
           

Geometry of Pseudospheres II.

T.H.Marshall

Abstract

We investigate finite sequences of hyperplanes in a pseudosphere.
To each such sequence we associate a square symmetric matrix, the
Gram matrix, which gives information about angle and incidence prop-
erties of the hyperplanes. We find when a given matrix is the Gram
matrix of some sequence of hyperplanes, and when a sequence is de-
termined up to isometry by its Gram matrix.

We also consider subspaces of pseudospheres and projections onto
them. This leads to an n-dimensional cosine rule for spherical and
hyperbolic simplices.

1 Introduction

The first part of this paper [M] dealt with the pseudospheres–the surfaces in
Rn+1 given by the equations,

x1
2 + x2

2 + . . . + xk
2 − xk+1

2 − · · · − xn+1
2 = 1

(1 ≤ k ≤ n + 1).
These surfaces have a natural metric (not generally positive definite) from

which we can define isometries, angles, geodesics, and hyperlanes. The pseu-
dospheres include as special cases the ordinary Euclidean sphere (k = n+ 1)
and (after changing the sign of the metric and deleting one component) hy-
perbolic space (k = 1).

We consider the pseudospheres as surfaces in En+1,k, where Em,k = Rk ×
(iR)m−k. The main result of [M] (Theorem 4) is that every matrix with
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columns in Em,k can be put into a unique canonical form by premultiplying
by an orthogonal matrix [M, Section 4]. We term this bitriangular form. For
real square matrices this is simply upper triangular form.

In this paper we apply these ideas. We assume familiarity with the results
and notation of the first paper.

The main objects of investigation here are finite sequences of oriented
hyperplanes P. Each such sequence has an associated normal matrix N(P)
whose column vectors are normals of the hyperplanes in P. Two sequences, P
and P′ will be said to be isometric if there is an isometry of the space which
maps each oriented hyperplane of P to the corresponding oriented hyperplane
of P′. Isometries on P correspond to premultiplying its normal matrix by an
orthogonal matrix. This means that, when considering isometric invariants of
a sequence P, we may always assume that the normal matrix is in bitriangular
form, a fact which we continually use.

The Gram matrix of a sequence with normal matrix N is defined to be
NtN. The Gram matrix is thus symmetric and we generally consider cases
where it is also real. The Gram matrix is also given by (cos θij) where θij is the
angle between the ith and the jth hyperplane in P, whenever these angles
are defined. Section ?? describes the relationship between the incidence
properties of P and the properties of its Gram and normal matrices. In
particular, we show that the intersection of hyperplanes in a sequence is
isometric to a pseudosphere if and only if its normal matrix is regular as
defined in [M] (i.e. its bitriangular form has no paired rows). A sequence P
is not generally determined up to isometry by its Gram matrix. However in
Section ?? we prove this to be true for regular sequences.

The Gram matrix also plays an important role in Section ??, which in-
vestigates subspaces of Sn,k and how the angle between two hyperplanes is
related to the angle between their intersections with a subspace. When the
hyperplanes of P form the faces of a polytope this is the relationship between
the dihedral angles and the face angles. This leads to a matrix formula that
relates the dihedral angles and the edge lengths of a simplex in spherical or
hyperbolic space. In the plane, this is simply the familiar cosine rule.
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2 The Gram Matrix

For each finite sequence, P ≡ P1, P2 . . . Pj, of non null oriented hyperplanes
in Sn,k we define the normal matrix N(P) as the (n + 1) × j matrix whose
pth column is np/N(np), where np is the outward unit normal vector of Pp.
That is the pth column of N(P) is just np itself when Pp is spacelike, and
np/i when Pp is timelike.

We define P to be spacelike (resp. timelike ) if each of its constituent
hyperplanes is spacelike (resp. timelike). Recall that we have defined a
matrix to be regular if its bitriangular form has no paired rows [M] . We now
define a sequence P to be regular if N(P) is regular.

The Gram matrix, G(P) of the sequence is defined by,

G(P) = N(P)tN(P)

It is immediate from the definition that G(P) is symmetric with entries of 1
on the leading diagonal. If P is spacelike or timelike then G(P) is also real
and the well known theorems about real symmetric matrices apply. For this
reason we will deal mostly with spacelike or timelike P in what follows.

We will refer to two sequences P and Q as isometric if they are of the same
length j and there is an isometry φ which maps each oriented hyperplane Pi

to the oriented hyperplane Qi for 1 ≤ i ≤ j. (Equivalently, φ maps the
outward normal to Pi to the outward normal to Qi) Evidently two isometric
sequences have the same Gram matrix. We will see in the next section that
the converse of this is false. However if the two sequences are both required
to be regular then the converse does hold (Theorem ??).

