Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
The Effective Order of Singly-Implicit Methods for Stiff Differential Equations

David Jen Lung Chen

A thesis submitted for the degree of
Doctor of Philosophy at The University of Auckland

Department of Mathematics
June, 1998
ABSTRACT

Singly-implicit Runge-Kutta methods (SIRK) are designed for stiff differential equations. The existing code STRIDE based on these methods has been shown to be efficient for stiff problems, especially for high dimensional problems. However, SIRK methods with order greater than 2 possess the undesirable property that some of their abscissae are outside the integration interval. In order to improve the numerical behaviour of SIRK methods, we need to overcome this drawback. While retaining the original advantages of SIRK methods as much as possible, it would be advantageous to have more free parameters in choosing the coefficients for these methods.

Recently, two generalizations of SIRK methods were introduced to overcome this difficulty. One is the so-called "DESI" (Diagonally Extended Singly-Implicit Runge-Kutta) method in which some additional diagonally implicit stages are added to the corresponding classical SIRK method. It turns out that there is more freedom in choosing the abscissae because of these extra stages. The other generalization is the so-called "ESIRK" (Effective order Singly-Implicit Runge-Kutta) method which adopts the idea of "effective order" so that the desirable free parameters come from "perturbed" initial values. The first approach has been verified to be a successful generalization. The existing variable order code DESI was shown to be more efficient than STRIDE, and competes well with the BDF (Backward Differentiation Formulae) code LSODE for many stiff problems (Butcher, Cash, Diamantakis [24] 1996).

For the second approach, the numerical behaviour of ESIRK methods with variable stepsize, is closely related to the choice of the abscissae. In this thesis, it is shown that the classical SIRK methods are not the best choice with respect to the local truncation error. We analyze the numerical behaviour of the ESIRK methods both theoretically and experimentally. The choices of the abscissae for these methods are investigated. It is found that except when $s = 2$ (s is the number of stages in the method), the numerical results obtained with equally spaced abscissae in $[0, 1]$ are better than the corresponding SIRK methods for
$s = 3, \ldots, 6, 8$. Several alternative choices are also given. Some experimental variable-stepsize ESIRK codes are designed and are compared with the famous IRK codes \textit{SDIRK}4, \textit{RADAU}5 and the BDF code \textit{LSODE}. The numerical results show that ESIRK methods are successful generalizations of the SIRK methods and are good candidates as solvers for stiff problems.

In attempting to increase the efficiency of ESIRK methods, the idea of adding some additional diagonal stages is proposed. The generalizations of the ESIRK methods, called "EDESIR" (Effective order Diagonally Extended Singly-Implicit Runge-Kutta) methods, are shown to be promising in solving stiff problems and are also successful generalizations of DESI and ESIRK methods.
ACKNOWLEDGEMENTS

This study has been completed in the Mathematics Department at The University of Auckland. First, I am very grateful to my supervisor Prof. John C. Butcher, who has spent a lot of time guiding and encouraging me. I wish to express my deep gratitude to him for his kindness, patience and valuable guidance during this study. In fact, I have had many advantages from this supervision as he is a pioneer in this field. One of these benefits is that I have had many chances to discuss my work with experts in this field visiting Auckland. I would like to express my appreciation to these visitors. In particular, I wish to thank Prof. Kevin Burrage for his useful comments on this thesis, and Dr. Michalis Diamantakis for sharing his knowledge and discussing my work with me.

Secondly, I wish to express my deep appreciation to my advisor Dr. Robert Chan, for his encouragement, patience and valuable advice during this study. I would also like to thank my advisor Dr. Philip Sharp for his useful advice and comments. The regular workshops organized by John and Robert have given me many valuable opportunities to present parts of my work. I also wish to extend my thanks to all the participants in these workshops, especially Dr. Allison Heard and my fellow doctoral students, Tina Chan and Anjana Singh. My special thanks also to Dorothy Brown and Nicolette Goodwin, who have kindly read through the manuscript of this thesis.

