I present regression 

coefficient estimates with p-values in brackets below. Coefficient estimates for control variables are omitted for brevity. 

There are 383,621 observations in the panel. Standard errors are adjusted with two-way clustering on firm and month. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. I present Wald test p-

values for each subsample to test the equality of interaction coefficients. 

Analyst persistence regression results 

Variable   Coefficient  

    

Green  -0.004  

  (0.709)  

Grey  0.006  
  (0.610)  

Q5  -0.009  
  (0.528)  

Q1  0.004  
  (0.727)  

Green * Q5  0.029*  

  (0.084)  

Green * Q1  0.002  
  (0.900)  

Grey * Q5  -0.048**  
  (0.041)  

Grey * Q1  0.005  
  (0.808)  

    

Fixed effects  Industry & Month  

N  383,621  

Adjusted R2 0.2147  

Wald test p-values  
 Green * Q5 Grey * Q1 

Green * Q1 0.166 0.914 

Grey * Q5 0.005*** 0.024** 

Results are consistent with the analyst conservatism hypothesis, revealing that analysts are 

persistent in their bias towards top polluting firms. Relative to forecasts made by Neutral analysts, 

ex-ante identified pessimistic and optimistic analysts do not display a statistically significant bias for 

the mid quintiles of polluters, as indicated by the standalone coefficients for Green and Grey. 

Similarly, Neutral analysts do not display additional bias for the top or bottom polluter quintiles 

relative to the mid quintiles, as indicated by the standalone coefficients for Q5 and Q1. However, 

after accounting for the benchmark and standalone dummy coefficients, analysts previously identified 
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as Green (Grey) continue to issue pessimistic (optimistic) forecasts for the top quintile of polluters, 

as revealed by the significantly estimated interaction coefficients between analyst identifiers and Q5. 

Results show that being identified as a Green (Grey) analyst in the previous month is associated with 

a 2.9% (4.8%) increase in forecast pessimism (optimism) for forecasts made for polluters in the 

current month. Estimates provide no evidence of a reverse relationship for Q1.  

The difference in interaction effects between Green and Grey analysts for Q5 is approximately 

6.7% after adjusting for the standalone analyst dummies. The Wald test finds a significant difference 

between two interaction coefficients at the 10% level.  

I consider the forecast bias persistence of Green and Grey analysts for more extreme polluters. I 

rerun regression (3.8) but substitute Q1 and Q5 for D10, a dummy which is activated for the top 

yearly decile of polluters. Green and Grey are interacted with D10. The estimated interaction 

coefficients are expected to be of the same sign as those estimated using Q5, but of greater magnitude. 

I present the results of this test in Table 3.8. 
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Table 3.8: Analyst-specific bias persistence regression for the top decile of polluters. Analysts are identified as Green or 

Grey dependent on their relative bias for firms identified as polluters. Firms identified with the D10 dummy variable are 

the top yearly decile of polluters. Analyst identifier and polluter decile interactions are reported below. I control for all 

independent variables used in primary regressions and use industry and monthly fixed effects. I present regression 

coefficient estimates with p-values in brackets below. Coefficient estimates for control variables are omitted for brevity. 

There are 383,621 observations in the panel. Standard errors are adjusted with two-way clustering on firm and month. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Analyst persistence regression for top decile of polluters 

Variable Coefficient 

  

Green -0.006 

 (0.455) 

Grey -0.003 
 (0.795) 

D10 -0.003 
 (0.872) 

Green * D10 0.060*** 
 (0.001) 

Grey * D10 -0.043 

 (0.118) 

  

Fixed effects Industry & Month 

N 383,621 

Adjusted R2 0.2147 

As expected, the estimated interaction coefficient for Green analysts and D10 is of the same 

direction as the interaction with Q5, but of a greater magnitude. This is not true for Grey analysts, 

who surprisingly have slightly lower estimates of forecast pessimism with marginal insignificance. It 

is possible that only for these extreme polluting firms, some Grey analysts revise their beliefs 

somewhat, whereas Green analysts do not. I find similar results if D10 is substituted with a top 5% 

polluter dummy variable.  

Interestingly, the estimated coefficient for D10 itself is not statistically significant, implying that 

Neutral analysts forecasting for the greatest decile of polluters are not more pessimistic relative to 

the remaining 90% of firms; this also true for the Q5 coefficient in the previous test. This suggests 

that the aggregate pessimism found in the initial tests is generated by Green analysts, offset somewhat 

by Grey analysts, and largely unrelated to forecasts made by Neutral analysts. 
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Results of this section suggest that analysts that are the most biased towards polluters display 

traits consistent with the conservatism bias.98 Benchmarked to other forecasts, Green (Grey) analysts 

continue to display pessimism (optimism) for polluters, ceteris paribus, despite having been proven 

wrong in the past. 

3.6.2. Polluter bias by forecast horizon  

In this section I test whether individual analyst biases towards polluters change over the forecast 

horizon. I hypothesise that biased analysts ‘walk-down’ their polluter bias nearer to the earnings date. 

As time goes by, analysts may be pressured by the economic reality around polluter earnings. Nearer 

to the earnings date, the chance of unpredictable or extreme events occurring within the timeframe 

diminishes, and hence the expected cost to polluters is lower. Also, closer to the earnings date, more 

information is available which may promote cognitive forecasts that are less dependent on heuristics 

or emotion. Finally, there is likely to be greater investor attention to forecasts closer to earnings dates, 

incentivising analyst accuracy.  

I first examine the analyst bias walk-down hypothesis with a univariate test. Using the ex-ante 

Green, Grey and Neutral identifiers for analysts, I disaggregate the full sample into subsamples by 

analyst identifier and the forecast horizon groupings of 1 – 90, 91 – 180, 181 – 270 and 271 – 360 

days inclusive. I present the average value of FERROR for the top yearly quintile of polluters by 

analyst identifier subsample in Figure 3.4. 

 
98 As pollution is heavily clustered by industry, tests may be picking up an industry effect. However, I argue that 

because industry groups themselves are based on the common activities of the firms that operate within them, it is these 

activities that drive results instead of the industry group itself, which is little more than a title. In other words, the pollution 

effect may drive the industry effect, as opposed to the other way around. 
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Figure 3.4: Average values of FERROR for the top yearly quintile of polluters, by analyst identifier and forecast horizon 

subsamples. Analysts are grouped by ex-ante indicators as Green, Neutral or Grey, as described in the analyst 

conservatism section. All forecasts made by these analysts are further grouped into 4 subsamples based on the difference 

in days from the forecast date and the earnings date. Average values of FERROR are then calculated and presented for 

these 12 subsamples. 

Figure 3.4 illustrates that all three analyst types initially have optimistic forecasts for the top 

polluters on average, which is then walked down as the forecast horizon diminishes. As expected, 

Grey analysts have the most optimistic polluter forecasts, followed by Neutral and then Green 

analysts. Figure 3.4 reveals that in the last 90 days before the earnings date, all analyst types have 

reduced optimism, with the average Green forecasts becoming marginally pessimistic. While Figure 

3.4 provides some evidence of a forecast optimism walk-down by Grey analysts, it does not indicate 

that Green analysts walk-down their pessimism as hypothesised; I test whether this is the case after 

controlling for other factors in a regression. 

