
                 

Asymptotic Volume Formulae and Hyperbolic

Ball Packing

T.H.Marshall

Abstract

We prove that the volume of an n-dimensional regular spherical
simplex of edge length r < π/2 is asymptotically e−xxn/2(n + 1)1/2/n!,
as n → ∞, where x = sec r − 1. The same is true for hyperbolic
simplices if we set x = 1 − sechr and replace e−x by ex.

We obtain error bounds for this asymptotic, and apply it to find
an upper bound for the density of ball packings of balls of a given
radius in hyperbolic n-space, for all sufficiently large n.

1 Introduction

The volume of a polytope ∆ in an n-dimensional space of constant curvature
K 6= 0 satisfies Schläfli’s differential equation,

d Volume =
K

n − 1

∑

(Vol. codimension 2 face) d (angle) (1)

the sum being taken over all faces of codimension two and their corresponding
dihedral angles [V, Chapter 7, 2.2].

From this, for example, we may derive the well known area formulae for
spherical and hyperbolic triangles. However, in higher dimensions, volume
calculation remains a difficult problem, even with the Schläfli’s formula, be-
cause it requires the volumes of the codimension two faces as a function of
the dihedral angles of the original polytope.
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In this paper we derive an asymptotic formula for the volume, in either
hyperbolic or spherical space, of a regular simplex, that is a simplex whose
dihedral angles (or equivalently, whose edge lengths) are all equal. We let
Sn(r) and Hn(r) denote, respectively, the volume of a regular n-simplex with
edge length r in spherical space, and in hyperbolic space. We prove,

Theorem 1

Sn(r) =
(n + 1)1/2xn/2e−x

n!
(1 + sn(r)), (2)

where x = sec r − 1 and, for each r0 < π/2, there is a constant C for which
|sn(r)| < C/n, whenever r ≤ r0, and,

Hn(r) =
(n + 1)1/2xn/2ex

n!
(1 + hn(r)), (3)

where x = 1− sechr and, there is a constant C for which |hn(r)| < C/n, for
all r ∈ [0,∞].

The case r = ∞ (x = 1) of (??) corresponds to the regular ideal simplex.
The asymptotic (??), in this case, is given (without proof) by Milnor [Mi]
(see [HM] for a proof).

Of course (??) and (??) are closely related, and we obtain both as a
corollary of Theorem ?? below, which also provides a related asymptotic
expansion.

We also apply Theorem ?? to prove a result about ball packing in hy-
perbolic space. The local density of a packing is defined to be the ratio
Vol.(B)/Vol.(D), where B is a ball in the packing, and D is the set of all
points closer to B than to any other ball in the packing. Böröczky [B, Theo-
rems 1 and 4] has shown that the local density of a packing by balls of radius
r/2 is bounded above by the dn(r), defined as follows.

Let ∆ be a regular simplex in hyperbolic n-space, with edge length r, and
let P be the union of n + 1 mutually tangent balls of radius r/2 with centres
at each of the vertices of ∆. We define,

dn(r) = Vol.(P ∩ ∆)/Vol.(∆)

The limiting value dn(0) = limr→0dn(r) is obtained by doing the same
constuction in Euclidean space, in which case the dimensions of ∆ are im-
material.

2



        

The limiting version of Böröczky’s result is that the density Dn of an
n-dimensional ball packing in Euclidean space does not exceed dn(0). This
result was proved by Rogers [R]. Asymptotically better estimates have since
been found (see e.g. [KL]).

Böröczky and Florian [BF] have proved that d3(r) is a strictly increasing
function of r. We generalize this result to higher dimensions.

Theorem 2 For all sufficiently large n, dn(r) is a strictly increasing function
of r.

We conjecture that this result holds in all dimensions greater than one.
The methods given here allow this to be tested in principle, but the calcula-
tions seem to be very tedious and we are content to prove only the asymptotic
result here.

Since, for all r, dn(r) < 1, it follows that, for each n for which dn(r) is
increasing, dn(r) approaches a limit dn(∞) as r → ∞. The local density of a
packing by balls of any given radius is then bounded above by dn(∞). This
result has been used, when n = 3, to obtain improved lower bounds for the
volumes of hyperbolic 3-manifolds and orbifolds. Details may be found in
[M]

We use [x] to denote the greatest integer not exceeding x. Given two
functions f(n) and g(n), defined on the natural numbers, we use f(n) ∼ g(n)
to denote asymptotic equality. For taking half integer powers of negative
numbers we adopt the convention that (−1)1/2 = i, whence (−1)(2n+1)/2 is i
or −i, according as n is even or odd.

