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Abstract
We suggest to calculate the amplitudes of the plasma waves in a slot-diod in a presence of few governing
electrodes, via reduction of the linearized hydrodynamic equation to the second order differential equation
with an operator weight, defined by the Dirichlet-to-Neumann map. In case of the straight slot this equation
admitts further reduction to an integral equation with a trace-class integral operator. The eigenvalues of it
are calculated via finite-dimensional approximation of the corresponding determinant.
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1 Introduction: geometry and the basic equations

The hydrodynamical analogy was suggested for plazma waves in [1, 2] and was intensely used for description
of the plazma-current in a two-dimensional slot of comparative simple configuration, see for instance recent
papers [3, 4]. In [4] the hydrodynamic electron transport model is used for description of plazma oscillations in
gated 2D channel in high electron mobility transistor (HMET). Analysis of the plasma oscillations spectrum
based on hydro-dynamic analogy is applicable also to other HMET-based teraherz devices, see [5, 6].

Mathematically the problem is reduced to calculation of the self-consistent electric potential ϕ(x, z, t) =
ϕ0(x, y, z) +

∫
ϕω (x, y, z)e

iωt

dω from the system of three basic equations (1,2,3). The three-dimensional
Poisson equation

43ϕ =
4πe

κ
Σ δ(z) XΓ (1)

connects the potential with the non-zero concentration Σ(x, y, z, t) = Σ(x, y, 0, t) = Σ0(x, y) +∫
Σω (x, y)e

−iωt

dω localized on a two-dimensional slot Γ situated on a smooth surface S between the electrodes
Γ± ∈ S. The function XΓ is the indicator of the slot: XΓ(x, y) = 1, if (x, y) ∈ Γ, otherwise XΓ(x, y) = 0.
The variables Σ, ϕ fulfil the continuity equation

∂Σ
∂t

+ div2Σu = 0, (x, y) ∈ Γ, (2)

and the Euler equation on the slot:

∂u

∂t
+ 〈u,∇2〉u =

e

m
∇2ϕ− νu, (x, y) ∈ Γ. (3)

These equations describe plazma waves on the slot. They connect the electron’s concentration with the
electron’s velocity u in tangent direction u(x, y) ∈ TΓ (x, y) on the slot. We assume that several governing
electrodes γs , s = 1, 2, . . . are present. The total number of them may be any, even countable infinite, but
we assume that distances between the electrodes Γ± , γs and the distances from the surface S are strictly
positive. The complement R

3\{
Γ− ∪ Γ ∪ Γ+ ∪ γ1 ∪ γ2 . . .

}
: = Ω plays the role of the basic domain where

the electric potential is defined. We assume that the geometry and the physical parameters of the “device”
constituted by the details Γ± , Γ, γ1 , γ2 , . . . are chosen in such a way that the plazma current is observed only

1



on the two-dimensional slot Γ ⊂ S between the basic electrodes Γ± . In simplest case considered previously
in [3, 4] the role of the surface S is played by the horizontal plane z = 0, the slot is a straight channel
−L < x < L, −∞ < y < ∞ and the running waves are spreading in the lateral direction y with amplitudes
- standing waves - defined by the eigenfunctions f

l
(x) on the cross-section of the slot. In general case the

structure of waves may be more sophisticated, but we assume that (x, y) are the coordinates on the slot Γ ⊂ S
and z is the normal coordinate. In that case each small open neighborhood of the slot Ωε ⊃ Γ is cut by the
surface S into two parts: the upper part Ω

+

ε
= {Ωε ∩ (z > 0)} and the lower part Ω

−
ε

= {Ωε ∩ (z < 0)}. For
the functions defined on Ω

+

ε
we can consider the upper and lower limits as lim

z→0±
f(x, y, z) = f±(x, y, 0).