I focus on the forecasts made by analysts for the top quintile of polluters. I conduct the following 

panel regression on this subsample of firms. 

𝐹𝐸𝑅𝑅𝑂𝑅𝑖,𝑗,𝑡,𝑞=5 =  𝛽𝐺𝑟𝑒𝑒𝑛  ∗  (𝐺𝑟𝑒𝑒𝑛𝑖,𝑗,𝑡−1  ∗  𝐹𝑃𝐸𝑅𝐼𝑂𝐷𝑖,𝑗,𝑡)  +  𝛽𝐺𝑟𝑒𝑦 ∗ (𝐺𝑟𝑒𝑦𝑖,𝑗,𝑡−1  ∗   𝐹𝑃𝐸𝑅𝐼𝑂𝐷𝑖,𝑗,𝑡)  +

 𝜷𝑿 ∗ 𝑿𝒊,𝒋,𝒕 +  𝜀𝑖,𝑗,𝑡            (3.9) 
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For the top quintile of polluters, I regress FERROR on the interaction between the Green and 

Grey analyst identifier dummy variables and FPERIOD. In another regression, I alternatively replace 

FPERIOD with 3 dummy variables, activated for forecasts made within the 91 – 180, 181 – 270, and 

271 – 360 day forecast horizons, and interact each of dummy with Green and Grey. These dummy 

variables are labelled FGROUP2, FGROUP3 and FGROUP4 respectively. The benchmark group 

against which standalone dummies and interaction effects are compared to are forecasts made by 

Neutral analysts for polluting firms in the 90 days prior to the earnings date. I include all standalone 

interaction components in both regressions. I control for all independent variables from primary 

regressions,99 and use industry and monthly fixed effects. Standard errors are two-way clustered by 

firm and month.  

As per the hypothesis, the interaction coefficient between Green (Grey) and FPERIOD is 

expected to be positive (negative), indicating that with a greater forecast horizon, Green (Grey) 

analysts are more pessimistic (optimistic). Similarly, the interaction coefficients between Green 

(Grey) and the forecast horizon dummy variables should be positive (negative) and monotonically 

increasing (decreasing). I present the estimated interaction coefficients in Table 3.9. 

 

 

 

 

 

 

 

 
99 The second regression model does not include the independent variable FPERIOD. 
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Table 3.9: Results of the analyst bias by forecast horizon test for the subsample of polluters. I run two panel regressions, 

in which the analyst identifiers Green and Grey are interacted with the forecast horizon variable. In the first regression, 

the forecast horizon variable is FPERIOD, measured as the gap between the forecast and earnings date in hundreds of 

days. The second regression has 3 dummy variables, activated if the earnings forecast is made within 91 – 180, 181 – 

270, and 271 – 360 day period prior to the earnings date, labelled FGROUP2, FGROUP3, FGROUP4 respectively. Only 

forecasts for firms in the top yearly quintile of polluters are included in the sample. I control for all independent variables 

used in previous regressions, except for FPERIOD in column (2), and use industry and monthly fixed effects. I present 

interaction and standalone variable coefficients estimates with p-values in brackets below. Coefficient estimates for 

control variables are omitted for brevity. There are 100,834 observations in the panel. Standard errors are adjusted with 

two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 

1% level with ***. 

Analyst bias and forecast horizon interaction results 

     

Variable   (1)  (2) 

     

Green  0.048**  0.046*** 

  (0.015)  (0.003) 

Grey  0.042*  0.027 

  (0.068)  (0.158) 

FPERIOD  -0.060***   

  (0.000)   

Green * FPERIOD  -0.016*   

  (0.071)   

Grey * FPERIOD  -0.041***   

  (0.002)   

FGROUP2    -0.065** 

    (0.013) 

FGROUP3    -0.107*** 

    (0.000) 

FGROUP4    -0.171*** 

    (0.000) 

Green * FGROUP2    -0.026* 

    (0.089) 

Green * FGROUP3    -0.043** 

    (0.045) 

Green * FGROUP4    -0.045* 

    (0.061) 

Grey * FGROUP2    -0.047** 

    (0.032) 

Grey * FGROUP3    -0.083** 

    (0.011) 

Grey * FGROUP4    -0.112*** 

    (0.002) 

     

Fixed effects  
Industry & 

Month 
 

Industry & 

Month 

N  100,834  100,834 

Adjusted R2   0.2285  0.2288 
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Results support the walk-down hypothesis for Grey analysts, but are in the opposite direction to 

the hypothesis for Green analysts. The continuous FPERIOD regression results in column (1) shows 

Grey analysts become more pessimistic towards polluters closer to the earnings date, and are more 

pessimistic than Neutral analysts immediately prior to the earnings date. Surprisingly, Green analysts 

also become more pessimistic as FPERIOD decreases, and are more pessimistic than Neutral analysts 

immediately prior to the earnings date. The same is observed for estimates from the dummy variable 

regression. Based on the standalone regression coefficients in column (2), Green (Grey) analysts are 

significantly (insignificantly) more pessimistic towards polluters compared to Neutral analysts in the 

last 90 days prior to the earnings date. In line with the hypothesis, Grey interaction coefficients with 

the forecast horizon dummy variables are negative and rising in magnitude monotonically for horizon 

subgroups further away from the earnings date, indicating increased pessimism for early forecasts. 

The same is also true, albeit in smaller magnitude, for Green analysts, which is inconsistent with the 

hypothesis.  

The negative FPERIOD coefficient along with the standalone dummy monotonic negative trend 

indicates that Neutral analysts become more pessimistic in later forecasts. Both FPERIOD and the 

forecast horizon dummies provide evidence of an average walk-down of analyst forecasts; however, 

the additional interactions with the Green and Grey dummies indicate that these analysts walk-down 

their forecasts for polluters more so than the average Neutral analyst. 

In a robustness test, I repeat regressions (3.9) with firm-earnings date fixed effects. This test 

controls for the average effect of time invariant factors at the firm-earnings date level. I exclude 

control variables that have little or no variation at the firm-earnings date, consisting of LOGSIZE, 

LOGMB, LOSS and ECHANGE. The results of this test, which are presented in the appendix, are 

similar to Table 3.9. 

I also examine analyst bias towards polluters in their last forecasts for a firm-earnings date. Using 

the same panel as in regressions (3.9), I introduce the Last Forecast dummy, activated if the 
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observation is the last forecast made by an analyst for a firm-earnings date. For robustness, I 

separately consider unconditional last forecasts made by an analyst, as well as last forecasts 

conditionally made within the final 90 days prior to the upcoming earnings date. I interact Last 

Forecast with the Green and Grey analyst dummies. In accordance with the hypothesis, I expect the 

interaction between Last Forecast and Green (Grey) to generate a negative (positive) coefficient. I 

control for industry and monthly fixed effects, and two-way cluster standard errors by firm and month. 

I present the results of the regression in Table 3.10. 

