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Abstract
In this paper we consider the spectral problem for the adjacency matrix of a graph com-

posed of a compact part with a few semi-infinite periodic leads attached. Based on the
spectral properties of the adjacency matrix we develop Lax-Phillips scattering theory for the
corresponding discrete wave equation.

1 Introduction

The spectral method is widely used for the study of transport phenomena on a compact
graph, see [1]. The spectrum of the adjacency matrix of a compact graph is discrete and
consists of a finite number of eigenvalues. The simplest non-compact star-graphs are obtained
by attaching semi-infinite periodic leads to a compact graph. The corresponding adjacency
matrices have an absolutely-continuous component in the spectrum. One can study the
spectral and transport properties of non-compact graphs using scattering theory. One of
the most interesting questions concerns the connection between the characteristics of the
discrete spectrum of the compact part of a graph and the resonances and the resonance
states of the scattering problem. The resonances and the shapes of the resonance states
control the transmission of signals from one lead to another. In this paper we derive the
dispersion equation for resonances in terms of the corresponding Dirichlet-to-Neumann map
of the compact sub-graph and the quasi-momentum on the leads. We also consider the
discrete wave equation on the graph by reducing it to a discrete version of the Lax-Phillips
scattering problem.

The paper has the following structure. In the second section we introduce an analog of
the Dirichlet-to-Neumann map of the compact part of the graph and construct the scattered
waves and the scattering matrix of the non-compact graph with semi-infinite periodic leads
attached. In the third section we consider the discrete wave-equation on the non-compact
graph. We introduce the energy norm and reveal the geometry of the energy-normed space
of Cauchy data. In particular we describe the incoming and outgoing subspaces and observe
that they are orthogonal. In the fourth section we briefly discuss the connection between
the scattering problem on the star-graph and Lax-Phillips theory. In particular we establish
a connection between the discrete spectrum of the adjacency matrix of the compact sub-
graph and resonances and establish completeness of the resonance states. We postpone to



forthcoming publications analysis of the scattering problem with leads having non-trivial
periods. This analysis requires spectral theory of functions on multiply-connected domains.

2 The discrete Schrödinger equation on the non-

compact graph

Consider a non-compact graph Ω consisting of a compact part Ω
in

and a few simplest semi-

infinite periodic leads ω =
{
ω

l
}N

l=1

attached to some vertices ar ∈ Ω
in

, r = 1, 2, . . . N < ∞.

The simplest lead ω
l
is a periodic lattice

{
b

l

0
, b

l

1
, b

l

2
, b

l

3
, . . .

}
, where the node b

l

s
has two near-

est neighbors b
l

s−1
, b

l

s−1
. Following [1] we consider the adjacency matrix L of the graph Ω in

the the space of square summable sequences U = {u
in

, ~u}. Here u
in

= (u1 , u2 , u3 . . . u
M

)—
the complex coordinates of the inner component u

in
of U, defined at the vertices as , s =

1, 2, 3 . . . M, M ≥ N . Furthermore, ~u =
(
u

1
, u

2
, u

3
, . . . . . .u

N
)
—the set of l2-vectors

u
l

=
(
u

l

1
, u

l

1
, u

l

3
, . . .

)
on the leads ω

l
, l = 1, 2, . . . N . The first component of U in the

decomposition L2(Ω) = l2(Ωin
) ⊕ l2(ω) is finite-dimensional, dim l2(Ωin

) = M , the sec-
ond component is of course infinite-dimensional. If the lead ω

k
is attached to the node

a
k
∈ Ω

in
we impose on vectors U from the domain of the operator L the boundary condi-

tions u
in

(a
k
) = u

k

0
, thus assuming that b

k

0
≡ a

k
, k = 1, 2, . . . N . We introduce also the contact

space Econt = E = C
N

as a space of vectors constituted by the values of the components of
u

in
at the contact points as , s = 1, 2, . . . N .
The operator L can be interpreted as a self-adjoint extension, see [2], of the properly

restricted, orthogonal sum L
in
⊕∑N

k=1
l
k
. Here l

k
:= l is the non-perturbed adjacency matrix

on the lead ω
k
.

l u =




0 1 0 0 0 0 0 0 . . .
1 0 1 0 0 0 0 0 . . .
0 1 0 1 0 0 0 0 . . .
0 0 1 0 1 0 0 0 . . .
0 0 0 1 0 1 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .







u0

u1

u2

u3

u4

. . .