Assuming that the speed u only slightely deviates from the stationary speed u0(x, y) of the equilibrium
process,

u(x, y, t) = u0(x, y) +
∫

u
ω
(x, y)e

−iωt

dω,

∫ |u
ω
(x, y)|dω << |u0(x, y)|, and similar conditions are fulfilled for the potential and the concentration on

the slot, one can derive from the above basic equations (1,2,3) stationary equations for equilibrium values of
the parameters Σ0 , ϕ0 , u0 :

div2Σ0u0 = 0, 〈u0 ,∇2〉u0 =
e

m
∇2ϕ0 − νu0 , 43ϕ0 =

4πe

κ
Σ0δ(z)XΓ . (4)

We assume that this non-linear system of partial differential equations, with appropriate boundary conditions
on the electrodes Γ± , γs

ϕ0(x, y, 0)
∣∣∣∣
(x,y)∈Γ±

= V± , ϕ0(x, y, 0)
∣∣∣∣
(x,y)∈γs

= Vs , s = 1, 2, . . .

is already solved, and consider the linear system for the amplitudes Σω , uω , ϕω of the first order correcting
terms. Neglecting terms of higher order we may connect directly the amplitude Σω (x, y) of the electron’s
concentration, with the amplitude uω , ϕω of the velocity and one of the potential:

−iωΣω (x) + div2 [Σ0(x, y)uω + u0(x, y)Σω ] = 0,

43ϕω =
4πe

κ
Σω δ(z) XΓ

(ν − iω)uω =
e

m
∇2ϕω . (5)

The first of these equations can be interpreted based on physical meaning of the concentration: one should
take into account that the concentation of electrons on the slot is originated by the supply of electrons from
Γ− and is spread on the slot due to the drift defined by the stationary speed u0 . Hence the corresponding
first order differential equation should be supplied with boundary data for Σω on the boundary of the
electrode Γ− , where the stationary speed u0 looks into the outgoing direction, toward Γ+ . In that case the
concentration is obtained inside the slot via integration on characteristics of the first equation. Note that
this algorithm of calculation of the concentration is in agreement with the algorithm of the construction
of solution of partial differential equations of second order with a small coefficient in front of the higher
derivatives. This algorithm is suggested also in the mathematical paper [7]. In our case it can be obtained,
if the complete Navier-Stokes equation with the small viscosity ε → 0 is considered, instead of the Euler
equation. In our case makes sense to set the boundary conditions for the amplitude as Σω

∣∣
Γ−

= 0. Then the

system (5) has a unique solution for given ν, ω if the corresponding homogeneous system with zero boundary
conditions has only trivial solution uω = Σω = ϕ0 = 0. Thus the question on solvability of the system is
reduced to the corresponding spectral problem for the system (5) with zero boundary conditions on the
electrodes. The first differential equation equation can be presented as

div


u0Σωe

−iω

∫ (x,y)

Γ−

u0
|u0 |

2 ds

+ Σ0

e

m(ν − iω)
∇2ϕω


 = 0,
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where the integration
∫ (x,y)

Γ−

u0

|u0 |
2 ds in the exponent goes along the streamline of the stationary speed. The

solution of the first equation is defined up to an auxilliary solenoidal field (−fy , fx) := F on the slot, which
should be defined from physical requirements. Then we obtain:

Σ
ω

=
[ 〈u0 , F 〉
|u0 |2

− Σ0

e〈u0 , ∇2ϕω
〉

m(ν − iω)|u0 |2
]

e

iω

∫ (x,y)

Γ−

u0
|u0 |

2 ds

.

On the other hand, in the left side of the middle equation stays the Laplacian. When integrating on the
short “vertical” interval (−δ, δ) and taking the limit δ → 0 we obtain in the left side the jump of the normal
defivative of the potential on the slot. This way the system of differential equatioons (5) is reduced to the
equation containing the solenoidal field F :

[
∂ϕω

∂n

]
=

4πe

κ
Σ

ω
=

[ 〈u0 , F 〉
|u0 |2

− Σ0

e〈u0 , ∇2ϕω〉
m(ν − iω)|u0 |2

]
e

iω

∫ (x,y)

Γ−

u0
|u0 |

2 ds

:= Lϕ
ω
, (x, y) ∈ Γ. (6)

Note that in the left side of the equation stays the construction defined by the values Λ± of the Dirichlet-
to-Neumann map (DN-map) of the Laplacian , see [15, 16], on the upper and lower shores of the slot, for
instance Λ− : ϕ

∣∣
Γ
→ lim

z=→0−
∂ϕ
∂z

∣∣
Γ
. Then, assuming that tha potential is continuous on the slot, we obtain

an equation for the potential ϕω :
[
Λ+ − Λ−

]
ϕω +

4πe

κ
Lϕω = 0. (7)

. In principle, if the Dirichlet-to-Neumann map is known, this equation may help to find critical values of the
parameters for which the original boundary problem does not have a solution, or has a non-unique solution.
Unfortunately the equation (7) is not a standard equation of mathematical Physics, since it contains the
solenoidal field F , still to be defined. Nevertheless, one can choose the basic parameters and the geometry
of the electrodes such that the above equation takes more convenient form. Now we discuss some reduced
forms of the basic equation (7).