Table 3.10: Results of the final analyst forecast bias test. I run panel regressions in which the analyst identifiers Green 

and Grey are interacted Last Forecast, a dummy activated for the final forecast made by an analyst for a specific firm-

earnings date. Last Forecast is separately activated for the absolute final forecasts made by analysts prior to the earnings 

date, and conditional for final forecasts that are made within a 90 day forecast horizon prior to the earnings date, with 

results of regressions run with either variable in columns (1) and (2) respectively. Only forecasts for firms in the top 

yearly quintile of polluters are included in the sample. I control for all independent variables used in previous regressions 

and use industry and monthly fixed effects. I present interaction and standalone variable coefficients estimates with p-

values in brackets below. Coefficient estimates for control variables are omitted for brevity. There are 100,834 

observations in the panel. Standard errors are adjusted with two-way clustering on firm and month. Significance at the 

10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Analyst bias and final forecast interaction results 

     

Variable   
Unconditional 

last forecast 
 

Last forecast 

within a 90 day 

forecast horizon 
     

Green  0.015  0.015 

  (0.373)  (0.399) 

Grey  -0.043**  -0.044** 

  (0.046)  (0.030) 

Last Forecast  0.053***  0.067*** 

  (0.000)  (0.000) 

Green * Last Forecast  0.016  0.024 

  (0.264)  (0.198) 

Grey * Last Forecast  0.048**  0.077*** 

  (0.033)  (0.002) 

     

Fixed effects  
Industry & 

Month 
 

Industry & 

Month 

N  100,834  100,834 

Adjusted R2   0.2264  0.2264 

Results are consistent with the previous test. Estimated coefficients indicate that on average, the 

final forecasts for Neutral analysts are relatively pessimistic, consistent with analysts walking down 
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their forecasts closer to earnings dates (Barron et al., 2013). As indicated by the analyst identifier and 

last forecast interactions, both Green and Grey analysts are more pessimistic compared to Neutral 

analysts; however, only the Grey interaction coefficient is statistically significant. Results generated 

on Last Forecast being conditionally activated for forecasts made in the last 90 days prior to the 

earnings date are similar but stronger in magnitude and statistical significance. Results indicate that 

in their final forecasts for a firm, Grey analysts walk-down their previous optimism for polluter firms, 

but Green analysts do not walk-down their prior pessimism. 

Overall, tests indicate that benchmarked to Neutral analysts, Grey analysts further walk down 

their initial optimism, but Green analysts do not. In fact, some estimates suggest that Green analysts 

become increasingly pessimistic closer towards the earnings date. This is puzzling and in contrast to 

the polluter bias walk-down hypothesis. It is possible that Green analysts are influenced by Grey and 

Neutral analysts, and exhibit herding by also walking down their already pessimistic forecasts. 

3.7. Polluter earnings surprises 

I examine the return predictability of polluters around earnings announcements. If investor 

earnings expectations are tied to aggregate analyst forecasts, systematically pessimistic polluter 

forecasts are expected to generate systematically positive earnings surprises, ceteris paribus. Positive 

earnings surprises increase firm value through improved business outlooks, and above expected 

equity reserves due to higher than expected earnings. Polluters are therefore hypothesised to generate 

positive abnormal returns around earnings announcements as their equity prices move towards their 

intrinsic value. I test for this using both annual and quarterly earnings announcements. 

I first examine the abnormal returns of polluter firms around earnings announcements. All firm-

event observations in the sample are separated into polluter quartiles based yearly rankings of Toxic 

Releases. Abnormal returns are calculated as the excess of expected returns from the Carhart 4-factor 

model (Carhart, 1997). In the following figures, I plot both the average daily and cumulative abnormal 
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returns of the quartile groups around their annual and quarterly earnings announcements, with a 

window of t – 10 to t + 10.  
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Figure 3.6: Average cumulative abnormal returns of polluter quartiles over a window of t – 10 to t + 10 around firm annual earnings announcements. Abnormal returns are measured as the excess 

realised returns from the Carhart 4-factor model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of 

Toxic Releases. There are 9,377 observations in the sample. Cumulative returns are compounded daily abnormal returns and are presented in percentage format. 

Figure 3.5: Average daily abnormal returns of polluter quartiles over a window of t – 10 to t + 10 around firm annual earnings announcements. Abnormal returns are measured as the excess realised 

returns from the Carhart 4-factor model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of Toxic 

Releases. There are 9,377 observations in the sample. Daily abnormal returns are presented in percentage format. 
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Figure 3.8: Average cumulative abnormal returns of polluter quartiles over a window of t – 10 to t + 10 around firm quarterly earnings announcements. Abnormal returns are measured as the excess 

realised returns from the Carhart 4-factor model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of 

Toxic Releases. There are 39,399 observations in the sample. Cumulative returns are compounded daily abnormal returns and are presented in percentage format. 

 

Figure 3.7: Average daily abnormal returns of polluter quartiles over a window of t – 10 to t + 10 around firm quarterly earnings announcements. Abnormal returns are measured as the excess realised 

returns from the Carhart 4-factor model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of Toxic 

Releases. There are 39,399 observations in the sample. Daily abnormal returns are presented in percentage format. 
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The relationship between the polluter quartiles and excess abnormal returns appears to be 

negative, in contrast to the hypothesis. Figures 3.5 and 3.7 reveal that for both annual and quarterly 

earnings announcements, there is a near-perfect negative monotonic relationship between pollution 

quartile and average returns. This relationship is reinforced by the cumulative abnormal return 

functions in Figures 3.6 and 3.8. For robustness, I repeat this test using abnormal returns benchmarked 

by the CAPM and find similar results; these figures are presented in the appendix.100  

I test the polluter abnormal returns hypothesis within a panel regression after controlling for other 

variables.101   

I follow Berkman et al. (2009) in creating the dependent variable EXRET, which is the cumulative 

abnormal returns generated over a window of t – 1 to t + 1 around either the annual or quarterly 

earnings announcement date on IBES. Berkman & Truong (2009) reveal that after-hours earnings 

announcements, which occur after trading has closed, have increased by a considerable amount in 

recent years, motivating the 3-day window. EXRET thus captures some leaked or delayed market 

reactions to earnings announcements. 

I follow Berkman et al. (2009) in their choice of control variables. Independent variables include 

LOGSIZE, which controls for firm size effects on returns around earnings announcements. I control 

for LOGBM, which accounts for the effect of book to market value on returns around earnings 

announcements (Levis & Liodakis, 2001). Jegadeesh & Titman (1993) reveal that recent past winners 

earn higher announcement period returns; therefore, I control for the monthly geometric average stock 

returns from up to the last 3 months with MOM. LEV controls for firm leverage.  

In an extension of Miller’s hypothesis (Miller, 1977), Berkman et al. (2009) find that short sale 

constraints generate lower returns when combined with dispersion in investor opinions around 

 
100 In unreported robustness checks, I generate abnormal returns as based on the Fama-French 3 and 5-factor models 

and find similar results. 
101 In a similar test Berkman et al. (2009) use weighted Fama-MacBeth regressions, however Petersen (2009) shows 

that two-way clustered standard errors are more efficient when both firm and time conditional error clustering is present. 
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earnings announcements. I therefore control for the interaction of these two factors using the same 

proxy variables used by Berkman et al. (2009). IO is a proxy for short sale constraints, measured as 

the proportion of institutional ownership of equity as last reported in the 13F database. If IO is 

missing, I replace it with its most recent available value within the last 6 months, and otherwise 0. 

DISP is a proxy for difference of opinion in stock value. DISP is calculated as the standard deviation 

of individual analysts’ latest forecasts in the 45 days prior to the earnings date. IO * DISP is the 

interaction term between short sale constraints and dispersion of opinion. 