I would like to thank G. J. Martin for reading and correcting an earlier
draft of this paper.

2 Simplex Volumes

The edge length r and the dihedral angle θ of a regular n-dimensional spher-
ical simplex are related by the well known formula,

sec θ = sec r + (n − 1) (4)

The same equation, with sechr replacing secr, holds for the regular hy-
perbolic n-simplex. Thus, in the spherical case, setting z = sec r − 1, we

3



          

have

dz

dθ
=

d sec θ

dθ
= sec θ tan θ

= (n + z)
√

(n + z)2 − 1 (5)

The same equation holds in the hyperbolic case, with sechr replacing secr
and a sign change on the right hand side.

The faces of regular simplex all have the same edge length as the original

simplex. There are

(

n + 1
2

)

faces of codimension two, so that, for the regular

spherical simplex with dihedral angle θ, Schläfli’s equation may be written,

dSn(r)

dθ
=

1

n − 1

(

n + 1
2

)

Sn−2(r), (6)

Similarly we have, in the hyperbolic case,

dHn(r)

dθ
=

−1

n − 1

(

n + 1
2

)

Hn−2(r), (7)

Now, by (??) and (??),

dSn(r)

dz
=

dSn(r)

dθ

dθ

dz

=
n(n + 1)

2(n − 1)

Sn−2(r)

(n + z)((n + z)2 − 1)
1/2

=
(n + 1)1/2

2(n − 1)3/2

(

1+
z

n

)−1(

1+
z

n + 1

)
−1

2

(

1+
z

n − 1

)
−1

2

Sn−2(r) (8)

We obtain the corresponding equation for hyperbolic volumes by substi-
tuting Hn(r) and Hn−2(r) for Sn(r) and Sn−2(r), respectively, throughout
setting z = sechr− 1, and multiplying the right hand side by −1. Thus if we
define a family of functions Vn(z) by

V0(z) = 1, V1(z) = ArcSec(1 + z)

and, for n ≥ 2

V ′
n(z) =

(n + 1)1/2

2(n − 1)3/2

(

1 +
z

n

)−1(

1 +
z

n + 1

)−1/2(

1 +
z

n − 1

)−1/2

Vn−2(z),

(9)
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with Vn(0) = 0, then Sn(r) = Vn(sec r−1), and Hn(r) = (−1)n/2Vn(sechr−1).
Rather than using the functions Vn(z), it will be more convenient to work
with the related family Yn(z), given by

Yn(z) =
n!

(n/2)!(n + 1)1/2
Vn(z)

These satisfy the the simpler equation

Y ′
n(z) =

(

1 +
z

n

)−1(

1 +
z

n + 1

)−1/2(

1 +
z

n − 1

)−1/2

Yn−2(z) (10)

for n ≥ 2 with initial condition Yn(0) = 0. Together with the initial functions,

Y0(z) = 1, Y1(z) =
(

2

π

)1/2

ArcSec(1 + z) =
z1/2

(1/2)!
e−z(1 +

7

12
z + . . .),

(??) can be taken as defining the family Yn(z). Now we have

Sn(r) =
(n/2)!(n + 1)1/2

n!
Yn(sec r − 1) (11)

and

Hn(r) = (−1)−n/2 (n/2)!(n + 1)1/2

n!
Yn(sechr − 1). (12)

Clearly for n even, Yn can be defined on the complex plane with the interval
(−∞,−1) deleted, and is analytic in the interior of this region. For n odd,
Yn(z)/

√
z has the same properties.

Theorem 3

Yn(z) =
zn/2

(n/2)!
e−z[1 +

∑k−1

i=1
r
(n)
i zi + zkε

(n)
k (z)] (13)

where (setting r
(n)
0 = 1) we have,

r
(n)
i ∼ λin

−[(i+1)/2] as n → ∞, (14)

the λi being defined recursively by λ0 = 1, λ1 = 3/2, and,

λi = 3λi−2/i (15)
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for even i ≥ 2 and,

λi = [−4λi−3 + 3λi−2]/(i − 1) − 2λi−1 (16)

for odd i ≥ 3. For each compact region in C − (−∞,−1),

|ε(n)
k (z)| ≤ Kn−[(k+1)/2], (17)

where K depends only on the region chosen.