The Mathematics Department of The University of Auckland is a wonderful place to work in. I would like to thank all the staff in this department for the tremendous research and study environment they have created. I would also like to express my thanks to my badminton partners, who have created wonderful opportunities for relaxation during the past three years.

In addition, I wish to express my gratitude to Ling-Tung Technical Institute in Taiwan for their financial support in paying the tuition fees during this study. The financial aid for me to attend the conferences “Numdiff 8” in Germany and “SciCADE97” in Italy came from the New Zealand Mathematical Society, the Graduate Research Committee and the Mathematics Department of The
University of Auckland, and the Marsden Funds of Prof. John Butcher. I would like to express my appreciation for the opportunity to attend these conferences.

I am very grateful to my parents Chen Tsang Chou and Weng Hsueh, who have not only given me financial assistance, but have also spent a lot of time looking after my children. I wish to express my deep appreciation to them for their encouragement and consideration. I would like to thank my brother Lance Chen and my sister Sandy Chen for their financial support and their consideration.

Finally, I would like to express my deep gratitude to my wife, Tina Ming-hua Chan, who is always considerate and patient. I am grateful to her and my children for their understanding and love.
Contents

1 Introduction 1
 1.1 Review of singly-implicit Runge-Kutta methods 1
 1.2 The aims and the framework of this thesis 9

2 Numerical methods for stiff differential equations 11
 2.1 Stiff problems 12
 2.2 Stability requirements 17
 2.3 Implicit Runge–Kutta methods 23

3 Singly–Implicit Methods 37
 3.1 Butcher’s transformation 38
 3.2 SIRK methods and their stability 44
 3.3 The transformation matrix 48
 3.4 DESI methods 52

4 The effective order of SIRK methods 63
 4.1 Effective order 64
 4.2 Effective order conditions for SIRK methods 76
CONTENTS

4.3 Doubly Companion Matrices ... 87
4.4 ESIRK methods ... 99
4.5 Variable steps-size for ESIRK methods 113
4.6 Study of a systematic steps-size change pattern 118
 4.6.1 Local truncation error ... 122
 4.6.2 Stability considerations ... 142
4.7 Error estimation for changing steps-size and order 150
4.8 Implementation and some numerical results 166

5 The design of an EDESI integrator 191
 5.1 Construction of EDESI methods 192
 5.2 Variable steps-size for EDESI methods 206
 5.3 Implementation ... 211
 5.4 Numerical results ... 214

A Mathematica and Matlab programs 245
 A.1 Transformation matrix $T = WV$ for ESIRK methods 245
 A.2 Stability function $R(z, r)$.. 249
 A.3 Local truncation error ... 253
 A.3.1 Error ratio $\epsilon(r, c)$ 253
 A.3.2 Normalized error constant $\widehat{C}(r, c)$ 255

Bibliography ... 258
List of Figures

1.1 Runge-Kutta methods for stiff problems 8

2.1 The components of the Robertson problem (2.6) 15

2.2 The first component of the Van der Pol problem (2.7) with \(\theta = 10^6 \) 17

2.3 The second component of (2.7) with \(\theta = 10^6 \) 17

4.1 Integration procedure for effective order methods 66

4.2 Effective order method \(\phi \) and the starting method \(\psi \) 67

4.3 Order-2 SIRK: \(-, \left[\frac{7-4\sqrt{2}}{3}, 1 \right]: +, [0, 1]: \cdots, \) order-3 SIRK: \(-,-, \left[0, \frac{1}{5} \right], 1, \times, \left[0, \frac{1}{2} \right], 1, \circ \) 109

4.4 Order-2 SIRK: \(-, \left[\frac{7-4\sqrt{2}}{3}, 1 \right]: +, [0, 1]: \cdots, \) order-3 SIRK: \(-,-, \left[0, \frac{1}{5} \right], 1, \times, \left[0, \frac{1}{2} \right], 1, \circ \) 109

