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ABSTRACT

Singly-implicit Runge-Kutta methods (SIRK) are designed for stiff differential

equations. The existing code STRIDE based on these methods has been shown to
be efficient for stiff problems, especially for high dimensional problems. However,

SIRK methods with order greater than 2 possess the undesirable property that
some of their abscissae are outside the integration interval. In order to improve

the numerical behaviour of SIRK methods, we need to overcome this drawback.

While retaining the original advantages of SIRK methods as much as possible, it
would be advantageous to have more free parameters in choosing the coefficients

for these methods.

Recently, two generalizations of SIRK methods were introduced to overcome this

difficulty. One is the so-called "DESI" (Diagonally Extended Singly-Implicit

Runge-Kutta) method in which some additional diagonally implicit stages are

added to the corresponding classical SIRK method. It turns out that there is

more freedom in choosing the abscissae because of these extra stages. The other

generalization is the so-called "ESIRK" (Effective order Singly-Implicit Runge-

Kutta) method which adopts the idea of "effective order" so that the desirable

free parameters come from "perturbed" initial values. The first approach has

been verified to be a successful generalization. The existing variable order code

DESI was shown to be more efficient than STLIDE, and competes well with the

BDF (Backward Differentiation Formulae) code LSODE for many stiffproblems

(Butcher, Cash, Diamantakis [2a] 1996).

For the second approach, the numerical behaviour of ESIRK methods with vari-

able stepsize, is closely related to the choice of the abscissae. In this thesis, it
is shown that the classical SIRK methods are not the best choice with respect

to the local truncation error. We analyze the numerical behaviour of the ESIRK

methods both theoretically and experimentally. The choices of the abscissae for

these methods are investigated. It is found that except when s : 2 (s is the

number of stages in the method), the numerical results obtained with equally

spaced abscissae in [0,1] are better than the corresponding SIRK methods for
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s = 3r. . .,6,8' Several alternative choieeo are also Eiven. Surre experinent,al
mriable-stepsize ESIRK codes a,re desigued and are compared n'it,h thc famoqs
IRK codes SD'IfuK4, hADAVS andthe BDF code.ISODE Tbe nurnerical resulrs
show that ESIRK methods are succssful generalizations of tbe SIRK methods
and are good candidates a.s solvers for stiff problerns.

In atternpting to increase the e,fficiency of ESffiK methods, the idea of adding
some additional diagonal qtages is propos€d. The generalizat-i,ons of the ESIRK
methods, called .TEDESIf (Effective order Diagonally Fortended Singly-I.mplicit
RungeKutta) methods, are shown to be promising in solving stiff problems and
are also guccessful generdizationo of DESI and ESIRI( methode.
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