Clearly Theorem ?? follows from Theorem ?? (with k = 1), using (??) and
(??) Setting

hn(z) =
(

1 +
z

n

)−1(

1 +
z

n + 1

)−1/2(

1 +
z

n − 1

)−1/2

=
∑∞

i=0
t
(n)
i zi =

∑k−1

i=0
t
(n)
i zi + s

(n)
k (z) (18)

We have t
(n)
0 = 1,

t
(n)
1 = −(

2

n
+

1

n(n2 − 1)
), (19)

and
t
(n)
i ∼ (−1)i(i + 1)/ni as n → ∞. (20)

Also
s
(n)
k (z)/zk = O(n−k) (n → ∞), (21)

uniformly in compact subsets of C − (−∞,−1).

3 Proofs of Theorems

Proof of Theorem ??:- Clearly we may write Yn(z) in the form (??). We

must prove (??)-(??). Setting ρ
(n)
k (z) = e−zzk+n/2ε

(n)
k (z)/(n/2)!, we have,

Yn(z) =
zn/2

(n/2)!
e−z[1 +

∑k−1

i=1
r
(n)
i zi] + ρ

(n)
k (z) (22)

When n ≥ 2, substituting this form of Yn(z) into (??), dividing through by
e−zz(n−2)/2)/(n − 2)/2)!, and equating in turn the coefficients of zi (0 ≤ i ≤
k − 1), and the remainders gives,

r
(n)
i

(

1 +
2i

n

)

− 2

n
r
(n)
i−1 =

∑i

j=0
t
(n)
i−jr

(n−2)
j (0 ≤ i ≤ k − 1) (23)
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and,

− z(n−2)/2

(n − 2/2)!
e−z





2r
(n)
k−1

n
zk



 + ρ
(n)
k

′
(z)

=
z(n−2)/2

(n − 2/2)!
e−z

(

∑k−1

i=0
r
(n−2)
i s

(n)
k−i(z)zi

)

+ hn(z)ρ
(n−2)
k (z). (24)

whence, using (??),

ρ
(n)
k

′
(z) =

z(n−2)/2

(n − 2/2)!
e−z

[

∑k−2

i=0
r
(n−2)
i s

(n)
k−i(z)zi + r

(n−2)
k−1 s

(n)
2 (z)zk−1

+
2

n
(r

(n)
k−1 − r

(n−2)
k−1 )zk − r

(n−2)
k−1 zk/(n(n2 − 1))

]

+ hn(z)ρ
(n−2)
k (z) (25)

If we define,

R
(n)
i =

(

i + n/2
i

)

r
(n)
i ,

(??) gives

R
(n)
i − R

(n−2)
i =

(

i − 1 + n/2
i

)

[

∑i−1

j=0
t
(n)
i−jr

(n−2)
j +

2

n
r
(n)
i−1

]

=

(

i − 1 + n/2
i

)





∑i−2

j=0
t
(n)
i−jr

(n−2)
j − r

(n−2)
i−1

n(n2 − 1)
+

2

n
(r

(n)
i−1 − r

(n−2)
i−1 )



(26)

Also from (??), we have

r
(n)
i − r

(n−2)
i =

∑i−2

j=0
t
(n)
i−jr

(n−2)
j − r

(n−2)
i−1

n(n2 − 1)
+

2

n
(r

(n)
i−1 − r

(n−2)
i−1 )− 2i

n
r
(n)
i (27)

We prove (??) by induction on i, simultaneously with,

r
(n)
i − r

(n−2)
i ∼ −2

[

i + 1

2

]

λi(n
−[(i+3)/2]) as n → ∞, (28)

Since r
(0)
i = 1, (??) and (??) hold for i = 0. For i = 1, (??) gives

R
(n)
1 − R

(n−2)
1 =

n

2

(

−1

n(n2 − 1)

)

= −1

4

(

1

n − 1
− 1

n + 1

)
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Since R
(0)
1 = 1 and R

(1)
1 = 7/8, this gives, for even and odd n, respectively,

R
(n)
1 = 1 − 1

4
+

1

4(n + 1)
and R

(n)
1 =

7

8
− 1

8
+

1

4(n + 1)
,

so that, for all n,

R
(n)
1 =

3n + 4

4(n + 1)
, r

(n)
1 =

3n + 4

2(n + 1)(n + 2)
.