4.5 Variable stepsize scheme for ESIRK methods 113

4.6 Stepsize changing pattern for studying stability function of variable stepsize ESIRK methods 120

4.7 \(s = 2 \), Graph of \(\bar{e}(c_1) = \frac{\partial}{\partial r^2} e(r,c_1) \) \(|_{r=1} \) 124

4.8 \(s = 2 \), error ratio \(e(r,c_1) \) of variable stepsize against constant stepsize 125

4.9 \(s = 3 \), \(c_1 = 0 \), y-axis : \(\bar{e}(c_2) = \frac{\partial}{\partial r^2} e(r,c_2) \) \(|_{r=1} \), x-axis : \(c_2 \) 126

4.10 \(s = 3 \), error ratio \(e(r,c) \) of variable stepsize/constant stepsize ... 126
4.11 $s = 3$, $c_1 = -1$, y-axis: $\varepsilon(c_2) = \frac{\partial^2}{\partial r^2} \varepsilon(r, c_2)|_{r=1}$, x-axis: c_2 127

4.12 $s = 3$, error ratio $\varepsilon(r, c)$ of variable stepsize/constant stepsize 127

4.13 The error ratio $\varepsilon(r, c)$ for ESIRK methods $(0, \frac{1}{2}, 1), (-1, 0, 1)$. The curve $\varepsilon(r, c)$ for $(-1, 0, 1)$ is concave down when $r \in (0.844405, 1.18427)$ and is only smaller than the the curve of $(0, \frac{1}{2}, 1)$, when $r \in (0.65, 1.53846)$. 128

4.14 Order-2 SIRK, ESIRK methods $(0, 1), (\frac{1}{2}, 1)$ 129

4.15 Order-2 SIRK, ESIRK methods $(0, 1), (\frac{1}{2}, 1)$ 131

4.16 Order-3 SIRK, ESIRK methods $(0, \frac{1}{2}, 1), (0, \frac{1}{3}, 1)$ 131

4.17 Second derivative of the normalized error constant $\hat{C}(r, c_1)|_{r=1}$ for $s = 2$ 133

4.18 Normalized error constant $\hat{C}(r, c)$ for $s = 2$ SIRK, ESIRK methods 134

4.19 Normalized error constant $\hat{C}(r, c)$ of SIRK, ESIRK $E_2 = (\frac{7-4\sqrt{2}}{3}, 1)$, $E_2 = (\frac{1}{4}, 1)$ for $s = 2$ 134

4.20 ContourPlot of $\frac{\partial^2}{\partial r^2} \hat{C}(r, c_1, c_2)|_{r=1}$, $\hat{C}(r)$ is the normalized error constant for $s = 3$ ESIRK, y-axis: c_2, x-axis: c_1 135

4.21 $s = 3$, Normalized error constants $\hat{C}(r)$ of SIRK, ESIRK E_1: $(0, \frac{1}{2}, 1), E_2: (0, \frac{1}{2}, 1), E_3: (0, -\frac{1}{2}, 1), E_5: (-\frac{3}{2}, -1, 1), E_4: (-1, -\frac{9}{10}, 1)$ 136

4.22 $s = 4$, Normalized error constants $\hat{C}(r)$ of SIRK, ESIRK E_1: $(0, \frac{1}{3}, \frac{2}{3}, 1), E_2: (-1, -\frac{1}{2}, 0, 1), E_3: (-1, -\frac{1}{2}, 0, 1), E_4: (-2, -1, 0, 1)$ 139

4.23 Normalized error constants $\hat{C}(r)$ of order-5 SIRK and ESIRK methods $E_1: (0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1)$, and $E_2: (-1, -\frac{1}{2}, 0, \frac{1}{2}, 1)$, and $E_3: (-2, -1, -\frac{1}{2}, 0, 1)$, and $E_4: (-3, -2, -1, 0, 1)$ 140

4.24 Normalized error constants $\hat{C}(r)$ of order-6 SIRK and ESIRK methods $E_1: (0, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, 1)$, and $E_2: (-1, -\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 1)$, and $E_3: (-2, -\frac{3}{2}, -1, -\frac{3}{2}, 0, 1)$, and $E_4: (-4, -3, -2, -1, 0, 1)$ 140
4.25 Normalized error constants $\hat{C}(r)$ of order-8 SIRK, ESIRK methods