I use the following panel regression to test for polluter return predictability around earnings 

announcements. 

𝐸𝑋𝑅𝐸𝑇𝑗,𝑡 =  𝛼 +  𝛽𝑇𝑅 ∗  𝑇𝑜𝑥𝑖𝑐 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑗,𝑡 + 𝜷𝑿 ∗  𝑿𝒋,𝒕 + 𝜀𝑗,𝑡      (3.10) 

EXRET is regressed on Toxic Releases and the vector of control variables X.102 I two-way cluster 

standard errors by firm and month. I repeat the regression for both annual and quarterly earnings 

announcements. I present results in Table 3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 
102 Independent variables are measured ex-ante of the dependent variable. Because EXRET is a cumulative abnormal 

return over three days, daily measured control variables are based on ex-ante information two days prior to the earnings 

announcement date as stated by IBES, due to the inclusion of t – 1 in the return window. These variables include LOGSIZE 

and LOGBM. MOM, LEV and IO are measured as at the beginning of the month in which t falls. 
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Table 3.11: Earnings announcement abnormal returns and firm pollution. The dependent variable used in regressions is 

EXRET, while the independent variable of interest is Toxic Releases. EXRET measures cumulative abnormal returns from 

one day prior to the earnings announcement to one day after. Control variables are measured ex-ante of the return 

variables. Toxic Releases is measured in billions of pounds. Columns (1) and (2) use annual earnings announcements, 

while columns (3) and (4) use quarterly earnings announcements. I present regression coefficient estimates with p-values 

in brackets below. Standard errors are adjusted with two-way clustering on firm and month. Significance at the 10% level 

is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Return predictability of polluters around earnings announcements 

          

    Annual  Annual  Quarterly  Quarterly   

          

Toxic Releases -2.349  -1.576  -0.602  -0.120  

  (0.145)  (0.202)  (0.653)  (0.931)  

LOGSIZE  -0.198***  -0.216***  -0.122***  -0.136***  

  (0.000)  (0.000)  (0.000)  (0.000)  

LOGBM  -0.734  -0.404  0.232  0.204  

  (0.825)  (0.502)  (0.509)  (0.585)  

MOM  -0.007  0.006  -0.006  -0.005  

  (0.713)  (0.740)  (0.541)  (0.664)  

LEV  -0.130  -0.211  0.126  -0.027  

  (0.825)  (0.729)  (0.674)  (0.933)  

IO    -0.089    0.174  

    (0.817)    (0.464)  

DISP    -0.009    0.011  

    (0.652)    (0.532)  

IO * DISP    -0.049    -0.064  

    (0.658)    (0.535)  

Constant  4.752***  5.278***  2.782***  3.003***  

  (0.000)  (0.000)  (0.000)  (0.000)  

          

N  9,378  8,763  39,408  36,221  

Adjusted R2 0.0030  0.0033  0.0015  0.0016   

Results provide no evidence of an association between pollution and earnings announcement 

returns. The estimated coefficients for Toxic Releases are statistically insignificant for both quarterly 

and annual earnings announcements. Results are inconsistent with the hypothesis that polluters earn 

abnormally positive returns around earnings announcements through systematic analyst 

pessimism.103 

 
103 In primary results, pessimism in analyst forecasts is found for within-industry and month forecasts through fixed 

effects; therefore, it may be argued that within-industry and month polluter pessimism is a more relevant predictor of 

earnings announcement abnormal returns. In unreported robustness tests, I rerun earnings announcement regressions 

using industry and monthly fixed effects but again find statistically insignificant estimates. 
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Control variables are mostly estimated with insignificance. As in Berkman et al. (2009), 

LOGSIZE appears to significantly explain variation in earnings announcement returns, the other 

variables are not found to be significant at the 10% level. 

It could be argued that analyst pessimism for polluters disappears closer to the earnings date; 

however, the previous section finds that it instead increases. I discuss some alternative reasons as to 

why polluter firms may not earn abnormal returns around their earnings announcements. One 

possibility is that markets may have already identified analyst bias and adjusted their expectations 

after incorporating systematic analyst pessimism for polluting firms. As a result, there are no positive 

earnings surprises as market expectations are already adjusted upwards relative to analysts’ 

predictions. This theory suggests that investors are aware of, but not influenced by, analyst 

behavioural biases and rationally incorporate them into prices. Alternatively, earnings surprises may 

be largely independent of analyst forecasts such that investors are indifferent to analyst expectations 

altogether; however, this is unlikely given the literature on the correlation between analyst forecast 

errors and market earnings surprises.104 As a middle ground to these theories, investors may only be 

aware of individual analysts that exhibit the most polluter pessimism, and ignore their forecasts. 

Finally, pollution may be correlated with an unidentified confounding variable which reduces 

abnormal returns around earnings announcements. 

3.8. Conclusion 

I examine the relationship between firm pollution and analyst forecast biases. I primarily 

hypothesise that various cognitive biases exhibited by analysts lead to systematically pessimistic 

forecasts for polluting firms. Analysts may overweight the probabilities of tail events which 

dramatically shock the profits of polluters but are unlikely to occur, as illustrated in behavioural 

finance theories. Analysts may also overly extrapolate the expected costs of pollution due to prior 

 
104 For example, see O'Brien (1988), Doyle, Lundholm, & Soliman (2006) and Livnat & Mendenhall (2006). 
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dramatic events in recent memory, and incorrectly set conditional expectations of the consequences 

of pollution on earnings.  

I find that pollution is significantly associated with an aggregate analyst pessimism; earnings 

forecasts for polluters systematically undershoot actual earnings on average. Tests show that 

pessimism associated with pollution is the strongest within the top quintile subsample of polluters, 

and has not significantly changed in magnitude over the sample period. Results do not show evidence 

of forecast bias when pollution is scaled by the net sales of a firm, indicating that polluter efficiency 

is not associated with pessimism. Of the pollutants captured by the Toxic Release Inventory, those in 

the general TRI category generate the most pessimism. These findings are consistent with analysts 

being influenced by eye-catching, and somewhat naïve, information around pollution. 

Tests provide evidence of a persistence in forecasts made by biased analysts. Analysts that are 

identified as pessimistic or optimistic towards polluters based on ex-ante information continue to 

display these biases, despite being proven wrong in recent earnings announcements. I also find that 

optimistic analysts walk-down their polluter optimism closer to the earnings date, while pessimistic 

analysts increase their pessimism closer to the earnings date.  

I hypothesise that the systematic analyst forecast pessimism generates positive earnings surprises 

for polluting firms. Given the systematic polluter pessimism from analysts, actual earnings should be 

higher than analyst forecasts on average, and should generate positive earnings surprises. Contrary to 

this theory, results provide no evidence of polluting firms generating positive abnormal returns 

around their earnings announcements. 

Further research could examine the relevance of these findings on a global scale, in which 

analysts, consumers and regulatory bodies may display different attitudes to polluting firms. Studies 

might further integrate chemical analysis to investigate analyst reactions to individual toxins. 