3 Incidence

In this section we will characterize those matrices that occur as Gram ma-
trices of some sequence P and relate the properties of G(P) to the incidence
properties of P. The following terminology is used by Beardon [B] in plane
hyperbolic geometry and adapts naturally to our more general context.

Definition. A sequence P of hyperplanes in Sn,k is intersecting, parallel or
disjoint according as the hyperplanes of P meet in Sn,k, at infinity only, or
not at all.
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Lemma 1 A set of nonzero mutually orthogonal spacelike (resp. timelike)
vectors in Em,k has cardinality not exceeding k (resp. m− k).

Proof:- Let v1,v2 . . .vp be a set of nonzero mutually orthogonal spacelike
vectors in Em,k. The column vectors of the bitriangular form of (v1;v2; . . . ;vp)
are also nonzero, mutually orthogonal and spacelike. An easy induction
shows the jth column vector of this matrix to be a multiple of the jth unit
vector in Rm so that, in particular, p ≤ k. The timelike case is proved
similarly.�

Proposition 2 Let M be bitriangular with columns in Em,k and have α zero
rows among its first k rows, γ zero rows among its remaining m − k rows
and β paired rows, then G = MtM has k − α − β positive eigenvalues and
m− k − γ − β negative eigenvalues

Proof:- By [M, Lemma 8], M has rank m − α − γ − β. The matrix G is
real symmetric and there is a real orthogonal Q for which D = QtGQ =
(MQ)t(MQ) is diagonal. The matrix MQ thus has mutually orthogonal
columns and the same number of zero and paired rows as M. Using [M,
Lemma 7] we may pre-multiply MQ by an orthogonal matrix P which leaves
these zero and paired rows unchanged and so that the matrix M1 obtained by
deleting these rows from PMQ is bitriangular. The matrix M1 can have no
zero or paired rows since this would mean rank(PMQ) < rank(M). Since
deleting zero and paired rows leaves dot products between columns un-
changed, we also have Mt

1M1 = (PMQ)t(PMQ) = D. We have shown that
M1 is a regular bitriangular matrix with no zero rows and mutually orthog-
onal columns in Em′,k′ , where m′ = m − α − γ − 2β, k′ = k − α − β. A
simple induction shows that such a matrix must have k′ nonzero spacelike,
and m′ − k′ timelike, column vectors. Since the eigenvalues of G are the
diagonal entries of D, the proposition follows.�

If M and G are as in the above proposition, the ranks of these two matrices
are respectively m − α − γ − β and m − α − γ − 2β. (the rank of G being
obtained by counting nonzero eigenvalues using the above proposition). The
proof thus gives another way of characterizing regular matrices.

Corollary 3 A matrix M with columns in Em,k is regular if and only if
Rank(M) = Rank(MtM)
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The next theorem shows that, when Proposition ?? is applied to the
normal matrix N(P) of some sequence, the values of α, γ, and β determine,
whether, in the first place, P is disjoint, parallel or intersecting and, when P
is intersecting, what this intersection is up to isometry.

We have defined a matrix to be regular if its bitriangular form has no
paired rows, and a sequence P to be regular if its matrix of normals N(P) is
regular. We now extend this definition further and say that an intersection of
hyperplanes is regular if it can be obtained as the intersection of hyperplanes
in some regular sequence P.

The next theorem characterizes geometrically the regular intersections of
hyperplanes.

Theorem 4 Let P ≡ P1, P2 . . . Pr be a sequence of hyperplanes in Sn,k. Let
M be the bitriangular form of N(P) and let α, γ, and β be as in the previous
proposition.

Let P =
⋂r

i=1Pi. If α > 0 then P is isometric to Sα+γ−1,α × Iβ, where
I represents the real line with the identically zero “ metric”. If α = 0 and
β > 0 then P is parallel. If α = β = 0 then P is disjoint.

The intersection P is isometric to a pseudosphere if and only if α > 0
and P is regular.

Proof:- By applying an isometry if neccesary, we may assume that N(P)
itself is bitriangular. Using [M, Lemma 8] and the notation following [M,
Lemma 7], the set underlying P comprises all the points

(x1, x2, . . . xk, iyk+1, . . . , iyn+1) ∈ En+1,k

for which
xi = 0, yi = 0 i ∈ F (1)

yσ(k) = xk k ∈ R (2)

and
x2

1 + x2
2 + · · · + x2

k − y2
k+1 − · · · − y2

n+1 = 1 (3)

The terms x2
k (k ∈ R) in (??) are cancelled by the corresponding terms

y2
σ(k) so that these xk may take any values. After deleting these and the zero

terms from (??), we obtain, when α > 0, the equation of the pseudosphere,

5



    

Sα+γ−1,α. Clearly P is the Cartesian product of this pseudosphere with β
copies of I. By definition, β = 0 precisely when N is regular. It is easy to see
that, when β > 0, the dot product is degenerate, so that, in particular, P is
not a pseudosphere.