$E_1 : (0, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, 1)$, $E_2 : (-1, -\frac{3}{4}, -\frac{2}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1)$, and $E_3 :

(-2, -\frac{5}{3}, -\frac{4}{3}, -\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}, 1)$, $E_4 : (-3, -\frac{5}{2}, -2, -\frac{3}{2}, -1, -\frac{1}{2}, 0, 1)$

4.26 Error estimation of order-2 ESIRK for the Kaps problem 163

4.27 Work/Precision diagrams for order-4 ESIRK methods, A-stable:

$-\sim$, $A(\alpha = 1.56)$-stable: $-\sim$.. 179

4.28 Work/Precision diagrams for order-6 ESIRK methods, A-stable:

$-\sim$, $A(\alpha = 1.49)$-stable: $-\sim$.. 180

4.29 Work/Precision diagrams for order 4, 5, 6 ESIRK methods, order

4: $+$, order 5: \circ, order 6: \times ... 181

4.30 Work/precision diagram of ESIRK4 and SDIRK4 182

4.31 Work/precision diagram of ESIRK5, LSODE and RADAU5 183

4.32 Work/precision diagram of ESIRK5, LSODE and RADAU5 184

4.33 Work/precision diagram of ESIRK5, LSODE and RADAU5 185

5.1 Error vs. stepsize for order-2 singly-implicit methods with constant

stepsize ... 204

5.2 Flops vs. error for order-2 singly-implicit methods with constant

stepsize ... 204

5.3 Work/Precision diagram (flops/maximum error) for EDESI meth-

ods solving the Kaps problem, $s = p + 1$: $-\sim$, $s = p + 2$: $-\sim$.. 210

5.4 Work/precision diagrams of order-2 singly-implicit methods, SIRK:

$+\sim$, DESI: \ast, ESIRK: \circ, EDESI: \times 220

5.5 Work/precision diagrams of order-3 singly-implicit methods, SIRK:

$+\sim$, DESI: \ast, ESIRK: \circ, EDESI: \times 222

5.6 Work/precision diagrams of order-4 singly-implicit methods, SIRK:

$+\sim$, DESI: \ast, ESIRK: \circ, EDESI: \times 223
List of Tables

2.1 Summary of the stability, stiff accuracy and orders of some A-stable one-step methods ... 27

3.1 Total approximate number of operations for solving \(N \) dimensional systems ... 42

3.2 Total flops for solving the Kaps problem (3.9) ... 44

3.3 \(\lambda \) for L-stability with \(s \)-stage SIRK methods ... 47

3.4 Error constants of SIRK and DESI ... 58

3.5 Numerical results for Kaps (3.9) using order-2 SIRK and DESI .. 60

4.1 \(F(t)(y), \gamma(t), \alpha(t) \) for \(p(t) \leq 4 \) .. 73

4.2 Number of order conditions for effective order \(\geq s \) 76

4.3 Absolute value of error constant for ESIRK methods 107

4.4 The global error for the Kaps problem using \(s = 2, 3 \) SIRK and ESIRK methods with constant stepsize 110

4.5 The average iteration number for the Kaps problem using \(s = 2 \) SIRK and ESIRK methods, \(tol \): tolerance for stopping the iteration.111

4.6 The average iteration number for the Kaps problem using \(s = 3 \) SIRK and ESIRK methods, \(tol \): tolerance for stopping the iteration.112
4.7 Order 2, 3 SIRK, ESIRK methods with stepsize changing pattern
h, rh, h, ... 130

4.8 s = 2, 3, Normalized error ratio (ESIRK/SIRK) for solving the
Kaps problem .. 137