Additionally, the spatial location of polluters could be considered, as some firms may operate in areas 

where pollution is of more concern. Analysts may exhibit differing levels of bias dependent on their 
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own beliefs; further study could focus on correlations between analyst specific characteristics and 

forecast biases. Finally, research could examine the effects of other dimensions of corporate social 

responsibility on analyst forecasts; these variables could include firm policies on climate change, 

social and governance policies, or firm involvement with international politics and geopolitical 

conflict. 
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Conclusion 

This thesis consists of three chapters that examine separate themes of environmental finance. The 

first chapter focuses on climate change risk in U.S. security markets, while the second and third 

chapters examine relationships between firm pollution, institutional ownership and security analyst 

forecast bias. 

The first chapter in this thesis tests for evidence of a priced low frequency temperature risk factor. 

Using U.S. data, I estimate low frequency temperature shocks and hypothesise the existence of a 

priced temperature risk factor under the assumptions of the classical consumption-based asset pricing 

framework. Using equity market data, I conduct a pooled panel regression, Fama-MacBeth 

regressions, and portfolio tests, however none of the empirical asset pricing methodologies provide 

any evidence of a low frequency temperature risk premium. Furthermore, I find that estimated 

temperature betas do not correlate with the abnormal returns generated around the Paris Agreement 

of 2015, nor do they correlate with measures of aggregate climate exposures derived from self-

reported climate risks. 

Chapter two examines institutional ownership of the equity of U.S. polluters. Theories on social 

norms suggest that institutional investors may be reluctant to own securities associated with 

discriminated and controversial firms; I hypothesise that polluters belong to this set of companies. 

Results provide evidence in favour of this hypothesis, showing that institutional investors hold 

proportionately less polluter equities, ceteris paribus. I find evidence of a negative trend in 

institutional ownership of polluter stocks, and that institutional investors with aggressive trading 

strategies and short-term investment horizons disproportionately own polluter stocks. I also find 

evidence of reduced security analyst coverage of polluter stocks. Tests find no evidence of polluter 

stock abnormal returns, in accordance with the shunned-stock hypothesis. 

The final chapter examines security analyst biases when forecasting the earnings of polluters. 

Under a behavioural finance framework, I hypothesise that security analysts are systematically 
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pessimistic when forecasting the next annual earnings of polluters. I find evidence supporting this 

hypothesis. Tests show that while forecast pessimism is associated with total firm pollution, there is 

no significant relationship with pollution scaled by firm sales. Furthermore, forecast pessimism is 

most strongly associated with releases of the standard chemicals in the TRI database, compared to 

the more toxic bio-accumulative and dioxin chemical types. On an individual analyst level, I find 

evidence supporting the conservatism bias. Analysts that are ex-ante identified as pessimistic 

(optimistic) towards polluters again exhibit pessimism (optimism) in future forecasts for polluters. 

Results indicate that pessimistic, optimistic and neutral analysts all become increasingly pessimistic 

towards polluting firms nearer to the earnings date. Lastly, despite evidence of an aggregate 

pessimism in forecasts towards polluters, I find no evidence of positive earnings surprises generating 

abnormal returns once polluter earnings are announced. 
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Appendices 

Appendix A: Chapter 1 

Table A.1: A list of alternative models used to generate Temp in robustness tests. I find that these measures of Temp also 

produce estimates of the low frequency temperature risk premium which are statistically and economically insignificant 

when used to recreate the main results. As an example, in the final column I present pooled panel regression estimates of 

temperature risk premiums using these alternative measures of Temp, based on the Carhart 4-factor model. P-values are 

based on two-way clustered standard errors and are shown in brackets below estimates. P-values in bold denote 

significance at the 10% level. 

Model Description 
Alternative estimated 

Temperature risk premium 

ΔMAt = MAt - MAt-1 
Temp is set as the first order difference in 60-

month moving temperature averages, as in Bansal 

et al. (2016). 

0.000 

(0.948) 

MAt = α + β * MAt-1 + ε 
Temp is set as the residual term from an AR(1) 

model of 60-month moving average temperatures. 

0.000 

(0.954) 

ΔMAt = α + β * MAt-1 + β * 

ΔMAt-1 + ε 

Temp is set as the residual term from a model 

which allows for feedback to contemporaneous 

changes in moving average temperatures from 

both lagged levels and changes in moving average 

temperatures. 

-0.001 

(0.870) 

MAt = α + β * t + ε 
Temp is set as the residual term from a model 

which allows for a deterministic linear trend in 

moving average temperatures. 

-0.036 

(0.103) 

MAt = α + β * t + β * et + ε 
Temp is set as the residual term from a model 

which allows for a deterministic linear and 

exponential trend in moving average temperatures. 

-0.018 

(0.406) 
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Average industry portfolio temperature betas

Figure A.1: Average Fama-French 49 industry portfolio temperature betas. Average temperature betas are estimated 

using a 60-month rolling window regression controlling for the Carhart 4-factor model, which are averaged in the time 

series over the entire sample of 1988 to 2016 for each of the 49 industry portfolios. 
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Table A.2: Results of the Paris Climate Agreement on the predicted loser portfolios of the Fama-French 49 industries. 

Industry portfolios are sorted into the expected loser category based on positive estimated temperature betas measured 

using the Carhart 4-factor model. Industry average temperature betas are shown along with daily abnormal returns that 

are captured by the Paris dummy coefficient. P-values are Newey-West adjusted for 5-day lags and are shown in brackets 

below estimations. P-values in bold denote significance at the 10% level. 

 Paris agreement event study: expected losers  

       

Industry βtemp Dummy  Industry βtemp Dummy 

       

Agric 15.516 -0.465  Util 0.349 0.114 

  (0.000)    (0.577) 

Beer 5.982 -0.189  Telcm 6.024 -0.519 

  (0.499)    (0.000) 

Smoke 8.847 0.191  BusSv 3.241 -0.129 

  (0.164)    (0.001) 

Toys 2.387 1.600  Hardw 0.417 0.102 

  (0.000)    (0.529) 

Hshld 1.297 0.303  Softw 2.157 0.278 

  (0.126)    (0.051) 

Hlth 2.013 -1.163  Paper 0.550 0.090 

  (0.017)    (0.282) 

Drugs 3.692 0.148  Trans 0.718 -0.241 

  (0.128)    (0.123) 

Chems 1.758 -1.163  Meals 1.105 -0.399 

  (0.000)    (0.020) 

FabPr 5.509 0.744  Banks 6.702 0.278 

  (0.197)    (0.000) 

Ships 6.501 0.333  Fin 4.196 -0.855 

  (0.025)    (0.000) 

Gold 7.483 -1.239  Other 0.608 0.265 

  (0.174)    (0.104) 

Mines 1.640 0.539     

  (0.028)     
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Table A.3: Results of the Paris Climate Agreement on the predicted winner portfolios of the Fama-French 49 industries. 

Industry portfolios are sorted into the expected winner category based on negative estimated temperature betas measured 

using the Carhart 4-factor model. Industry average temperature betas are shown along with daily abnormal returns that 

are captured by the Paris dummy coefficient. P-values are Newey-West adjusted for 5-day lags and are shown in brackets 

below estimations. P-values in bold denote significance at the 10% level. 

