On the Discreteness of the Free Product of Finite Cyclic groups

F.W. Gehring
C. Maclachlan
G.J. Martin *

Abstract

For $p, q \geq 2, \max \{p, q\} \geq 3, \delta_{\infty}(p, q)$ is defined to be the smallest number with the following property. If f and g are elliptic Möbius transformations of orders p and q respectively and if the hyperbolic distance $\delta(f, g)$ between their axes is at least $\delta_{\infty}(p, q)$, then the group $\Gamma=\langle f, g\rangle$ is discrete nonelementary and isomorphic to the free product $\mathbb{Z}_{p} * \mathbb{Z}_{q}$. We prove that $$
\cosh \left(\delta_{\infty}(p, q)\right)=\frac{\cos (\pi / p) \cos (\pi / q)+1}{\sin (\pi / p) \sin (\pi / q)}
$$

This valued is obtained in the (p, q, ∞)-triangle group. We give other applications concerning the commutator parameters of the free product of cyclic groups.

1 Introduction

A Kleinian group is a discrete nonelementary subgroup of isometries of hyperbolic 3 -space \mathbb{H}^{3}. Equivalently such groups are identified with (the Poincaré extensions of) discrete groups of Möbius or conformal transformations of the Riemann sphere $\overline{\mathbb{C}}$. We use [1] and [4] as basic references for the theory of discrete groups. We denote the hyperbolic metric of constant curvature -1

[^0]1991 Mathematics Subject Classification. Primary 30F40, 20H10
on \mathbb{H}^{3} by $\rho(\cdot, \cdot)$. The elements of a Kleinian group, other than the identity, are either loxodromic, elliptic or parabolic. Each elliptic or loxodromic element f fixes two points of $\overline{\mathbb{C}}=\partial \mathbb{H}^{3}$ and the hyperbolic line joining these two points is called the axis of f, denoted $\operatorname{ax}(f)$. If f and g are elliptic Möbius transformations, then we set

$$
\begin{equation*}
\delta(f, g)=\rho(\operatorname{ax}(f), \operatorname{ax}(g)) \tag{1}
\end{equation*}
$$

and call $\delta(f, g)$ the axial distance between f and g.
We associate with each Möbius transformation

$$
\begin{equation*}
f=\frac{a z+b}{c z+d}, a d-b c=1, \tag{2}
\end{equation*}
$$

the matrix

$$
A=\left(\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{C})
$$

and set $\operatorname{tr}(f)=\operatorname{tr}(A)$ where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Next for each pair of Möbius transformations f and g we let $[f, g]$ denote the multiplicative commutator $f g f^{-1} g^{-1}$. We call the three complex numbers

$$
\begin{equation*}
\beta(f)=\operatorname{tr}^{2}(f)-4, \beta(g)=\operatorname{tr}^{2}(g)-4, \gamma(f, g)=\operatorname{tr}([f, g])-2 \tag{4}
\end{equation*}
$$

the parameters of the 2-generator group $\langle f, g\rangle$ and write

$$
\begin{equation*}
\operatorname{par}(\langle f, g\rangle)=(\gamma(f, g), \beta(f), \beta(g)) \tag{5}
\end{equation*}
$$

These parameters are independent of the choice of matrix representations for f and g in $\operatorname{SL}(2, \mathbb{C})$ and they determine $\langle f, g\rangle$ uniquely up to conjugacy whenever $\gamma(f, g) \neq 0$. Recall that $\gamma(f, g)=0$ if and only if f, g have a common fixed point in $\overline{\mathbb{C}}$. If f is a primitive elliptic of order p, then

$$
\begin{equation*}
\beta(f)=-4 \sin ^{2}(\pi / p) \tag{6}
\end{equation*}
$$

Thus if $\Gamma=\langle f, g\rangle$ is a Kleinian group generated by elliptics of orders p and q respectively, then there is a complex number γ such that

$$
\begin{equation*}
\operatorname{par}(\Gamma)=\left(\gamma,-4 \sin ^{2}(\pi / p),-4 \sin ^{2}(\pi / q)\right) \tag{7}
\end{equation*}
$$

Thus up to conjugacy the space of all such discrete groups is determined uniquely by one complex parameter.

There is a relationship between the axial distance and the parameters of a discrete group encoded in the following lemma [3].