When α = 0 (??) has no solution, and, if the right hand side is replaced
by zero, then it has a solution when α = 0 if and only if β �= 0. The latter
case corresponds to an intersection at infinity, that is when P is parallel. �

Corollary 5 Every sequence of fewer than k hyperplanes in Sn,k is intersect-
ing. Every sequence of exactly k hyperplanes in Sn,k, at least one of which is
timelike, is intersecting.

Proof:- If we assume that N(P) is bitriangular then, in the first case,
clearly, α > 0 and the required conclusion follows from the theorem. In the
second case, we may also assume the first hyperplane in P is timelike so that
again α > 0.�

Theorem ?? and ?? also give,

Corollary 6 If P is parallel then G(P) is singular.

Theorem 7 A j × j real symmetric matrix is the Gram matrix of some
sequence P of j oriented spacelike hyperplanes in Sn,k if and only if it has
entries of 1 on the leading diagonal, and at most k positive, and n + 1 − k
negative, eigenvalues. The sequence P is disjoint if and only if its Gram
matrix has exactly k positive eigenvalues.

Proof:- The last statement of the theorem and the upper bounds for
the number of positive and negative eigenvalues for a Gram matrix, follow
from Proposition ?? and Theorem ??. It remains to show that any real
symmetric matrix, M, with entries of 1 on the leading diagonal, and at most
k positive, and n+ 1− k negative, eigenvalues, is G(P) for some sequence P
of j spacelike hyperplanes in Sn,k.

If M has these properties then there is a real orthogonal Q for which
D = QtMQ is diagonal, and we may suppose that the positive eigenvalues
are listed first along the diagonal of D followed by the zero, and then the
negative eigenvalues. Let E be a diagonal matrix satisfying E2 = D. By
adding or removing some zero rows of EQt if neccesary, we obtain a matrix
R with columns in En+1,k and RtR = (EQt)

t
(EQt) = M. Since the diagonal
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entries of M are all 1 by assumption, the columns of R are spacelike unit
vectors. Hence, R = N(P) for some sequence P of spacelike hyperplanes and
M = G(P).�

The above theorem adapts readily to the case where P is timelike. If v is
timelike in Sm,k then v/i is, after an obvious reordering of entries, spacelike
in Sm,m−k. It follows that, if M is timelike, Proposition ?? holds with α
interchanged with γ and k interchanged with m − k. That is we conclude
that G has m − k − γ − β positive, and k − α − β negative, eigenvalues in
this case. Using this, we now easily establish the equivalent of Theorem ??
for timelike sequences.

Theorem 8 A j × j real symmetric matrix is the Gram matrix of some
sequence P of j oriented timelike hyperplanes in Sn,k if and only if it has
entries of 1 on the leading diagonal, and at most n + 1 − k positive, and
k negative, eigenvalues. The sequence P is disjoint if and only if its Gram
matrix has exactly k negative eigenvalues.

Observe that the above two theorems show that any real symmetric ma-
trix with entries of 1 on the leading diagonal is the Gram matrix of both a
spacelike and a timelike sequence of hyperplanes in some pseudosphere.

When the number of hyperplanes in P is equal to the dimension of the
space, corollary ?? and the above two theorems give the following charac-
terization of incidence properties in terms of Gram determinants.

Corollary 9 If P is a spacelike or timelike sequence of n hyperplanes in Sn,k

with nonsingular Gram matrix then P is intersecting if and only if

(−1)n+1−kDet(G) > 0 (P spacelike)

(−1)k−1Det(G) > 0 (P timelike)

Remark:- The incidence properties of a sequence of hyperplanes are, of
course, independent of the ordering or the orientation of the hyperplanes in
P. Correspondingly, changing the orientation of any of the hyperplanes in P,
or reordering them, effects a similarity transformation on G(P), so that the
eigenvalues remain unchanged.
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If P is a hyperplane with unit normal n, we denote by P̃ the halfspace
{x|x ·n < 0}, which has the boundary P. A convex polytope is an intersection
of the form,

∩i∈IP̃i

which has nonempty interior and for which the set of boundaries {Pi|i ∈ I}
is locally finite. Given such a polytope we define its Gram matrix to be that
of its bounding hyperplanes, taken in some particular order and oriented
outwards.

In the sequel we will confine ourselves to the case where the index set I
is finite so that the local finiteness condition will be satisfied automatically.
There remains the question of whether the intersection of a given set of half-
spaces has nonempty interior. When the halfspaces have timelike boundaries
we have the following result, given for hyperbolic spaces in Vinberg [V Prop.
2.1]. The proof is essentially the same in the general case.