 Paris agreement event study: expected winners  

       

Industry βtemp Dummy  Industry βtemp Dummy 

       

Food -6.496 -0.041  Autos -4.579 -0.410 

  (0.689)    (0.020) 

Soda -11.806 0.090  Aero -6.541 -0.086 

  (0.306)    (0.814) 

Fun -5.054 -0.151  Guns -8.303 -0.167 

  (0.354)    (0.705) 

Books -11.143 -0.695  Coal -48.094 -0.941 

  (0.000)    (0.319) 

Clths -5.490 0.257  Oil -6.810 0.618 

  (0.151)    (0.363) 

MedEq -1.583 0.232  PerSv -14.503 -0.307 

  (0.196)    (0.000) 

Rubbr -1.812 0.353  Chips -12.692 -0.317 

  (0.013)    (0.334) 

Txtls -15.687 0.148  LabEq -1.315 0.101 

  (0.422)    (0.052) 

BldMt -1.507 0.412  Boxes -8.644 -0.198 

  (0.033)    (0.786) 

Cnstr -5.178 0.067  Whlsl -5.282 0.225 

  (0.828)    (0.254) 

Steel -11.403 0.404  Rtail -1.800 0.267 

  (0.299)    (0.059) 

Mach -5.870 0.512  Insur -5.124 -0.172 

  (0.004)    (0.586) 

ElcEQ -3.953 0.663  RlEst -2.000 -0.585 

  (0.000)    (0.006) 
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Table A.4: Pooled panel robustness tests using shocks to low frequency cross-sectional temperature volatility in the U.S. as an alternative proxy for temperature risk. The robustness 

variable, Tempvol, is created in an almost identical method as Temp. First, I generate 60-month moving averages of temperatures for each of the 48 contiguous states, and then estimate 

the monthly cross-sectional standard deviation. I take the first order difference in the standard deviations in local temperatures and regress them on lagged first order differences. The 

residuals of this regression are stored as Tempvol. I then recreate the pooled panel regressions, as set out in the main tests, but substitute Temp with Tempvol. P-values are based on 

two-way clustered standard errors and are shown in brackets below estimates. P-values in bold denote significance at the 10% level. 

  Temperature volatility robustness pooled panel regression   

           

    CAPM   FF 3   Carhart   FF 5   HXZ 

           

Constant  0.582  0.568  0.752  0.880  0.743 
  (0.037)  (0.022)  (0.001)  (0.002)  (0.008) 

Tempvol  0.002  0.002  0.002  0.003  0.002 
  (0.516)  (0.245)  (0.368)  (0.247)  (0.272) 

MKT  0.146  0.124  -0.063  -0.194  -0.033 
  (0.648)  (0.702)  (0.841)  (0.581)  (0.920) 

SMB    0.128  0.235  0.200   

    (0.430)  (0.120)  (0.168)   

HML    0.101  0.006  0.053   

    (0.618)  (0.976)  (0.790)   

MOM      0.114     

      (0.732)     

RMW        0.109   

        (0.446)   

CMA        -0.062   

        (0.630)   

ME          0.092 
          (0.586) 

I/A          0.150 
          (0.266) 

ROE          0.001 
          (0.996) 

           

N  17,003  17,003  17,003  17,003  17,003 
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Table A.5: Second stage Fama-MacBeth robustness tests using shocks to low frequency cross-sectional temperature volatility in the U.S. as an alternative proxy for temperature risk. 

The robustness variable, Tempvol, is created in an almost identical method as Temp. First, I generate 60-month moving averages of temperatures for each of the 48 contiguous states, 

and then estimate the monthly cross-sectional standard deviation. I take the first order difference in the standard deviations in local temperatures and regress them on lagged first order 

differences. The residuals of this regression are stored as Tempvol. I then recreate the Fama-MacBeth regressions, as set out in the main tests, but substitute Temp with Tempvol. P-

values are based on two-way clustered standard errors and are shown in brackets below estimates. P-values in bold denote significance at the 10% level. 

  Temperature volatility robustness Fama-MacBeth regression   

           

    CAPM   FF 3   Carhart   FF 5   HXZ 

           

Constant  0.389  0.305  0.254  0.448  0.354 
  (0.173)  (0.189)  (0.110)  (0.046)  (0.142) 

Tempvol  -0.001  -0.001  -0.001  -0.002  -0.001 
  (0.741)  (0.687)  (0.449)  (0.257)  (0.480) 

MKT  0.295  0.337  0.410  0.223  0.299 
  (0.388)  (0.266)  (0.197)  (0.443)  (0.331) 

SMB    0.016  0.053  -0.016   

    (0.909)  (0.709)  (0.914)   

HML    0.273  0.229  0.219   

    (0.155)  (0.229)  (0.233)   

MOM      0.494     

      (0.070)     

RMW        0.071   

        (0.567)   

CMA        0.052   

        (0.731)   

ME          0.079 
          (0.596) 

I/A          0.106 
          (0.494) 

ROE          0.184 

                    (0.250) 

           

N  347  347  347  347  347 
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Appendix B: Chapter 2 

Table B.1: Robustness test results, where regression (2.1) is repeated with additional corporate governance control variables based on KLD ratings. 

Governance control variables include limited managerial compensation (cgov_str_a), excessive managerial compensation (cgov_con_b), investment in 
other meritable companies (cgov_str_c), strong reporting quality (cgov_str_d), weak reporting quality (cgov_con_h), and the total number of governance 

strengths and concerns (cgov_str_num and cgov_con_num respectively). More information on these variables can be found through the WRDS MSCI 

ESG KLD STATS variable description page. I present regression coefficient estimates with t-statistics in brackets below. Standard errors are adjusted 
with two-way clustering on industry and year. There are 1,115 firm-year observations in the sample for each specification. Significance at the 10% level 

is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Robustness test of institutional ownership panel regressions with corporate governance 

control variables 
       

Variable  (1)  (2)  (3) 
       

Polluterdummy -0.0523**  -0.0319  -0.0513** 
  (-2.24)  (-0.77)  (-2.25) 

t      0.0013 

      (0.21) 

INDBETA  0.0869***  0.0163  0.0901*** 
  (4.37)  (1.05)  (4.35) 

LOGSIZE  -0.0096  -0.0055  -0.0095 
  (-0.83)  (-0.45)  (-0.81) 

LOGBM  0.0662  0.1260  0.0606 
  (1.28)  (1.94)  (1.12) 

STD  -0.0109  -0.0125  -0.0142** 
  (-1.18)  (-1.25)  (-2.10) 

PRINV  -0.2859***  -0.3431***  -0.2742*** 
  (-4.10)  (-3.87)  (-3.44) 

RET  0.0013  0.0021  0.0012 
  (0.60)  (0.74)  (1.55) 

NASD  -0.0497**  -0.0589**  -0.0489** 
  (-2.33)  (-2.30)  (-2.31) 

SP500  0.0014  0.0115  -0.0017 
  (0.06)  (0.40)  (-0.07) 

cgov_str_a  -0.0663  -0.0762  -0.0664 

  (-1.38)  (-1.27)  (-1.37) 

cgov_con_b  0.1011***  0.0831***  0.1021*** 

  (4.21)  (2.86)  (4.34) 

cgov_str_c  -0.0814***  -0.1266***  -0.0823*** 

  (-3.31)  (-4.38)  (-3.16) 

cgov_str_d  -0.0624  -0.0580  -0.0644 

  (-0.99)  (-0.81)  (-1.02) 

cgov_con_h  0.0937***  0.0990***  0.0876*** 

  (3.95)  (3.87)  (3.61) 

cgov_str_num  0.0059  0.0105  0.0068 

  (0.14)  (0.19)  (0.16) 

cgov_con_num  -0.0298  -0.0249  -0.0290 

  (-1.53)  (-1.34)  (-1.47) 