.

Note that the restricted operator is not densely defined. Nevertheless, the corresponding
self-adjoint extension can be constructed after [2].

We revisit first the spectral properties of the non-perturbed operator l. It is self-adjoint
in l2 and has a simple, absolutely continuous spectrum. The spectrum consists of a single
spectral band [−2, 2] with eigenfunctions parametrized by the quasi-momentum exponential
Θ = e

ip
with real quasi-momentum p on the interval 0 ≤ p < 2π. The eigenfunctions Ψ

λ
are

obtained as linear combinations Ψ
λ

=
{
1 + S, Θ + SΘ̄, Θ

2
+ SΘ̄

2
. . .

}
of Bloch-solutions χ±

χ+ =
(
1, Θ, Θ

2

, Θ
3

, . . .
)
, χ− =

(
1, Θ̄, Θ̄

2

, Θ̄
3

, . . .
)

of the homogeneous equation l χ± = λχ± , λ = Θ + Θ̄. Substitution of the ansatz Ψ
λ

into

the homogeneous equation lΨ
λ
− λΨ

λ
= 0 gives S = −Θ̄

2
. It is convenient to use the quasi-

momentum exponential as a spectral parameter instead of λ. Then we may write Ψ
λ

= Ψ
Θ
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where λ = Θ + Θ̄ is a point on the spectrum and |Θ| = 1. The spectral decomposition of l
is given by integration in the quasi-momentum exponential Θ in the positive direction over
the unit circle Σ

1

2πi

∫

Σ

〈u, Ψ
θ
〉Ψ

θ

dΘ

Θ
= u. (1)

The formula (1) can be easily verified on the dense set of finite elements u and extended
via closure to l2(Σ). The system of all eigenfunctions Ψ

Θ
, 0 ≤ p < 2π is over-complete.

The corresponding system on the interval 0 ≤ p < π is complete and orthogonal. Hence the
spectral integral can be reduced to the integral over the upper semi-circle θ = e

ip
, 0 ≤ p < π,

which corresponds to the upper shore of the spectral band [−2, 2] (since λ = Θ + Θ̄)

1

π

∫ π

0

〈u, Ψ
Θ
〉Ψ

Θ
dp = u, (2)

or to the integral over the spectral parameter λ

1

2π

∫ 2

−2

〈u, Ψ
Θ
〉Ψ

Θ

dλ

sin p
= u, (3)

with λ = 2 cos p, sin p =
√

1− λ2/4. More about spectral properties of discrete and con-
tinuous periodic operators can be found in [3], see also references therein. The operator

Lout = ⊕∑N

k=1
l
k

is defined in the space l2 (E) of vectors ~u = (u
1
, u

2
, u

3
, . . .u

N
) with coor-

dinates
{
u

l

s

}
= ~us ∈ E = C

N
, s = 0, 1, 2, . . .. Hereafter we call the space E a contact space.

The expansion over the system of eigenvectors ~Ψ =
{
Ψ

k
}N

k=1

is obtained as an orthogonal
sum

1

2πi

∫

Σ

〈U, ~Ψ
Θ
〉~Ψ

Θ

dΘ

Θ
= U (4)

where the summation is over the standard basis νs ∈ E, νs = δst , 1 ≤ s, t ≤ N . We have
also spectral expansions for Lout similar to (2, 3):

1

π

∫ π

0

∑

ν

〈U, ~Ψ
Θ
(ν)〉~Ψ

Θ
(ν)dp = U (5)

and
1

2π

∫ 2

−2

∑

ν

〈U, ~Ψ
Θ
(ν)〉~Ψ

Θ
(ν)

dλ

sin p
= U. (6)

The resolvent and the scattered waves of the perturbed operator L can be constructed by
matching a linear combination of Bloch solutions of the homogeneous equation on the leads
with an appropriate solution of the homogeneous equation on Ω

in
. If λ does not belong to the

spectrum of L
in

, then the inner component Ψ
in

of the scattered wave on Ω
in

is constructed
as a linear combination of resolvent kernels G

in
(t, s, λ) := Gs(t), t ∈ Ω

in
with poles at the

contact points as where the wires Ωs are attached

Ψ
in

=

N∑

s=1

αsGs , (7)

3



see a similar construction of the scattering ansatz for quantum graphs in [4]. The Greens
function Gs(t) satisfies the non-homogeneous equation on the compact part Ω

in
of the graph

L
in

Gs(λ)− λG
in

(λ) =
∑

t∈Us

G
in

(s, t, λ)− λG
in

(s, t, λ) = δs,t .