We begin with a definition. A square matrix is decomposable if by some
permutation of the rows and the same permutation of the columns it can be
brought to the form (

A 0

0 B

)
where the matrices A and B are square. Otherwise it is indecomposable

Proposition 10 Let P ≡ P1,P2 . . .Pl be a disjoint sequence of timelike hy-
perplanes in Sn,k with respective outward normals n1,n2 . . .nl Suppose that
the G(P) = (gij) has nonpositive entries off the diagonal and is indecompos-
able,then,

C = ∩l
i=1P̃i

has nonempty interior.

Proof:- We may write,

G(P) = Il − B

where B is indecomposable and has nonnegative entries. By the Perron-
Frobenius theorem applied to B there is then an eigenvector c = (c1, c2 . . . cl)
with all positive coordinates, corresponding to the least eigenvalue λ of G(P).
By Theorem ?? λ < 0. We set,

v = −
∑

j
cjnj
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We have,

v · ni =
∑

j
gijcj = λci < 0 i = 1, 2 . . . k (4)

while
v · v = −

∑
j
cjv · nj > 0

so v is spacelike. The unit vector v/(v · v) is thus in the interior of C.�

Theorem ?? allows us to tell, using the Gram matrix, whether or not
a sequence of hyperplanes is disjoint, but not to distinguish between the
intersecting and parallel cases. In fact it is possible for an intersecting and a
parallel sequence to have the same Gram matrix. A simple example is given
by the two sequences of hyperplanes in S2,2 with respective normal matrices,⎛⎜⎝ 1 1

0 0
0 0

⎞⎟⎠ and

⎛⎜⎝ 1 1
0 1
0 i

⎞⎟⎠
which are, respectively, intersecting and parallel, and both have Gram matrix(

1 1
1 1

)

We will show however that a disjoint sequence of hyperplanes is deter-
mined up to isometry by its Gram matrix (Corollary ??).

4 Disjoint Hyperplanes and the Dot Prod-
uct

Let P1 and P2 be non-null oriented hyperplanes in Sn,k, with respective out-
ward unit normals n1 and n2 and bounding halfspaces P̃1 and P̃2. We have
noted in [M, Section 4] that, when k ≥ 2, n1 ·n2 depends only on the intrinsic
geometry of the hyperplanes and not on the particular choice of coordinates.
If P1 and P2 intersect then it is clear from [M, Lemma 2] that n1 ·n2, is again
an isometric invariant. In fact we have used n1 ·n2, in this case, to define the
angle between P1 and P2 when these hyperplanes are either both spacelike
or both timelike.
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In this section we characterize n1 · n2 geometrically, when P1 and P2 do
not intersect. In particular, it will follow that the dot product is an isometric
invariant in the case k = 1.

From Corollary ??, P1 and P2 can fail to intersect only if k ≤ 2. Suppose
k = 2. As usual, we may assume N(P1,P2) is bitriangular, and, since neither
of its top two rows can be zero, we must have n1 = (1, 0, 0, . . . , 0)t and
either n2 = (a, b, 0, 0, . . . , 0)t, where a2 +b2 = 1 or n2 = (±1, 1, 0, 0, . . . , 0, i)t.
In either case, both hyperplanes are spacelike. In the first case, the n − 1
hyperplanes with normal vectors ie3, ie4, . . ., ien+1 are all perpendicular to
P1 and P2. The intersection of these n−1 hyperplanes is the unique geodesic
perpendicular to n1 and n2, which is given explicitly as the unit circle C in
the x1x2-plane of En+1,k. Now −n1 ·n2 = a is the cosine of the length of the
geodesic arc C ∩ P̃1 ∩ P̃2.

In the second case, we see that P1 and P2 are parallel and n1 · n2 = ±1,
the sign depending on the orientation of the two hyperplanes.

If k = 1 every hyperplane in Sn,k is timelike and P1 and P2 fail to intersect
only if n1 = (0, 0, . . . , 0, i)t and either n2 = (a, 0, 0, . . . , 0, bi)t, where a > 0
and b2 − a2 = 1 or n2 = (1, 0, 0, . . . , 0, i,±i)t. In the first case we may,
as in the case k = 2, find, in each component of Sn,1, a unique geodesic
perpendicular to P1 and P2. A routine calculation shows that the arc from
this geodesic joining P1 and P2 has imaginary length, il and n1 ·n2 = ± cosh l.
In the second case, P1 and P2 are parallel and n1 · n2 = ±1. The sign of
the dot product is determined by the relationship between P̃1 and P̃2 in each
component of Sn,1. For example suppose that n1 · n2 < 0, so that the last
entry of n2 is a positive multiple of i. Suppose further that x ∈ Qn∩ P̃2 then
xn+1 must be a nonnegative multiple of i, whence x ∈ P̃1. We have shown in
this case that Qn ∩ P̃2 ⊂ Qn ∩ P̃1.The same basic argument shows that this
inclusion is reversed if we replace Qn by −Qn.