       

Fixed effects  Year  Year & Industry  None 

N  1,115  1,115  1,115 

Adjusted R2 0.1488  0.2116  0.1596 
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Table B.2: Results of the institutional ownership and analyst coverage firm fixed effects panel regressions where the 

dependent variables are IO and LOGCOV, reported in columns 1 and 2 respectively. Regressions (2.1) and (2.4) are 

conducted using firm fixed effects. The first column of coefficients represents estimates generated from regression (2.1) 

with IO as the dependent variable, while the second column presents estimates generated from regression (2.4) with 

LOGCOV as the dependent variable. The independent dummy variable NASD is excluded as it has no within-firm 

variation in the sample. I present regression coefficient estimates with t-statistics in brackets below. Standard errors are 

adjusted with two-way clustering on industry and year. There are 8,954 firm-year observations in both samples. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Institutional ownership and analyst coverage regressions with firm fixed 

effects 

     

Variable  IO  LOGCOV 

     

Polluterdummy  0.0093  0.0634 

  (0.65)  (0.80) 

INDBETA  0.0275*  0.0968 

  (1.91)  (1.44) 

LOGSIZE  0.0585***  0.3252*** 

  (9.95)  (11.54) 

LOGBM  0.0480**  0.1275 

  (2.55)  (1.53) 

STD  -0.0112***  0.0178* 

  (-3.08)  (1.71) 

PRINV  -0.0112  0.0875** 

  (-0.41)  (2.44) 

RET  -0.0009  -0.0262*** 

  (-1.07)  (-9.76) 

SP500  -0.0262  -0.1048 

  (-1.57)  (-1.04) 

     

Fixed effects  Year & Firm  Year & Firm 

N  8,954  8,954 

Adjusted R2  0.7868  0.7944 
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Table B.3: Results of yearly fixed effects panel regressions (2.1) and (2.4) with Sindummy, a dummy variable activated 

for securities identified by Hong & Kacperczyk (2009) as sin stocks. Sin firms are identified on their SIC and NAICS 

codes. Sin firms have SIC codes of 2100-2199, 2080-2085, and/or NAICS codes 7132, 71312, 713210, 71329, 713290, 

72112, 721120. There are 86 observations in the sample where Sindummy is activated. I include but do not report the full 

list of independent variables used in regressions (2.1) and (2.4). The first column of coefficients represents estimates 

generated from regression (2.1) with IO as the dependent variable, while the second column presents estimates generated 

from regression (2.4) with LOGCOV as the dependent variable. I present regression coefficient estimates for 

Polluterdummy and Sindummy with t-statistics in brackets below. Standard errors are adjusted with two-way clustering 

on industry and year. There are 8,954 firm-year observations in both samples. Significance at the 10% level is denoted 

with *, at the 5% level with ** and at the 1% level with ***. 

Institutional ownership and analyst coverage regressions with Sindummy 

     

Variable   IO  LOGCOV 

     

Polluterdummy  -0.0445***  -0.1510** 

  (-3.18)  (-2.17) 

Sindummy  -0.1291***  -0.7386 

  (-5.33)  (-1.29) 

     

Fixed effects  Year  Year 

N  8,954  8,954 

Adjusted R2   0.4094  0.4215 
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Table B.4: Results of the institutional ownership and analyst coverage panel regressions where the dependent variables 

are IO and LOGCOV, reported in columns 1 and 2 respectively. Regressions are conducted based on equations (2.1) and 

(2.4) with Log Total Releases as a continuous pollution variable, measured as the natural log of Total Releases in absolute 

pounds plus 1. The first column of coefficients represents estimates generated from regression (2.1) with IO as the 

dependent variable, while the second column presents estimates generated from regression (2.4) with LOGCOV as the 

dependent variable. I present regression coefficient estimates with t-statistics in brackets below. Standard errors are 

adjusted with two-way clustering on industry and year. There are 8,954 firm-year observations in both samples. 

Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Institutional ownership and analyst coverage regressions with Log Total 

Releases 

     

Variable   IO  LOGCOV 

     

Log Total Releases  -0.0014  -0.0102 

  (-0.92)  (-1.34) 

INDBETA  0.1105***  0.2946*** 

  (3.61)  (6.46) 

LOGSIZE  0.0414***  0.3286*** 

  (6.22)  (10.31) 

LOGBM  0.0138  -0.0764 

  (0.66)  (-0.68) 

STD  -0.0132*  0.0219 

  (-1.69)  (1.64) 

PRINV  -0.1104**  -0.0449 

  (-2.18)  (-0.54) 

RET  -0.0014  -0.0298*** 

  (-1.27)  (-8.27) 

NASD  -0.0547***  0.0575 

  (-3.86)  (0.67) 

SP500  -0.0262  0.2566** 

  (-1.30)  (2.36) 

     

Fixed effects  Year  Year 

N  8,954  8,954 

Adjusted R2   0.4028  0.4164 
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Figure B.1: Robustness impulse response function for the PVAR model (2.10) using a log transformed pollution variable. 

The impulse variable is ΔIO while the response variable is ΔLog Total Releases. Log Total Releases is measured as the 

natural log of Total Releases in absolute pounds plus 1. The dark bands around the impulse response estimate represent 95% 

confidence intervals generated with bootstrapped standard errors from 1000 random draws. 
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Appendix C: Chapter 3 

Table C.1: Results of the robustness analyst forecast bias regression (3.2) using one-year and two-year lagged Toxic 

Releases. The dependent variable is FERROR, while the independent variable of interest is Toxic Releases. Toxic Releases 

is measured in billions of pounds. I present regression coefficient estimates with p-values in brackets below. Standard 

errors are adjusted with two-way clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% 

level with ** and at the 1% level with ***. 

Firm toxicity and analyst forecast bias robustness regressions with lagged Toxic Releases 

          

    One-year lagged Toxic Releases    Two-year lagged Toxic Releases    

         

Toxic Releases 0.575**    0.428   

  (0.019)    (0.106)   

LOGSIZE  0.025***    0.024***   

  (0.000)    (0.000)   

LOGBM  0.122***    0.107**   

  (0.002)    (0.011)   

LEV  -0.064    -0.058   

  (0.124)    (0.177)   

FPERIOD  -0.063***    -0.060***   

  (0.000)    (0.000)   

COV  0.001    0.001   

  (0.247)    (0.402)   

SPREAD  0.000    0.000   

  (0.530)    (0.542)   

EXP  0.0004*    0.0004*   

  (0.000)    (0.000)   

FTE   -0.920**    -0.856**   

  (0.017)    (0.019)   

LOSS  -0.472***    -0.458***   

  (0.000)    (0.000)   

ECHANGE -0.240***    -0.233***   

  (0.000)    (0.000)   

         

Fixed effects Industry & Month    Industry & Month   

N 398,171    375,104   

Adjusted R2 0.2061    0.2018    
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Table C.2: Results of robustness tests of primary results using alternative deflators in the denominator for FERROR 

construction. I rerun regression (3.2) using alternative methods of constructing FERROR, as shown in the first column 

with specification details given in the second column. I estimate the coefficients of Toxic Releases from regression 3 

using industry and monthly fixed effects, the full set of control variables, and cluster standard errors using two-way 

clustering by firm and month. There are 425,621 observations in each regression. Estimates are presented in the final 

column, with p-values shown in brackets below. Significance at the 10% level is denoted with *, at the 5% level with ** 

and at the 1% level with ***. 