Here the summation is over the ‘star’ Us of nearest neighbors to the node as . The Kronecker
symbol is defined in the obvious way: δs,t = 0 on all nodes t 6= s in Γ

in
and it is equal to 1 at

the node as . On the complement of the (discrete) spectrum σ
in

d
of L

in
the matrix G

in
(s, t, λ)

coincides with inverse matrix (L
in
− λI)

−1

. In this paper we construct the scattered wave
Ψs of the perturbed operator L initiated by an incoming wave on the semi-infinite wire ω

s

attached to the vertex as . The components ψ
t

s
of the scattered wave Ψs on the leads ω

t
, t 6= s

are proportional to the Bloch-solution

ψ
t

s
= S

t

s

(
1, Θ̄, Θ̄

2

, Θ̄
3

, . . . ,
)
, (8)

such that the complex conjugate ψ̄ admits an analytic continuation on the spectral sheet Θ,
|Θ| < 1, of the spectral parameter as square-summable sequences ψ̄

t

s
= S̄

t

s

(
1, Θ, Θ

2
, . . .

)
.

The component of the scattered wave on ω
s

is constructed of two Bloch solutions

ψ
s

s
=

(
1, Θ, Θ

2

, . . .
)

+ S
s

s

(
1, Θ̄, Θ̄

2

, . . .
)
. (9)

We introduce the matrix {G(t, s)} := G consisting of the values of the Greens functions of

the inner operator L
in

. It coincides with the restriction of the inverse matrix (L
in
− λI)

−1

onto the contact space E

G = P
E

(L
in
− λI)

−1
∣∣∣∣
E

.

Assume that all the scattered waves initiated by incoming waves from all leads are con-
structed. We combine the coefficients

{
S

t

s

}
:= S to form the scattering matrix.

Lemma 2.1

S = −I + ΘG

I + Θ̄G
(10)

Proof Consider the matching conditions for the components of the scattered wave Ψs initi-
ated from the lead ω

s
:

N∑

r=1

αrG(t, r) = S
t

s
, t 6= s ;

N∑

r=1

αrG(s, r) = 1 + S
s

s
, t = s.

The equation LΨs − λΨs = 0 can be written as

αt + S
t

s
Θ̄ = 0, t 6= s; αs + Θ + S

s

s
Θ̄ = 0, t = s.

Eliminating α using the second pair of equations and the Kronecker symbol we can re-write
the linear system for S as

I + S + ΘG + Θ̄SG = 0

4



and S :=
{
S

t

s

}N

s,t=1

. Then we have for the matrix of coefficients S
t

s
of the scattered waves

Ψs , s = 1, 2, . . . N :

S = −I + ΘG

I + Θ̄G

End of the proof
Remark The matrix G plays the role of the inverse Dirichlet-to-Neumann map, [5,

6]—the multi-dimensional version of the Weyl-Titchmarsh function which attracts much
attention from the specialists, see for instance the recent publications [7, 8, 9, 10]. The
matrix S is the scattering matrix of the adjacency matrix L of the non-compact graph Ω
with respect to the non-perturbed operator Lout = ⊕ ∑N

k=1
l
k
. The formula (10) is the analog

of the formula expressing the scattering matrix in terms of the Dirichlet-to-Neumann map,
see [6]. For the one-dimensional analog of the formula see also [11, 12, 13].

The scattering matrix is defined on the continuous spectrum [−2, 2] of the operator L
which coincides with the continuous spectrum of the non-perturbed operator Lout . This in-
terval corresponds to the unit circle |Θ| = 1 in terms of the quasi-momentum exponential
Θ = e

ip
, 0 ≤ p ≤ 2π. Using the connection between the quasi-momentum and the spectral

parameter we conclude that the scattering matrix admits an analytic continuation by sym-
metry S

+
(Θ̄

−1
) = S

−1
(Θ) from the unit circle onto the complex plane of Θ, with real zeros

at the points Θs in the unit disc which correspond to the eigenvalues λs = Θs + (Θs)
−1

of
L. Due to symmetry the scattering matrix has also complex poles situated symmetrically to
the zeros with respect to the unit circle.