It is thus clear that (??) and (??) hold for i = 1. For the induction step we
suppose that i ≥ 2 and (??) and (??) hold for all i < m. We prove (??)
for m. Using (??) and the induction hypothesis, the last term in the sum in
the square brackets of (??) is asymptotically 3λm−2n

−[1+m/2]. If m is even
then, again using the induction hypothesis, all the other terms in the square
brackets diminish at least as rapidly as n−(2+m/2) whence,

R(n)
m − R(n−2)

m ∼
(

3λm−2

2mm!

)

nm/2−1

so that,

R(n)
m ∼

(

3λm−2

2mm!

) (

nm/2

2(m/2)

)

and finally,

r(n)
m ∼

(

3λm−2

m

)

n−m/2

so that λm = 3λm−2/m. When m is odd the induction step is similar. This
time the expression in the square brackets of (??) is dominated by the terms

t
(n)
3 r

(n−2)
m−3 + t

(n)
2 r

(n−2)
m−2 +

2

n
(r

(n)
m−1 − r

(n−2)
m−1 ),

which, using (??) and the induction hypothesis, is asymptotically,

(−4λm−3 + 3λm−2 − 2(m − 1)λm−1)n
−(m+3)/2

and the argument continues, as for the even case.
A similar argument, using (??), is used for the induction step in the proof

of (??). We omit details.
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Finally we prove (??). For each compact M ⊆ C − (−∞,−1), we show
that there are constants, Kn for which, for all z ∈ M ,

|ρ(n)
k (z)| ≤ Kn

e|z||z|k+n/2

n[(k+1)/2](n/2)!
, (29)

where the sequence {Kn} is bounded above. The bound (??) then follows
from (??). For n = 0, 1 it is easy to see that there exist constants K0 and
K1 respectively, for which (??) holds. For n ≥ 2, (??), along with (??), (??)
and (??), gives,

|ρ(n)
k

′
(z)| ≤ C1

e|z||z|k+(n−2)/2

n[(k+3)/2]((n − 2)/2)!
+ |hn(z)ρ

(n−2)
k (z)| (30)

Where C1 is a constant depending only on M . Using the induction hypoth-
esis,

|ρ(n)
k

′
(z)|

≤ e|z||z|k+(n−2)/2

n[(k+1)/2]((n − 2)/2)!

(

C1

n
+ |hn(z)|Kn−2

(

n

n − 2

)[k+1/2]
)

(31)

Using (??), there is a constant C2, depending only on M , for which,

|hn(z)| ≤
(

1 +
|z|

(k + n/2)

)

(

1 +
C2

n2

)

whence,

|ρ(n)
k

′
(z)| ≤ e|z||z|k+(n−2)/2[1 + |z|/(k + n/2)]

n[(k+1)/2]((n − 2)/2)!
×

(

C1

n
+

(

1 +
C2

n2

)

Kn−2

(

n

n − 2

)[k+1/2]
)

. (32)

Integrating then gives,

|ρ(n)
k (z)|

≤ e|z||z|k+n/2

n[(k+1)/2](n/2)!

(

n

2k + n

)

(

C1

n
+

(

1 +
C2

n2

)

Kn−2

(

n

n − 2

)[k+1/2]
)

= Kn
e|z||z|k+n/2

n[(k+1)/2](n/2)!
, (33)
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where

Kn =
(

n

2k + n

)

(

C1

n
+

(

1 +
C2

n2

)

Kn−2

(

n

n − 2

)[k+1/2]
)

Since, as n → ∞, n/(2k + n) and (n/(n − 2))[k+1/2] are asymptotically 1 −
2k/n and 1 + k/n, respectively, one can readily verify that sequence {Kn}
approaches a finite limit.2

Proof of Theorem ??:- Let ∆ be a regular hyperbolic simplex ∆ with
edge length r and dihedral angle θ. The link of ∆ is the (n− 1)-dimensional
spherical simplex obtained by intersecting it with a small sphere centred at
one of its vertices, and scaling to obtain a simplex in the unit sphere. The
link of ∆ thus has the same dihedral angle ∆, but a different edge length,
which we denote by r̃.

