
          

On the Discreteness of the Free Product of
Finite Cyclic groups

F.W. Gehring C. Maclachlan G.J. Martin ∗

Abstract

For p, q ≥ 2, max{p, q} ≥ 3, δ∞(p, q) is defined to be the smallest
number with the following property. If f and g are elliptic Möbius
transformations of orders p and q respectively and if the hyperbolic
distance δ(f, g) between their axes is at least δ∞(p, q), then the group
Γ = 〈f, g〉 is discrete nonelementary and isomorphic to the free prod-
uct Zp ∗ Zq. We prove that

cosh(δ∞(p, q)) =
cos(π/p) cos(π/q) + 1

sin(π/p) sin(π/q)

This valued is obtained in the (p, q,∞)–triangle group. We give other
applications concerning the commutator parameters of the free prod-
uct of cyclic groups.

1 Introduction

A Kleinian group is a discrete nonelementary subgroup of isometries of hyper-
bolic 3–space H3. Equivalently such groups are identified with (the Poincaré
extensions of) discrete groups of Möbius or conformal transformations of the
Riemann sphere C. We use [1] and [4] as basic references for the theory of
discrete groups. We denote the hyperbolic metric of constant curvature −1
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on H3 by ρ(·, ·). The elements of a Kleinian group, other than the identity,
are either loxodromic, elliptic or parabolic. Each elliptic or loxodromic ele-
ment f fixes two points of C = ∂H3 and the hyperbolic line joining these two
points is called the axis of f , denoted ax(f). If f and g are elliptic Möbius
transformations, then we set

δ(f, g) = ρ(ax(f), ax(g)) (1)

and call δ(f, g) the axial distance between f and g.

We associate with each Möbius transformation

f =
az + b

cz + d
, ad− bc = 1, (2)

the matrix

A =

(
a b
c d

)
∈ SL(2,C) (3)

and set tr(f) = tr(A) where tr(A) denotes the trace of the matrix A. Next
for each pair of Möbius transformations f and g we let [f, g] denote the
multiplicative commutator fgf−1g−1. We call the three complex numbers

β(f) = tr2(f) − 4, β(g) = tr2(g) − 4, γ(f, g) = tr([f, g]) − 2 (4)

the parameters of the 2–generator group 〈f, g〉 and write

par(〈f, g〉) = (γ(f, g), β(f), β(g)). (5)

These parameters are independent of the choice of matrix representations
for f and g in SL(2,C) and they determine 〈f, g〉 uniquely up to conjugacy
whenever γ(f, g) �= 0. Recall that γ(f, g) = 0 if and only if f, g have a
common fixed point in C. If f is a primitive elliptic of order p, then

β(f) = −4 sin2(π/p) (6)

Thus if Γ = 〈f, g〉 is a Kleinian group generated by elliptics of orders p and
q respectively, then there is a complex number γ such that

par(Γ) = (γ,−4 sin2(π/p),−4 sin2(π/q)) (7)
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Thus up to conjugacy the space of all such discrete groups is determined
uniquely by one complex parameter.

There is a relationship between the axial distance and the parameters of
a discrete group encoded in the following lemma [3].

Lemma 1.1 Let f and g be Möbius transformations with distinct pairs of
fixed points. Then

4γ(f, g)

β(f)β(g)
= sinh2(δ ± iφ)

cosh(2δ) =

∣∣∣∣∣ 4γ(f, g)

β(f)β(g)
+ 1

∣∣∣∣∣ +

∣∣∣∣∣ 4γ(f, g)

β(f)β(g)

∣∣∣∣∣ (8)

cos(2φ) =

∣∣∣∣∣ 4γ(f, g)

β(f)β(g)
+ 1

∣∣∣∣∣ −
∣∣∣∣∣ 4γ(f, g)

β(f)β(g)

∣∣∣∣∣
where δ = δ(f, g) is the hyperbolic distance between the axes of f and g and
φ = φ(f, g) is the angle between the spheres or hyperplanes which contain
ax(f) or ax(g) and the common perpendicular of ax(f) and ax(g).

Next, for each p and q with max{p, q} ≥ 3 we set

δ∞(p, q) = arccosh

(
cos(π/p) cos(π/q) + 1

sin(π/p) sin(π/q)

)
(9)

Our main result is the following theorem.