The spectral expansion of the operator L includes generally a finite sum over the eigen-
values and an integral over the continuous spectrum. We omit the standard derivation of
the spectral expansion which follows from the compression of the Riesz integral around the
spectrum of L to the real interval [−2, 2] followed by the use of the Hilbert identity for the
jump of the resolvent across the continuous spectrum. Here is the final formula:

U =
∑

ν

Ψm〈U, Ψm〉+
1

2π

∫ 2

−2

N∑

s=1

Ψ
s

Θ
〈U, Ψ

s

Θ
〉 dλ

sin p
.

The scattered waves Ψ
s

Θ
, constructed above by matching linear combination of Bloch waves

to linear combinations of Greens functions of L
in

with poles at the contact points, can also be
obtained from the asymptotic of the resolvent kernel G(t, s) of the operator L when t →∞
along the lead attached to the corresponding contact point as .

G(τ, t) ≈ Ψ
s

τ
G

s

(t), when t →∞, t ∈ ω
s

.

Here G
s
(s) = G

s
(τ0 , s) is the Green function of the component of Lout on the lead ω

s
, τ0 ∈ ω

s
.

We consider two simple examples:
Example 1 Consider a non-compact graph consisting of three leads attached to the

nodes a1 , a2 , a3 , of an equilateral triangle Ω
in

. The adjacency matrix L
in

of the triangle is

L
in

=




0 1 1
1 0 1
1 1 0


 .

5



The eigenvalues are −1, multiplicity 2, and 2, multiplicity 1. The corresponding normalized
eigenvectors are, respectively

φ1 =
1√
6




1
−2
1


 ,

1√
2




1
0
−1


 , and

1√
3




1
1
1


 .

Since Ω
in

coincides with the set of contact points, we see that the equation I + Θ̄G splits
into two equations in complex plane Θ, Θ̄ = Θ

−1
, which correspond to the eigenvalues −1, 2

Θ +
1

−1−Θ−Θ−1 = 0, Θ +
1

2−Θ−Θ−1 = 0

The first equation gives Θ = −1. The singularity Θ = −1 corresponds to the eigenvalue
λ1 = −2. The second equation defines the resonance Θ = 2. The zeros at the origin Θ = 0
in the numerator and in the denominator of the formula (10) for the scattering matrix cancel
each other and thus give no contribution to the resulting spectrum and resonances.

Example 2 Consider a ring Ω
in

with N equidistant nodes
{
e

2πl/M
}l=M−1

l=0

. The eigenval-

ues of the adjacency matrix L
in

are 2 cos 2πm/N , and the corresponding eigenvectors are

Φm =
{
1, e

2iπm/N
, e

2iπ2m/N
, e

2iπ3m/N
, . . .

}
, m = 1, 2, 3 . . . N − 1. Assume that only one lead is

attached to the ring at a0 = 1. Then there is only one contact point, and the corresponding
scattering matrix is

S(p) = −1 + Θ̄
∑N−1

m=0

1
N

[2 cos 2πm/N −Θ− Θ̄]
−1

1 + Θ
∑N−1

m=0

1
N

[2 cos 2πm/N −Θ− Θ̄]−1
=

−
N −∑N−1

m=0

[
Θ− e

2πim/N
]−1 [

Θ− e
−2πim/N

]−1

N −∑N−1

m=0

[
Θ̄− e2πim/N

]−1 [
Θ̄− e−2πim/N

]−1

Zeros of the numerator of the scattering matrix can be found numerically.

3 The discrete wave equation and Lax-Phillips scatter-

ing

Once the spectral analysis of the adjacency matrix is completed one can solve various dy-
namical problems on the graph Ω. Denote by ~u(t) a function ( a sequence) depending on
the discrete time variable t = 0,±1, ±2 . . . and taking complex values at the nodes on the
compact subgraph Ω

in
and on the leads ω

s
, s = 1, 2, . . . N

~u(t) =
{
u

in
(t), u

1

(t), u
2

(t), u
3

(t), . . .u
N

(t)
}

.