Lemma 1.1 Let f and g be Möbius transformations with distinct pairs of fixed points. Then

$$
\begin{align*}
\frac{4 \gamma(f, g)}{\beta(f) \beta(g)} & =\sinh ^{2}(\delta \pm i \phi) \\
\cosh (2 \delta) & =\left|\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}+1\right|+\left|\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}\right| \tag{8}\\
\cos (2 \phi) & =\left|\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}+1\right|-\left|\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}\right|
\end{align*}
$$

where $\delta=\delta(f, g)$ is the hyperbolic distance between the axes of f and g and $\phi=\phi(f, g)$ is the angle between the spheres or hyperplanes which contain $\operatorname{ax}(f)$ or $\operatorname{ax}(g)$ and the common perpendicular of $\operatorname{ax}(f)$ and $\operatorname{ax}(g)$.

Next, for each p and q with $\max \{p, q\} \geq 3$ we set

$$
\begin{equation*}
\delta_{\infty}(p, q)=\operatorname{arccosh}\left(\frac{\cos (\pi / p) \cos (\pi / q)+1}{\sin (\pi / p) \sin (\pi / q)}\right) \tag{9}
\end{equation*}
$$

Our main result is the following theorem.
Theorem 1.1 Suppose that f and g are elliptics of order p and q respectively with

$$
\begin{equation*}
\delta(f, g) \geq \delta_{\infty}(p, q) \tag{10}
\end{equation*}
$$

Then $\Gamma=\langle f, g\rangle$ is discrete and isomorphic to the free product group $\langle f\rangle *\langle g\rangle$. The lower bound is sharp in the sense that it is attained in the (p, q, ∞) triangle group and for every $\epsilon>0$ there are infinitely many Kleinian groups $\langle f, g\rangle$ generated elliptics of order p and q with

$$
\begin{equation*}
\delta_{\infty}(p, q)-\epsilon \leq \delta(f, g)<\delta_{\infty}(p, q) \tag{11}
\end{equation*}
$$

which are not isomorphic to the free product of cyclic groups.

Next let

$$
\begin{equation*}
\lambda_{p, q}=4(\cos (\pi / p)+\cos (\pi / q))^{2}+4(\cos (\pi / p) \cos (\pi / q)+1)^{2} . \tag{12}
\end{equation*}
$$

Then a little algebraic manipulation combined with the identities in Lemma 1.1 yields the following corollary

Corollary 1.1 Let Γ be a Möbius group with

$$
\begin{equation*}
\operatorname{par}(\Gamma)=\left(\gamma,-4 \sin ^{2}(\pi / p),-4 \sin ^{2}(\pi / q)\right) \tag{13}
\end{equation*}
$$

If γ lies outside of the open ellipse defined by the equation

$$
\begin{equation*}
|z|+\left|z+4 \sin ^{2}(\pi / p) \sin ^{2}(\pi / q)\right|<\lambda_{p, q} \tag{14}
\end{equation*}
$$

then Γ is discrete and isomorphic to the free product of cyclics $\langle f\rangle *\langle g\rangle$.
Again the result is sharp. Closely related results can be found in $[2,3]$. Further important applications of the estimates given here can be found in [5].

2 Proofs

Let $p \geq q$. Then $\max \{p, q\}=p \geq 3$. Let f and g be elliptics of order p and q respectively and set

$$
\begin{equation*}
\delta=\delta(f, g) \geq \delta_{\infty}(p, q) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega^{2}=e^{\delta+i \phi} \tag{16}
\end{equation*}
$$

where ϕ is the angle between the axes of f and g. Then

$$
\begin{equation*}
|\omega|^{2}=e^{\delta} \geq e^{\delta_{\infty}(p, q)}=(\cot (\pi / p)+\csc (\pi / p))(\cot (\pi / q)+\csc (\pi / q)) . \tag{17}
\end{equation*}
$$

Next, define matrices A and B as follows.

$$
\begin{align*}
A & =\left(\begin{array}{cc}
\cos (\pi / p) & i \omega \sin (\pi / p) \\
i \sin (\pi / p) / \omega & \cos (\pi / p)
\end{array}\right) \tag{18}\\
B & =\left(\begin{array}{cc}
\cos (\pi / q) & i \sin (\pi / q) / \omega \\
i \omega \sin (\pi / q) & \cos (\pi / q)
\end{array}\right) . \tag{19}
\end{align*}
$$