Now let B be a hyperbolic ball of radius r/2 centred at a vertex of ∆. In
terms of volume, the intersection B ∩ ∆ is the same proportion of B as the
link of ∆ is of the unit (n − 1)-sphere, Sn−1. Recalling that the volume of
a hyperbolic n-ball of radius x is Volume(Sn−1)

∫ x
0sinhn−1tdt, the volume of

B ∩ ∆ is given by

Sn−1(r̃)
∫ r/2

0
sinhn−1t dt,

whence, adding n + 1 disjoint regions with this volume, and dividing by the
volume of ∆, we obtain

dn(r) = (n + 1)
Sn−1(r̃)

Hn(r)

∫ r/2

0
sinhn−1t dt. (34)

We set,
x = sechr = secr̃ − 1,

and
y = 1 − sechr = 1 − x,

and also let

c = cosh(r/2) =
√

(x−1 + 1)/2,

s = sinh(r/2) =
√

(x−1 − 1)/2.
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The change of variable, u = sinh t, and integration by parts gives,

∫ r/2

0
sinhn−1t dt =

∫ s

0
un−1(1 + u2)

−1/2
du

=
1

n

[

sn

c
+

∫ s

0
un+1(1 + u2)

−3/2
du

]

≤ sn

nc

[

1 +
cs2

(n + 2)

]

(35)

Also, for n ≥ 6,

∫ r/2

0
sinhn−1t dt

=
∫ s

0
un−2(1 + u−2)

−1/2
du

=
1

n − 1

[

sn

c
−

∫ s

0
un−4(1 + u−2)

−3/2
du

]

=
1

n − 1

[

sn

c
− sn

(n − 3)c3
+

3

(n − 3)

∫ s

0
un−6(1 + u−2)

−5/2
du

]

≤ sn

(n − 1)c

[

1 − 1

(n − 3)c2
+

3

(n − 3)(n − 5)c4

]

(36)

Now differentiating (??) with respect to θ, using (??) and (??), we obtain,
when n ≥ 3,

− d

dθ
dn(r) =

−(n + 1)

Hn(r)2

[

dSn−1(r̃)

dθ

(

∫ r/2

0
sinhn−1t dt

)

Hn(r)+

Sn−1(r̃)
d

dθ

(

∫ r/2

0
sinhn−1t dt

)

Hn(r) − dHn(r)

dθ
Sn−1(r̃)

∫ r/2

0
sinhn−1t dt

]

=
(n + 1)Sn−1(r̃)

∫ r/2
0 sinhn−1tdt

2Hn(r)

×
[

−n(n − 1)Sn−3(r̃)

(n − 2)Sn−1(r̃)
− sinhn−1(r/2)

∫ r/2
0 sinhn−1t dt

dr

dθ
− n(n + 1)Hn−2(r)

(n − 1)Hn(r)

]

(37)

We denote the expression in square brackets in (??) by X, and its three
summands by X1, X2 and X3 respectively. Since r is a strictly decreasing

11



        

function of θ, we must prove that X, is positive for all r > 0. Using the
hyperbolic version of (??), (??) and (??) we may rewrite X as,

− 2n1/2(n − 1)(n − 2)1/2Yn−3(x)

Yn−1(x)
+

sn−1(x + n − 1)((x + n − 1)2 − 1)1/2

x(1 − x2)1/2∫ r/2
0 sinhn−1t dt

+ 2(n + 1)1/2n(n − 1)1/2Yn−2(−y)

Yn(−y)
(38)

Showing that X is positive requires some care, as a lot of cancellation
occurs in the sum. For each n, the terms X1 and X2 both go to infinity as
x → 0, as do X2 and X3 when y → 0, but the sum is bounded in (0,1).
We will also show that the sum grows like n2 as n → ∞, even though the
individual terms grow like n3.