Similar arguments when n1 · n2 > 0, show that, in this case, in each
component of Sn,1, either the halfspaces or their complements are disjoint.
We summarize these results in a theorem.

Theorem 11 Let P1 and P2 be two non-intersecting oriented hyperplanes
in Sn,1 with respective unit normals n1 and n2. When the hyperplanes are
disjoint there is a unique geodesic arc joining them that is perpendicular to
each. This arc has imaginary length il and n1 · n2 = ± cosh l.

In each component of Sn,1, one of the halfspaces contains the other when
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n1·n2 < 0, and the halfspaces or their complements are disjoint when n1·n2 >
0.

5 Subspaces and Projections

Each linear subspace of codimension r can be written as

Sn,k

⋂
P1

⋂
P2 . . .

⋂
Pr

where the P ≡ P1, P2 . . . Pr is a sequence of hyperplanes in En+1,k with lin-
early independent normals. Recall from Theorem ?? that a linear subspace,
P, in Sn,k is isometric to a pseudosphere if and only if it is regular.

Definition. If P is a regular linear subspace of codimension r and P1 is an
oriented hyperplane in Sn,k then P1

⋂
P, with the orientation inherited from

P1 in the obvious way, is the projection of P1 onto P.

In the remainder of this section we consider angles and distances between
the projections of two hyperplanes onto a given regular subspace. We recall
the following result from linear algebra (see e.g.[S, Appendix B3])

Proposition 12 If L is the subspace of Rn orthogonal to each vector in the
linearly independent set n1,n2, . . . ,nk, then the projection of a vector v ∈ Rn

onto L is given by PLv, where, if M = [n1,n2, . . . ,nk], PL is defined by

PL = I − M(MtM)
−1

Mt

If Q is a hyperplane in Rn, which intersects L, and has normal n, then
the projection of n onto L is normal to Q

⋂
L.

Exactly the same definition can be used to define projections onto sub-
spaces of Em,k. In order for the definition to make sense the matrix MtM
must be nonsingular, and, in view of Corollary ??, this occurs exactly when
M is regular.

It is easy to verify that the definition of PL depends only on the space
L and not on the particular choice of normal vectors, that PL maps Em,k

onto L and fixes L pointwise, and that PL
2 = PL

t = PL . We also note the
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following important invariance property of projections. If Λ is an isometry
of Em,k and v and w are vectors in Em,k, then

PΛL(Λv) = Λ(PLv)

Definition. If M is a square matrix, Mj
i denotes the matrix obtained from

M by deleting the ith row and jth column of M, Mjl
ik denotes the matrix

obtained from M by deleting the ith and kth rows and jth and lth columns
of M, etc.

We denote by Mij the signed cofactor corresponding to the matrix Mj
i .

That is,
Mij = (−1)i+jDet(Mj

i )

The next result gives the angle between the projections of two hyperplanes
onto a given subspace in terms of Gram matrices.

Theorem 13 Let P1 and P2 be non null oriented hyperplanes in Sn,k, with
outward unit normals n1 and n2, respectively. Let Q be a regular sequence
of r hyperplanes in Sn,k, with linearly independent normals. Let Q be the
linear subspace (of codimension r) obtained by taking the intersection of the
hyperplanes in Q and PQ the projection onto Q. If both of the projections,
P1

⋂
Q, P2

⋂
Q are nonempty, non null, and have outward unit normals n′

1

and n′
2, respectively then,

n′
1 · n′

2 = Sign(Det(G(Q))) × N(n1)N(n2)Det(G1
2)√

|Det(G1
1G

2
2)|

(5)

where G = G(P1, P2,Q)

Proof:- Without loss of generality we may assume that N = N(Q) is
bitriangular, so that Q = Π

⋂
Sn,k, where Π is the subset of En+1,k for which

all but the last α real, and the first γ imaginary, coordinates vanish (α+γ =
r). Clearly the map π, which deletes all these vanishing coordinates is an
isometry from Q onto Sα+γ−1,α and mi = π(PQ(ni)) is normal to π(PQ(Pi))
(i=1,2). We show
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m1 · m2 × Det(G(Q)) = n1
t(I − N(NtN)

−1
Nt)n2 × Det(NtN)

= Det[(n1; N)t(n2; N)]

= Det(G1
2) ×N(n1)N(n2) (6)

Similarly
mi · mi × Det(G(Q)) = Det(Gi

i) ×N(ni)
2 (7)

for i = 1, 2.

Since, by assumption, mi is not null, the matrix Gi
i is nonsingular.

The first and last equations of (??) are obvious. To prove the second,
let X be the column space of N. Since each line of (??) is linear in n2 (in
fact, in each of n1 and n2), it suffices to consider the two cases n2 ∈ X and
n2 ∈ X⊥.