4.9 Normalized error ratio (ESIRK/SIRK) using order-3 methods for
DETEST A_1, D_1 .. 139

4.10 r-intervals for A-stability for order 2, 3 ESIRK methods 145

4.11 r-intervals for A-stability for order 4, 5 ESIRK methods 146

4.12 r-intervals for A-stability for order 6, 8 ESIRK methods 147

4.13 Proper abscissae for ESIRK methods 149

4.14 Numerical results for stiff DETEST $A_1, A_2, A_3, D_1, D_2, D_3$ with
order-2 SIRK, ESIRK methods 151

4.15 Numerical results for A-group of stiff DETEST with order-3 SIRK,
ESIRK methods ... 152

4.16 Numerical results for B-group of stiff DETEST with order-3 SIRK,
ESIRK methods ... 153

4.17 Results for C-group of stiff DETEST with order-3 SIRK, ESIRK
methods .. 154

4.18 Numerical results for D-group of stiff DETEST with order-3 SIRK,
ESIRK methods ... 155

4.19 Numerical results for E-group of stiff DETEST with order-3 SIRK,
ESIRK methods ... 156

4.20 Results when using previous solution value (A), predictor (4.73)
(B) and predictor (4.74) (C) with order-2 ESIRK method 172

4.21 Results when using previous solution value (A), predictor (4.73)
(B) and predictor (4.74) (C) with order-3 ESIRK method 173
4.22 $\frac{1}{\lambda}$ of $A(\alpha)$-stable ESIRK methods with $\alpha \geq 1.45$, the value of α is given in parentheses ... 177
4.23 Numerical results for Van der Pol (2.7) by testing order-4 L-stable, $A(\alpha)$-stable ESIRKs and order-4 L-stable SDIRK ... 186
4.24 Numerical results for Van der Pol (2.7) problem by testing LSODE, RADAU5 and order-5 L-stable ESIRK .. 187
4.25 Numerical results for Robertson problem (2.6) by testing LSODE, RADAU5 and order-5 L-stable ESIRK .. 188
4.26 Numerical results for Oregonator (4.77) by testing LSODE, RADAU5 and order-5 L-stable ESIRK .. 189

5.1 Numerical results for the Kaps problem using order 2 SIRK, DESI, ESIRK and EDESI ($s = p + 1, s = p + 2$) with constant stepsize . 205
5.2 Results when using predictor (4.74) (A) and previous solution value (B) with order 2, 3 EDESI ... 215
5.3 Efficiency measurement of some singly-implicit methods 217
5.4 Summary of SIRK and DESI ... 224
5.5 Summary of ESIRK and EDESI ... 225
5.6 Numerical results for Curtis (5.23) by testing order-2 singly-implicit methods ... 226
5.7 Numerical results for Prothero-Robinson (2.5) by testing order-2 singly-implicit methods ... 227
5.8 Numerical results for Kaps (3.9) by testing order-2 singly-implicit methods ... 228
5.9 Numerical results for Oregonator (4.77) by testing order-2 singly-implicit methods ... 229
5.10 Numerical results for Robertson (2.6) by testing order-2 singly-implicit methods ... 230
5.11 Numerical results for Van der Pol (2.7) by testing order-2 singly-implicit methods ... 231
5.12 Numerical results for Prothero-Robinson by testing order-3 methods .. 232
5.13 Numerical results for Curtis problem by testing order-3 methods .. 233
5.14 Numerical results for Kaps by testing order-3 methods ... 234
5.15 Numerical results for Oregonator by testing order-3 methods .. 235
5.16 Numerical results for Robertson by testing order-3 methods .. 236
5.17 Numerical results for Van der Pol by testing order-3 methods ... 237
5.18 Numerical results for Prothero-Robinson by testing order-4 methods .. 238
5.19 Numerical results for Curtis problem by testing order-4 methods .. 239
5.20 Numerical results for Kaps by testing order-4 methods ... 240
5.21 Numerical results for Oregonator by testing order-4 methods ... 241
5.22 Numerical results for Robertson by testing order-4 methods ... 242
5.23 Numerical results for Van der Pol by testing order-4 methods ... 243