Consider the discrete wave equation on the graph Ω

u(t + 1) + u(t− 1) = Lu(t),

6



with Cauchy data U(0) = (U0(0), U1 (0)) fixed at the initial moment of time. Generally we
consider the Cauchy data at the moment t:

U0(t) = u(t), U1(t) = u(t + 1)− u(t− 1).

One can see that the compactly supported functions ~u(t±s) on the leads represent incoming
and outgoing waves. The energy dot-product associated with the adjacency matrix Lout on
the leads ω

[U, V]Eout
=

1

2
〈(4− L

2

out
)U0 , V0〉L2 (ω)

+
1

2
〈U1 , V1〉L2 (ω)

vanishes if U and V are Cauchy data of incoming and outgoing waves respectively and is
positive if U = V. Thus the restriction of the evolution defined by the discrete wave equation
onto the outer space (supported by the wires) has the typical properties of the Lax-Phillips
unitary group, see [14]. In particular it has an orthogonal pair of incoming and outgoing
subspaces constituted of Cauchy data of incoming and outgoing waves obtained via closure in
the energy-normed space of the subspaces of all compactly supported incoming and outgoing
data.

This structure is inherited also by the wave evolution on the whole graph. To see this let
us introduce the dot-product associated with the adjacency matrix L on Ω:

[U, V]E =
1

2
〈(4− L

2

)U0 , V0〉L2 (Ω)
+

1

2
〈U1 , , V1〉L2 (Ω)

. (11)

Generally the energy dot-product defined by the formula (11) may be indefinite. However,
for numerous interesting non-compact graphs it is positive. Hereafter we proceed under the
assumption that [U, U]E > 0, if U 6= 0. Consider the energy-normed space E of Cauchy data
on Ω. We represent it as an orthogonal sum of incoming and outgoing subspaces D

in
, Dout

of Cauchy data supported on the leads and the co-invariant subspace K
K := E ª [D

in
⊕Dout ] .

Theorem 3.1 The discrete wave equation on the space of energy-normed Cauchy data is
equivalent to the unitary group in E defined by the appropriate Dirac operator:

U :=
1

2

(
L 1

L
2 − 4 L

)
, U + U−1

=

(
L 0
0 L

)
.

The eigenfunctions of the absolutely-continuous spectrum of the generator U are represented
as

Φ
Θ

=

(
1

Θ−Θ
−1 Ψ

Θ

Ψ
Θ

)
. (12)

They correspond to the spectral points Θ = e
ip
, 0 ≤ p ≤ 2π : UΦ

Θ
= ΘΦ

Θ
. The spectral

representation of the transformation U is given by the formula:

U
J−→ [U, Φ

Θ
]E := (JU) (Θ),

(JU) (Θ)
J−1

−→ 1

2π i

∫

Σ1

Φ
Θ

(JU) (Θ)
dΘ

Θ
= U.

7



Proof The identity

U + U−1

=

(
L 0
0 L

)

can be obtained by direct calculation. This means that all spectral objects for the operator
U , including the resolvent and the spectral expansion, can be constructed from the corre-
sponding details of the operator L—see the similar calculation for the standard Lax-Phillips
generator in [15]. In particular, the eigenfunctions of the absolutely-continuous spectrum of
the generator U can be obtained from the columns (12) of the scattered waves Ψ

Θ
of L in the

course of the solution of the wave equation by the Fourier method. It is sufficient to verify
that Φ

Θ
satisfies the homogeneous equation UΦ

Θ
= ΘΦ

Θ
in the weak sense. We use the

fact that LΨ
Θ

= (Θ+Θ
−1

)Ψ
Θ
, in the weak sense, on a dense domain in L2(Ω). Then, using

the facts (L
2 − 4)Ψ

Θ
= (Θ − Θ

−1
)
2
Ψ

Θ
and LΨ

Θ
= (Θ + Θ

−1
)Ψ

Θ
, we obtain the desired

statement. To prove the equivalence of the unitary group to the original wave equation we
substitute ~u(t + 1) + ~u(t− 1) = L~u(t) into U . We obtain:

2~u(t + 1) = ~u(t + 1) + ~u(t− 1) + ~u(t + 1)− ~u(t− 1),

and

2 (~u(t + 2)− ~u(t)) = L (~u(t + 1) + ~u(t− 1))− 4~u(t) + L~u(t + 1)− L~u(t− 1).