If n2 ∈ X, say n2 = Nz, then (n2; M) is rank deficient and so the second
line of (??) is zero. Also,

N(NtN)
−1

Ntn2 = N(NtN)
−1

NtNz

= Nz = n2 (8)

so the first line of (??) vanishes also.
If n2 ∈ X⊥, then Ntn2 = 0 so that the first line of (??) is n1 · n2 ×

Det(NtN) and,

Det[(n1; N)t(n2; N)] = Det

(
n1 · n2 n1

tN
Ntn2 NtN

)
= n1 · n2 Det(NtN), (9)

since Ntn2 = 0.

Now, since ni
′ = mi/

√
|mi · mi| (i=1,2) the theorem follows. �

In the hyperbolic and spherical cases (k= 1 and n+ 1 respectively) The-
orem ?? simplifies considerably. Using Theorems ?? and ??, ?? becomes,
in these cases,

n′
1 · n′

2 =
±Det(G1

2)√
Det(G1

1G
2
2)

(10)
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the sign being positive for spherical space, and negative for hyperbolic.
When Q comprises r of the hyperplanes that bound a polytope, its inter-

section, if nonempty, will meet the polytope in a codimension r face. Theorem
?? can thus be used to calculate face angles at all dimensions. In particular,
for a simplex, all face angles can be computed from dihedral angles. For this
purpose it is convenient to have a more symmetrical from of Theorem ??.
We begin with a simple lemma and a definition.

Lemma 14 Let N1 be any matrix with m columns, π a permutation of
{1, 2, . . . ,m}, and N2 the matrix obtained by permuting the columns of N1

according to π. Let Gi = Nt
iNi (i=1,2), then,

(−1)i+jDet((G1)
j
i ) = (−1)π(i)+π(j)Det

(
(G2)

π(j)
π(i)

)
(11)

Proof:- It suffices to prove the lemma in the case π is a transposition of the
form (k, k + 1). The matrix G2 is obtained by applying this transposition to

the columns and rows of G1. If, for example, i = k, j �= k + 1 then (G2)
π(j)
π(i)

is obtained from (G1)
j
i by a column transposition so that (??) holds in this

case. A similar argument applies in all other cases.�

Definition. Let A be an m ×m square matrix and J ⊆ {1, 2, . . . ,m}. We
denote by AJ the principal submatrix of A formed from the rows and columns
whose indices belong to J. For i, j ∈ J we let AJ(i, j) denote the cofactor
of AJ corresponding to the submatrix of A whose rows and columns have
indices in J − {i} and J − {j}, respectively.

Theorem 15 Let Q be a sequence of n + 1 hyperplanes in Sn,k with Gram
matrix G. Suppose the normals of the hyperplanes in Q form a linearly inde-
pendent set and that for any proper subset J of {1, 2, . . . , n + 1}, Q = QJ =
∩k∈JQk is a regular subspace.

For any distinct i, j �∈ J the projections Qi∩Q and Qj ∩Q are non empty
and not null. The dot product of their respective unit normals, n′

i and n′
j is

given by

n′
i · n′

j = −Sign(GJ) × N(ni)N(nj)GJ ′(i, j)√
|GJ ′(i, i)GJ ′(j, j)|

(12)

where J ′ = J ∪ {i, j}.

14



      

Proof:- Since the normals of Q are linearly independent it follows that the
corresponding normal matrices have full rank so that (by Corollary ??) all
the principal submatrices of G are nonsingular (It is easy to show that,
conversely, the hypotheses of this theorem follow if G is assumed to have
nonsingular principal submatrices). It follows from the assumptions of the
theorem that all the projections are non empty, and by (??) they are also
not null. The theorem now follows from ?? and Lemma ??.�

For the remainder of this section we suppose that the hyperplanes of
Q form the outward oriented faces of a simplex Δ, and consider only the
spherical and hyperbolic cases. As before, (??) now simplifies to,

n′
i · n′

j =
∓GJ ′(i, j)√

GJ ′(i, i)GJ ′(j, j)
(13)

the sign now being negative in the spherical case and positive in the hyper-
bolic. It follows that the cosine of the angle between n′

i and n′
j is obtained

by taking the right hand side of ?? with the sign negative in both cases.
This angle is the exterior angle between the two projected faces Qi ∩Q and
Qj ∩Q. The interior angle θij between Qi and Qj in face Q being given by,

cos θij =
GJ ′(i, j)√

GJ ′(i, i)GJ ′(j, j)
(14)

in both hyperbolic and spherical space.
When J has cardinality n− 1 the pair {i, j} is uniquely determined and

J ′ = {1, 2, . . . , n + 1}. The subspace QJ is, in this case, isometric to the
unit circle or to a pair of hyperbolae, the projections Qi and Qj are the
vertices opposite faces j and i, respectively, and the “angle” between these
two vertices is now an edge length. From Section ?? −n′

i · n′
j is cos lij where

lij is the edge length of Δ contained in QJ . In the hyperbolic case lij is
imaginary.