FERROR specification Description 
Alternative coefficient for 

Toxic Releases 

𝐴𝑐𝑡𝑢𝑎𝑙𝑖,𝑗,ℎ −  𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ

|𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ|
 

FERROR is deflated by the absolute value of the 

earnings per share as forecasted by the analyst. I 

winsorize this specification of FERROR at the 

2.5% and 97.5% levels and adjust observations 

with a 0 value denominator as in main tests. 

0.435*** 

(0.000) 

𝐴𝑐𝑡𝑢𝑎𝑙𝑖,𝑗,ℎ −  𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ

|𝐵𝑉𝐴𝑃𝑆𝑗,ℎ−1|
 

FERROR is deflated by the most recent book value 

of assets per share of the target firm. I winsorize 

this specification of FERROR at the 2.5% and 

97.5% levels. 

0.025*** 

(0.002) 

𝐴𝑐𝑡𝑢𝑎𝑙𝑖,𝑗,ℎ −  𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ

|𝑅𝐸𝑉𝑃𝑆𝑗,ℎ−1|
 

FERROR is deflated by the most recent revenue 

per share of the target firm. I winsorize this 

specification of FERROR at the 2.5% and 97.5% 

levels. 

0.037*** 

(0.000) 

𝐴𝑐𝑡𝑢𝑎𝑙𝑖,𝑗,ℎ −  𝐹𝐸𝑃𝑆𝑖,𝑗,𝑡,ℎ

|𝑃𝑗,𝑡|
 

FERROR is deflated by the price per share of the 

target firm as at the beginning of the month of the 

forecast. I winsorize this specification of FERROR 

at the 2.5% and 97.5% levels. 

0.028** 

(0.020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



  

169 

 

Table C.3: Robustness test results, where regression (3.2) is repeated with additional corporate governance control 

variables based on KLD ratings. The dependent variable is FERROR, while the independent variable of interest is Toxic 

Releases. Governance control variables include limited managerial compensation (cgov_str_a), excessive managerial 

compensation (cgov_con_b), investment in other meritable companies (cgov_str_c), strong reporting quality 

(cgov_str_d), weak reporting quality (cgov_con_h), and the total number of governance strengths and concerns 

(cgov_str_num and cgov_con_num respectively). More information on these variables can be found through the WRDS 

MSCI ESG KLD STATS variable description page. There are 66,649 observations in the sample. Toxic Releases is 

measured in billions of pounds. I include but do not report the full list of independent variables used in regression (3.2). 

I present regression coefficient estimates with p-values in brackets below. Standard errors are adjusted with two-way 

clustering on firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level 

with ***. 

Robustness test of analyst bias panel regressions with corporate 

governance control variables 
    

Variable       

    

Toxic Releases 2.537***  

  (0.003)  

cgov_str_a  -0.006  

  (0.908)  

cgov_con_b -0.031  

  (0.257)  

cgov_str_c  0.130***  

  (0.000)  

cgov_str_d  0.062*  

  (0.077)  

cgov_con_h 0.064*  

  (0.073)  

cgov_str_num -0.005  

  (0.857)  

cgov_con_num 0.034  

  (0.179)  

    

Fixed effects Industry & Month  

N  66,649  

Adjusted R2   0.1952   
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Table C.4: Results of the firm-earnings date fixed effects test for analyst bias by forecast horizon for the subsample of 

polluters. I run two panel regressions with dependent variable FERROR, in which the analyst identifiers Green and Grey 

are interacted with the forecast horizon variable. In the first regression, the forecast horizon variable is FPERIOD, 

measured as the gap between the forecast and earnings date in hundreds of days. The second regression replaces 

FPERIOD with 3 dummy variables, activated if the earnings forecast is made within 91 – 180, 181 – 270, and 271 – 360 

day period prior to the earnings date, labelled FGROUP2, FGROUP3, FGROUP4 respectively. Only forecasts for firms 

in the top yearly quintile of polluters are included in the subsample of observations. I use firm-earnings date and monthly 

fixed effects. I exclude LOGSIZE, LOGMB, LOSS and ECHANGE from the list of control variables. I present interaction 

and standalone variable coefficients estimates with p-values in brackets below. Coefficient estimates for control variables 

are omitted for brevity. There are 100,812 observations in the panel. Standard errors are adjusted with two-way clustering 

on firm and month. Significance at the 10% level is denoted with *, at the 5% level with ** and at the 1% level with ***. 

Analyst bias and forecast horizon interaction results with firm earnings-

date fixed effects 

     Variable   (1)  (2) 

     

Green  0.047***  0.041*** 

  (0.003)  (0.004) 

Grey  0.071***  0.055*** 

  (0.002)  (0.005) 

FPERIOD  -0.057**   

  (0.010)   

GREEN * FPERIOD  -0.020**   

  (0.013)   

GREY * FPERIOD  -0.042***   

  (0.002)   

FGROUP2    -0.004 

    (0.888) 

FGROUP3    0.013 

    (0.666) 

FGROUP4    0.001 

    (0.973) 

GREEN * FGROUP2    -0.021 

    (0.152) 

GREEN * FGROUP3    -0.051** 

    (0.011) 

GREEN * FGROUP4    -0.047** 

    (0.021) 

GREY * FGROUP2    -0.050** 

    (0.020) 

GREY * FGROUP3    -0.087*** 

    (0.003) 

GREY * FGROUP4    -0.112*** 

    (0.002) 

     

Fixed effects  
Firm earnings-

date & Month 
 

Firm earnings-

date & Month 

N  100,812  100,812 

Adjusted R2   0.6410  0.6409 
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Figure C.2: Average cumulative abnormal returns of firms in the polluter quartiles over a window of t – 10 to t + 10 around firm annual earnings announcements. Abnormal returns are measured as the 

excess realised returns from the CAPM model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of Toxic 

Releases. There are 9,378 observations in the sample. Cumulative returns are compounded daily abnormal returns and are presented in percentage format. 

Figure C.1: Average daily abnormal returns of firms in the polluter quartiles over a window of t – 10 to t + 10 around firm annual earnings announcements. Abnormal returns are measured as the excess 

realised returns from the CAPM model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of Toxic 

Releases. There are 9,378 observations in the sample. Daily abnormal returns are presented in percentage format. 
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Figure C.4: Average cumulative abnormal returns of firms in the polluter quartiles over a window of t – 10 to t + 10 around firm quarterly earnings announcements. Abnormal returns are measured as 

the excess realised returns from the CAPM model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of 

Toxic Releases. There are 39,400 observations in the sample. Cumulative returns are compounded daily abnormal returns and are presented in percentage format. 

 

Figure C.3: Average daily abnormal returns of firms in the polluter quartiles over a window of t – 10 to t + 10 around firm quarterly earnings announcements. Abnormal returns are measured as the 

excess realised returns from the CAPM model. Quartile 1 represents firms that have the lowest yearly ranking of Toxic Releases, while quartile 4 includes firms with the highest yearly ranking of Toxic 

Releases. There are 39,400 observations in the sample. Daily abnormal returns are presented in percentage format. 
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