We set
ηn(z) = [(2zYn−2(z))/(nYn(z))] − 1,

By Theorem ?? (with k = 3), ηn(t)/t diminishes like n−2, uniformly for
t ∈ [−1, 1]. We have,

X1 = −n1/2(n − 1)2(n − 2)1/2

x
(1 + ηn−1(x)), (39)

and, using (??), for n ≥ 6,

X2 ≥ x−1y−1n1/2(n − 1)2(n − 2)1/2
(

1 +
x

n − 1

) (

1 +
x

n

)1/2(

1 +
x

n − 2

)1/2

×
[

1 − 1

(n − 3)c2
+

3

(n − 3)(n − 5)c4

]−1

(40)

whence,

X1 + X2 ≥ 1

xy
n1/2(n − 1)2(n − 2)1/2(1 − y + x(2 + 2/(1 + x))/n + ε1n

−2x)

=
1

y
n1/2(n − 1)2(n − 2)1/2(1 + (2 + 2/(1 + x))/n + ε1n

−2)

=
1

y
n3(1 + (−1 + 2/(1 + x))/n + ε2n

−2) (41)

where, for each fixed x0 < 1, terms of the form εi are bounded uniformly for
x ∈ [−1, 1], and for all n ≥ 6.
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Since,

X3 = −1

y
n3(1 − 1/n2)

1/2
(1 + ηn(−y)) (42)

for each x0 < 1, there is an n0 for which X is positive for all x ≤ x0, and
n ≥ n0.

We now consider the behaviour of X, when x is bounded below, say
x ≥ x1 > 0. We have, using (??)

X2 =
sn−1(n − y)((n − y)2 − 1)

1/2

x(1 − x2)1/2∫ r/2
0 sinhn−1t dt

=
n(n2 − 1)

1/2
sn−1

x(1 − x2)1/2∫ r/2
0 sinhn−1tdt

(

1 − y

n

) (

1 − y

n + 1

)1/2(

1 − y

n − 1

)1/2

≥ n2(n2 − 1)
1/2

xy

[

1 +
cs2

(n + 2)

]−1[

1 − 2(2n2 − 1)y

n(n2 − 1)

]1/2

=
n2(n2 − 1)

1/2

xy

[

1 +
cy

2(n + 2)x

]−1[

1 − 2(2n2 − 1)y

n(n2 − 1)

]1/2

=
n2(n2 − 1)

1/2

xy

[

1 − cy

2nx
− 2y

n
+

ε3y

n2

]

=
n2(n2 − 1)

1/2

y

[

1 +
y

x
− cy

2nx2
− 2y

nx
+

ε3y

n2x

]

, (43)

where here, and in the sequel, terms of the form εi are bounded uniformly in
n and x ≥ x1.

Hence,

X2 + X3 ≥ 1

y
n2(n2 − 1)

1/2
[

y

x
− cy

2nx2
− 2y

nx
+

ε4y

n2x

]

=
1

x
n2(n2 − 1)

1/2
[

1 − c

2nx
− 2

n
+

ε4

n2

]

=
1

x
n3

[

1 − c

2nx
− 2

n
+

ε5

n2

]

(44)

Since, from (??)

X1 = −1

x
n3(1 − 3/n + ε8/n

2), (45)
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it follows that, when x1 is chosen so that c/x1 < 2, X is positive for all
x ≥ x1, and all sufficiently large n. We have thus shown that X is positive,
so that dn(r) is strictly increasing, for all r, when n is sufficiently large. 2
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[BF] K. Böröczky and A. Florian, Über die dichteste Kugelpackung im Hy-
perbolischen Raum Acta Math. Acad. Sci. Hungar. 15 (1964), 237-245

[HM] U. Haagerup and H. J. Munkholm, Simplices of Maximal Volume in
Hyperbolic n-Space, Acta Math. 147 (1981), 1-11

[KL] G. A. Kabatiansky and V. I. Levenshtein, Bounds for packings on a
Sphere and in Space Problemy Peedachi Informatsii 1 (1978), 3-25 =Prob-
lems of Information Transmission 1 (1978),1-17

[M] G. J. Martin, The Volume of Regular Tetrahedra and Sphere Packing
in Hyperbolic 3-Space Math. Chronicle 20 (1991), 127-147

[Mi] J. W. Milnor, How to Compute Volume in Hyperbolic Space in Col-
lected Papers, Vol 1: Geometry, Publish or Perish, 1994

[R] C. A. Rogers The Packing of Equal Spheres Proc. Lond. Math. Soc.
8 (1958), 609-620

[V] E. B. Vinberg (Ed.) Geometry II Encyclopaedia of Mathematical Sci-
ences Vol. 29, Springer-Verlag, 1993

14