In these cases (??) becomes

cos lij =
(−1)i+jDet(Gj

i )√
Det(Gi

iG
j
j)

(15)

Of course we may take edge length in hyperbolic space to be real, in which
case the cosine in the above equation would be replaced by a hyperbolic
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cosine. The advantage of supposing hyperbolic length to be imaginary is
that it allows hyperbolic and spherical space to be treated together.

Sylvester’s identity (see e.g. [BG] Theorem 1.4.1) gives Det(Gij
ij)Det(G) =

Det(Gi
iG

j
j)−Det(Gj

i )Det(Gi
j)), whence equation (??) can be written in terms

of sin lij thus,

sin2lij =
Det(Gij

ij)Det(G)

Det(Gi
iG

j
j)

(16)

Equation (??) gives an explicit way of calculating edge lengths from dihedral
angles. We can rewrite it in matrix form as follows. Define an (n+1)×(n+1)
matrix Γ by (aij) where aij = cos lij. Let D and D1 be the diagonal matrices
whose diagonal entries coincide with those of the adjoint matrices G∗ and
Γ∗, respectively. The matrix D is always positive (Corollary ??) but D1 is
negative in the hyperbolic case when n is even (see (??) in the proof below).
In this case we define D1

±1/2 to have nonnegative multiples of ±i on the
diagonal.

Theorem 16 (n-dimensional Cosine Rule)

Γ = D−1/2G∗D−1/2 (17)

and
G = D1

−1/2Γ∗D1
−1/2 (18)

Proof:- Equation (??) is simply a restatement, in matrix terms, of (??).
Taking adjoints gives,

Γ∗ = Det(G)n−1Det(D)−1D1/2GD1/2 (19)

and equating diagonal entries

D1 = Det(G)n−1Det(D)−1D (20)

whence, substituting back into (??), we get,

Γ∗ = D1
1/2GD1

1/2

and (??) follows.�
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We refer to this theorem as the n-dimensional cosine rule because, when
n = 2, (??) and (??) are just matrix forms of the familiar cosine rules for
spherical and hyperbolic triangles.

The above theorem gives an explicit formula for the dihedral angles of a
simplex in terms of its edge lengths. Since the edges of a simplex are also
edges of its faces, we may, given all the angles in faces of any given dimension,
calculate the edge lengths by (??) and so recover the dihedral angles using
(??). In particular we have shown that the Gram matrix of a simplex is
uniquely determined by its face angles at any dimension. As we prove in the
next section (Theorem ??), the Gram matrix determines the simplex itself
up to isometry.

6 Further results on Gram Matrices

We have shown in Section ?? that the Gram matrix of a sequence of hyper-
planes does not determine the sequence up to isometry, or even to distinguish
between the intersecting and parallel cases. We have, however this unique-
ness result for regular sequences.

Theorem 17 If P and Q are regular sequences of hyperplanes and G(P) =
G(Q), then P and Q are isometric.

In view of Proposition ?? we have

Corollary 18 A disjoint sequence of hyperplanes is uniquely determined up
to isometry by its Gram matrix

If the zero rows are deleted from a bitriangular matrix M with columns in
a given Em,k then the matrix so obtained clearly determines M. Since regular
bitriangular matrices, by definition, also have no paired rows, Theorem ??
is a consequence of the following result.

Theorem 19 If M is a bitriangular matrix without zero or paired rows then
the matrix G = MtM uniquely determines M.

Proof:- In this proof we will suppose that M is given by [M, equation
(5)] and refer to the conditions (1)-(7) in the definition following it. Recall

17



   

that rj denotes the rank of the matrix comprising the first j columns of M.
Suppose G = (gij) to be n× n.

We prove the theorem by induction on n. The case n = 1 is trivial. For
the induction step let M be a bitriangular matrix without zero or paired rows
such that MtM = G. We must show that M is uniquely determined by G.
We let M1 denote the matrix obtained by deleting the last column of M, and
N the matrix obtained by deleting the zero and paired rows from M1. By the
induction hypothesis, G determines N.

Let G1 be the matrix obtained by deleting the last row and column of G,
and let s and s1 be the ranks of G and G1, respectively.

Clearly M has n columns and, since M is bitriangular and has no zero or
paired rows, it has rank(M) rows. By corollary ?? rank(M) = s. Thus G
determines the dimensions of M.

Since M has no zero or paired rows, we have either N = M1, or N is
obtained from M1 by deleting a single zero row or two paired rows. In these
three cases we have, respectively, s = s1, s = s1 + 1 and s = s1 + 2 (see
remarks preceding Corollary ??). We consider these cases in turn. Let vj

denote the jth column of N, Nj the matrix comprising the first j columns of
N, and y = (y1, y2, . . . , ys)

t the last column of M.