Then $A, B \in S L(2, \mathbb{C})$ correspond to Möbius transformations f and g respectively. Clearly

$$
\begin{align*}
\beta(f) & =-4 \sin ^{2}(\pi / p) \tag{20}\\
\beta(g) & =-4 \sin ^{2}(\pi / q) \tag{21}
\end{align*}
$$

So f has order p and g has order q. Moreover if $\phi=0$ and $\delta=\delta_{\infty}(p, q)$ it is not difficult now to verify that

$$
\begin{equation*}
\gamma(f, g)=4(\cos (\pi / p)+\cos (\pi / q))^{2} \tag{22}
\end{equation*}
$$

and in fact in this case $\Gamma=\langle f, g\rangle$ is the (p, q, ∞)-triangle group.
The isometric circles of f are easily calculated from the matrix representative A. They are the two circles

$$
\begin{equation*}
|z \pm i \omega \cot (\pi / p)|=|\omega| / \sin (\pi / p) \tag{23}
\end{equation*}
$$

The fixed points of f are the intersection of these two circles and the axis of f is simply the hyperbolic line connecting these two points. A fundamental domain for the action of f on the complex plane is the exterior of these two circles together with the region bounded by their intersection. Similarly the isometric circles of g are the two circles

$$
\begin{equation*}
|z \pm i \cot (\pi / q) / \omega|=1 /|\omega \sin (\pi / q)| \tag{24}
\end{equation*}
$$

Again the fixed points of g are the intersection of these two circles. (With obvious modifications if $q=2$ so that g has order 2.) Next, the isometric circles of g lie in the disk $D(0, r)$, where

$$
\begin{equation*}
r=\frac{1+\cos (\pi / q)}{|\omega| \sin (\pi / q)} \tag{25}
\end{equation*}
$$

Additionally the isometric circles of f contain the disk $D(0, s)$, where

$$
\begin{equation*}
s=|\omega| \frac{1-\cos (\pi / p)}{\sin (\pi / p)} \tag{26}
\end{equation*}
$$

A little manipulation shows that

$$
\begin{equation*}
|\omega|^{2}=e^{\delta} \geq e^{\delta_{\infty}(p, q)}=\frac{\sin (\pi / p)(1+\cos (\pi / q))}{\sin (\pi / q)(1-\cos (\pi / p))} \tag{27}
\end{equation*}
$$

and hence $r \leq s$. We have therefore seen that the exterior of a fundamental domain for $\langle g\rangle$ lies inside a fundamental domain for $\langle f\rangle$. It follows from the simplest of the Klein-Maskit combination theorems [4] that the group $\Gamma=\langle f, g\rangle$ is discrete and isomorphic to the free product of the cyclic groups,

$$
\begin{equation*}
\Gamma \cong\langle f\rangle *\langle g\rangle \cong \mathbb{Z}_{p} * \mathbb{Z}_{q} \tag{28}
\end{equation*}
$$

Finally, in discussing the sharpness of the result we need only point out that if f_{t} and g_{t} together generate the (p, q, t)-triangle group, then

$$
\begin{equation*}
\delta\left(f_{t}, g_{t}\right)=\operatorname{arccosh}\left(\frac{\cos (\pi / p) \cos (\pi / q)+\cos (\pi / t)}{\sin (\pi / p) \sin (\pi / q)}\right) \rightarrow \delta_{\infty}(p, q) \tag{29}
\end{equation*}
$$

as $t \rightarrow \infty$.

References

[1] A. F. Beardon, The geometry of discrete groups, Springer-Verlag 1983.
[2] F. W. Gehring and G. J. Martin, Axial distances in discrete Möbius groups, Proc. Natl. Acad. Sci. USA 89 (1992) 1999-2000.
[3] F. W. Gehring and G. J. Martin, Commutators, collars and the geometry of Möbius groups, J. d'Analyse Math. 63 (1994) 175-219.
[4] B. Maskit, Kleinian groups, Springer-Verlag 1987
[5] C. Maclachlan and G.J. Martin, 2-generator arithmetic Kleinian groups, to appear.

Authors' addresses

F. W. Gehring

University of Michigan, Ann Arbor, Michigan, USA
C. Maclachlan

University of Aberdeen, Aberdeen, Scotland
G. J. Martin

University of Auckland, Auckland, New Zealand

[^0]: *Research supported in part by grants from the U. S. National Science Foundation and the N.Z. Marsden Fund.