Theorem 1.1 Suppose that f and g are elliptics of order p and q respectively
with

δ(f, g) ≥ δ∞(p, q). (10)

Then Γ = 〈f, g〉 is discrete and isomorphic to the free product group 〈f〉∗〈g〉.
The lower bound is sharp in the sense that it is attained in the (p, q,∞)–
triangle group and for every ε > 0 there are infinitely many Kleinian groups
〈f, g〉 generated elliptics of order p and q with

δ∞(p, q) − ε ≤ δ(f, g) < δ∞(p, q) (11)

which are not isomorphic to the free product of cyclic groups.
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Next let

λp,q = 4(cos(π/p) + cos(π/q))2 + 4(cos(π/p) cos(π/q) + 1)2. (12)

Then a little algebraic manipulation combined with the identities in Lemma
1.1 yields the following corollary

Corollary 1.1 Let Γ be a Möbius group with

par(Γ) = (γ,−4 sin2(π/p),−4 sin2(π/q)) (13)

If γ lies outside of the open ellipse defined by the equation

|z| + |z + 4 sin2(π/p) sin2(π/q)| < λp,q, (14)

then Γ is discrete and isomorphic to the free product of cyclics 〈f〉 ∗ 〈g〉.

Again the result is sharp. Closely related results can be found in [2, 3].
Further important applications of the estimates given here can be found in
[5].

2 Proofs

Let p ≥ q. Then max{p, q} = p ≥ 3. Let f and g be elliptics of order p and
q respectively and set

δ = δ(f, g) ≥ δ∞(p, q) (15)

and
ω2 = eδ+iφ (16)

where φ is the angle between the axes of f and g. Then

|ω|2 = eδ ≥ eδ∞(p,q) = (cot(π/p) + csc(π/p))(cot(π/q) + csc(π/q)). (17)

Next, define matrices A and B as follows.

A =

(
cos(π/p) iω sin(π/p)

i sin(π/p)/ω cos(π/p)

)
(18)

B =

(
cos(π/q) i sin(π/q)/ω

iω sin(π/q) cos(π/q)

)
. (19)
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Then A,B ∈ SL(2,C) correspond to Möbius transformations f and g respec-
tively. Clearly

β(f) = −4 sin2(π/p) (20)

β(g) = −4 sin2(π/q) (21)

So f has order p and g has order q. Moreover if φ = 0 and δ = δ∞(p, q) it is
not difficult now to verify that

γ(f, g) = 4(cos(π/p) + cos(π/q))2 (22)

and in fact in this case Γ = 〈f, g〉 is the (p, q,∞)–triangle group.

The isometric circles of f are easily calculated from the matrix represen-
tative A. They are the two circles

|z ± iω cot(π/p)| = |ω|/ sin(π/p) (23)

The fixed points of f are the intersection of these two circles and the axis of
f is simply the hyperbolic line connecting these two points. A fundamental
domain for the action of f on the complex plane is the exterior of these two
circles together with the region bounded by their intersection. Similarly the
isometric circles of g are the two circles

|z ± i cot(π/q)/ω| = 1/|ω sin(π/q)| (24)

Again the fixed points of g are the intersection of these two circles. (With
obvious modifications if q = 2 so that g has order 2.) Next, the isometric
circles of g lie in the disk D(0, r), where

r =
1 + cos(π/q)

|ω| sin(π/q)
(25)

Additionally the isometric circles of f contain the disk D(0, s), where

s = |ω|1 − cos(π/p)

sin(π/p)
(26)

A little manipulation shows that

|ω|2 = eδ ≥ eδ∞(p,q) =
sin(π/p)(1 + cos(π/q))

sin(π/q)(1 − cos(π/p))
(27)
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and hence r ≤ s. We have therefore seen that the exterior of a fundamental
domain for 〈g〉 lies inside a fundamental domain for 〈f〉. It follows from
the simplest of the Klein–Maskit combination theorems [4] that the group
Γ = 〈f, g〉 is discrete and isomorphic to the free product of the cyclic groups,

Γ ∼= 〈f〉 ∗ 〈g〉 ∼= Zp ∗ Zq (28)

Finally, in discussing the sharpness of the result we need only point out
that if ft and gt together generate the (p, q, t)–triangle group, then

δ(ft, gt) = arccosh

(
cos(π/p) cos(π/q) + cos(π/t)

sin(π/p) sin(π/q)

)
→ δ∞(p, q) (29)

as t → ∞.
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