Case 1: N = M1. By induction on j we see that the values of g1n =
v1 · y, g2n = v2 · y . . . gjn = vj · y determine the values of yk whenever the
kth row of Nj is neither zero nor paired and of yk − yl/i whenever the kth
and lth rows of Nj are paired. Since M1 itself has neither zero nor paired
rows, this result, when j = n− 1, means that y, and hence M, is completely
determined.

Case 2: N is M1 with a zero row deleted. Now M1 results by inserting a
zero row between the real and imaginary rows of N. Now, as in the previous
case, the dot products of y with the columns of M1 determine all entries of
y except for that corresponding to the zero row of M1. This entry (which by
condition (1) must be nonnegative) is determined by the value of gnn = y ·y.

Case 3: N is M1 with a pair of rows deleted. Let J be greatest value
of j for which, there is a vector w the same length as the columns of N, for
which,

w · vi = gin (1 ≤ i ≤ j)
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We must have J < n− 1 or else one of the previous cases would apply. If p
and q are the indices of, respectively, the bottom nonzero real, and the top
nonzero imaginary, rows of NJ , then M1 is obtained by inserting a real row
u = (u1, u2, . . . , un) below the pth row of N, and the imaginary row iu above
the qth row of N. Let α and iβ be the entries of y corresponding to the rows
u and iu respectively in M1.

By an inductive argument, similar to that used in the previous cases, we
see that the equations,

y · vi = gin (1 ≤ i ≤ n− 1)

determine all the entries of y except for α and iβ and also (from the above
equation for i = J + 1) the value of α − β. Since the equation y · y = gnn
then gives the value of α2 − β2, y is completely determined.

It remains to determine the entries of u. For j ≤ J , uj = 0. When j > J
and rj > rj−1, condition (4) gives uj = 1. The remaining values of uj can be
found from the equations y ·vj = gjn, again using condition (4) and the now
known (and distinct) values of α and β.�

7 Hyperbolic Space

As noted in [M], the hyperboloid model Qn for hyperbolic space can be
obtained by taking the component x1 > 0 of Sn,1 and changing the sign of
the metric. In this section we investigate the particular properties of this
space.

We have seen that for pseudospheres any sequence P of oriented hyper-
planes in Sn,k can be put into bitriangular form by an isometry or, in algebraic
terms, by premultiplying the matrix of normals by a matrix from Q(n+1, k).
In Qn this result requires slight modification because its isometry group is
not Q(n + 1, 1) but the index two subgroup Q+(n + 1, 1).

The group Q(n+1, 1) is generated by Q+(n+1, 1) and the matrix −In+1.
Multiplying the normal vector to an oriented hyperplane P by −In+1 of course
gives the normal vector to the same hyperplane with its orientation reversed.
Thus in Qn any matrix of normals can be put into bitriangular form by
premultiplying it by an isometry and possibly the orientation reversing map.

19



     

If P is a sequence of oriented hyperplanes we denote by −P the same
sequence with the orientation of each hyperplane reversed. The next result
characterizes those sequences for which there is an isometry from P to −P.

Proposition 20 If P is a sequence of oriented hyperplanes in Qn then there
is an isometry from P to −P if and only if P is intersecting.

Proof:- By applying a sequence of isometries we may assume ±N(P)
is bitriangular and so, by interchanging P and −P if neccessary, that N(P)
itself is bitriangular. Now suppose that there is a matrix M ∈ Q+(n + 1, 1)
for which

MN(P) = N(−P) = −N(P) (21)

If P is not intersecting let s ≥ 1 be chosen so that P1, P2 . . . Ps is intersecting
and P1, P2 . . . Ps+1 is not. If the first s columns of N(P) constitute a matrix
of rank r, a simple induction shows that M must take the block form,

M =

(
A 0

0 -Ir

)

where
A ∈ Q+(n + 1 − r, 1) (22)

Equating the (s + 1)th columns in (??) now gives an equation of the form
Av = −v where v is of the form either (1, 0 . . . 0, i) or (a, 0 . . . 0, 0) (a �= 0),
but this is contrary to (??). (Recall that the top row of A must begin with a
positive entry and be spacelike). Thus (??) cannot hold when P is parallel
or disjoint.

On the other hand, when P is intersecting the top row of N(P) is zero
so the diagonal matrix with an entry of 1 in the top left position and -1
elsewhere on the diagonal is an isometry which changes the orientation of
each hyperplane in P.�

We conclude by stating Theorem ?? as it applies to hyperbolic space.

Theorem 21 A j × j real symmetric matrix is the Gram matrix of some
sequence P of j oriented hyperplanes in hyperbolic n-space if and only if it
has entries of 1 on the leading diagonal, and at most n positive eigenvalues,
and at most 1 negative eigenvalue. The sequence P is disjoint if and only if
its Gram matrix has exactly 1 negative eigenvalue.
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