Using ~u(t + 1) + ~u(t− 1) = L~u(t) again we obtain the announced statement. The unitarity
of the transformation U follows from the spectral representation.

End of the proof.

4 Connection to Lax-Phillips scattering

If the spectrum of the operator U is purely continuous then the corresponding unitary group
U l

has all the typical properties of the Lax-Phillips unitary group. In particular, it possesses
an orthogonal pair of incoming and outgoing subspaces of the Cauchy data, supporte3d by
the leads, see our remark in the beginning of previous section. The Lax-Phillips scattering
matrix is obtained from the stationary scattering matrix S, see (10), via complex conjugation
on the spectrum

S
LPh

(Θ) = −1 + Θ̄G

1 + ΘG

and can be continued onto the whole complex plane of the quasi-momentum exponential Θ
by the formula

S
LPh

(Θ) = −1 + Θ
−1

G

1 + ΘG
= −Θ

Θ + G

1 + θG
, with G = G(λ) = G(Θ + Θ

−1

). (13)

The Lax-Phillips scattering matrix is analytic in the unit disc because the pair of incoming
and outgoing subspaces supported by the leads is orthogonal, see [14]. Using the spectral
representation for the Greens function of L

in
in terms of eigenvectors ϕs and eigenvalues Λs ,

G(λ) =

M∑

s=1

P
E
ϕs〉 〈PE

ϕs

λs − λ
, (14)

8



we obtain an equation for the resonances—vector zeros Θr , νr : S
LPh

(Θr) νr = 0 of the
Lax-Philips scattering matrix in the unit disc |Θ| < 1—in the form

Θν +

M∑

s=1

P
E
ϕs〉 〈PE

ϕs , ν〉
λs − λ

= 0, with λ = Θ + Θ
−1

.

From the solution of this equation we can observe the dependence of the resonances on
the eigenvalues of L

in
and the on the projection P

E
Ψs of the eigenvectors onto the contact

subspace E. This way the shape of eigenvectors defines the the transmission from one lead
to another.

The matrix-function S
LPh

(Θ) contains all the spectral information on the dynamical
properties of the evolution defined by the wave-equation. In particular, the incoming and
outgoing subspaces of the corresponding unitary evolution group U t

can be shown, in the
spectral representation J , to be H

2

− , S
LPh

H
2

+
respectively while the co-invariant subspace

is H
2

+
ª S

LPh
H

2

+
:= K. The eigenvalues of the generator T of the Lax-Phillips semigroup

[14]:

PKU
t
∣∣∣∣
K

:= T t

, t = 0, 1, 2 . . .

coincide with the zeros Θs of the Lax-Phillips scattering matrix and the eigenvectors—the
resonance states—in the spectral representation J are simply S

LPh
νr(Θr − Θ)

−1
. The bi-

orthogonal system of eigenvectors of T consists of reproducing kernels
(
1− Θ̄r Θ

)−1

, see [16].
Completeness of the system of resonance states is equivalent to the absence of the singular
factor in S

LPh
(Θ) in the unit disc.

Corollary The scattering matrix S
LPh

of the wave-evolution with positive adjacency
matrix is a Blaschke product. This is simply because the above formula (13) represents it as
a ratio of two polynomials of Θ. Hence the system of eigenvectors of the discrete spectrum
of the semigroup T t

, t = 0, 1, 2 . . . is complete.
One can also study, based on [17], the joint completeness of eigenvectors of both semi-

groups T t
,

[
T +

]t

t = 0, 1, 2 . . ..
In the case when the leads have a richer period, the spectrum of the adjacency matrix

of the non-compact graph may have a more sophisticated structure. In particular, it may
have several spectral bands. Then the corresponding spectral theory of functions should be
developed not on the complex plane, but on the relevant Riemann surface. Nevertheless, a
modified version of Lax-Phillips theory can be applied to the problem [18] using a properly
re-defined Dirac operator U . This approach is based on recent developments in the spectral
theory of functions on Riemann surfaces, see [19] and references therein. We postpone
discussion of these interesting questions to a forthcoming publication.
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