1.Assume first that the concentration Σω is slowly varying along the streamlines of the stationary velocity
u0 , |〈u0∇Σω 〉| << Σω . In that case the first differential equation for the concentration is reduced to the
algebraic equation

−iωΣω (x) + div2 Σ0(x, y)uω + Σωdiv2u0(x, y) =≈ 0,

which implies

Σω (x) ≈ 1
iω − div2u0(x, y)

div2Σ0(x, y)uω =

e

m(iω − div2u0(x, y))(ν − iω)
Σ0(x, y)∇2ϕω . (8)

This already implies a differential equation for the poteltial ϕω .

2. We can also add similar assumption of the slow variation of the stationary speed: u0 : |divu0 | << |ω|.
Then

Σω (x) =
e

iω m (ν − iω)
Σ0(x, y)∇2ϕω .

This implies a differential equation for the potential with the spectral parameter 4π e
2

iω m κ (ν−iω) := 2
q

[
Λ+ − Λ−

]
ϕω =

2
q
div2Σ0(x, y)∇2ϕω . (9)

Subject to the above assumptions, the derived equation is equivalent to the initial problem on the plazma
current for slowly changing electron’s velocity not only in case of the flat slot Γ and electrodes Γ± , but also
in general case when the slot and electrodes have arbitrary geometry. Nevertheless hereafter we explore the
most important case of the flat geometry when S is a horizontal plane z = 0, but consider the case when the
governing electrons are present.
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In paper [21] the problem on plazma current on the flat two-dimensionalslot is considered in form of the
equation for the potential:

43ϕω
=

(
4πe

2
Σ0

mκω(ω − iν)

)(
∂ϕ

2

ω

∂x2 +
∂ϕ

2

ω

∂y2

)
δz =

2
q

Σ0 42 ϕω δ(z), (10)

with Σ0 = const, but the approach to solving the differs from our suggestion above: instead of using the
DN- map in the left side of the equation, the authors of [21] use the inverse operator in the right side:

ϕω (x, y) =
2
q

∫

Γ

G(x, y; ξ, η)

(
∂ϕ

2

ω

∂ξ2 +
∂ϕ

2

ω

∂η2

)
dξ dη, (x, y) ∈ Γ,

assuming that G(x, y; ξ, η) is the free Green function. In fact this suggestion gives a right answer in case of
flat geometry with no governing electrodes because the restriction of the free Green function onto the slot
coincides with the restriction onto the slot of the Green function of the Neumann problem. On the other
hand, the map defined by the Neumann Green function on the boundary of the domain is the inverse of the
Dirichlet-to-Neumann map for the domain, see for instance [16]. In [21], due to the symmetry we have on
the slot, Λ+ − Λ− = 2Λ+ . Then

2
[
Λ+ − Λ−

]−1

∗ = Λ
−1

+
∗ =

∫

Γ

G
N

(x, y|ξ, η) ∗ dξ dη =
∫

Γ

G(x, y|ξ, η) ∗ dξ dη

where G is the free Green-function. Though in that case the substitution of the Neumann Green function by
the free Green function is possible, in general case, when the governing electrodes are present and/or Γ, Γ+

are non-flat, either DN-map or the corresponding inverse operator must be used.
Note that the Green-function G

D

(x, y, z; ξ, η, ζ) of the homogeneous Dirichlet problem for Laplacian in
the 3-d space with electrodes/ additional electrodes present, is the main tool for solution of the problem on
plazma current, because all important maps used in course of derivation/solution of the equations can be
obtained from it. In particular, the kernel of the Poisson map P is obtained via differentiation of the Green
function of Dirichlet problem in outward direction on the boundary, in our case:

P(x, y, z; ξ, η, 0) = − ∂G
D

∂n
ξ,η,0

(x, y, z; ξ, η, 0)

where (x, y, z) ∈ Ω, (ξ, η, 0) ∈ Γ. The generalized kernel of the DN-map can be presented as a formal integral
operator on Γ with the generalized kernel:

Λ(x, y, 0; ξ, η, 0) = − ∂
2
G

D

0

∂nx,y,0 ∂n
ξ,η,0

(x, y, 0; ξ, η, 0),

where the outward normals on Γ with respect to the upper or lower neighborhoods Ω
+

ε
of the slot Γ are

used respectively for Λ± . On the other hand, construction of the Green function in a domain with few
stanard exclusions like Γ± , γ1 , γ2 , . . . may be obtained via simple iteration process, see [10]. In particular
this way the Dirichlet Green function may be constructed for the “device” assembled of a straight horizontal
slot between basic horizontal electrodes and few governing electrodes in form of straight cylindrical rods
suspended parallel to the horizontal plane as governing electrodes, see next section.

In second section of this paper we review the spectral properties of the simplest problem with an infinite
straight slot and no governing electrodes. In the third section we consider the modified problem with several
governing electrodes. In the forth section, assuming that the equilibrium concentration has bumps at some
cross-sections of the slot caused by the governing electrodes γs , we reveal resonance phenomena in scattering
of lateral waves depending on geometry and potentials on γs . This observation permits, in principle, to
manipulate the transmission coefficients the lateral waves in the slot. In Appendix A basic features of the
Dirichlet-to-Neumann map are reviewd. In Appendix B few cross-section eigenfunctions in the slot are
calculated numerically. In Appendix C a convenient formula for Poisson map for the device with the flat
geometry is derived.
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In this paper we collected few mathematical facts and tools which may facilate mathematical modelling
of the manipulated plazma channel. If these tools are prepared, we are able to calculate the admittance Yω

based on the corresponding formula for the current, see, for instance [3, 4] concerning the case of simplest
geometry with no additional electrodes and constant electron concentation Σ0 :

Jω =
e
2
Σ0

m(ν − iω)

∫ l

−l

g(x)
∂ϕω

∂x

∣∣∣∣
z=0

dx− iωcV
ω
, (11)

with proper form-factor, for instance g(x) = 1

π
√

l2−x2
, [17] and the dimensionless geometric capacitance κ

Y
ω

= iω

[
κJ0(qω

l)
4π sin q

ω l

]
.

we will dicuss the corresponding formulae in case of non-trivial geometry in forthcoming publications.

2 Basic spectral problem for simplest geometry

Consider the device constructed of flat basic electrodes Γ± and a slot Γ : −l < y < l, −∞ < x < ∞ situated
on the horizontal plane z = 0. The corresponding spectral problem is reduced to the differential equation
(10). To re-write it in form (9), we need the DN-map Λ+ of the upper half-space R+ : z > 0. The DN-map
of the upper half-space z > 0 is a generalized integral operator with the distribution kernel:

Λ+ (x, y; ξ, η) = − ∂

∂z
P+ =

1
4π2

∫ ∞

∞

∫ ∞

∞
e

ip(x−ξ)
e

iq(y−η) √
p2 + q2dp dq. (12)

The Laplacian on the slot with zero boundary conditions at the electrodes Γ± has continuous spectrum

with step-wise growing multiplicity 2m on the spectral bands
[

π
2
m

2

4l2

]
, m = 1, 2, 3, . . . and eigenfunctions

ψm,p(y, x) = 1√
2π l

e
i p x

sin π m (y+l)
2l , m = 1, 2, . . . which correspond to the values of the spectral parameter

λ = π
2
m

2

4l2
+ p

2
,

−4Γ =

∞∑

m=1

∫ ∞

−∞
dp

[
π

2
m

2

4l2
+ p

2

]
ψm p(y, x)〉 〈ψm p(y, x).

We rewrite the equation (10) in form (9) as an infinite linear system Kφ = q
−1

φ with the generalized matrix
kernel:

∫ ∞

−∞
dp

∫ l

−l

dy

∫ ∞

−∞
dq

∫ l

−l

dη
sin mπ(y+l)

2l√
π2m2

4l2
+ p2

e
i (px+qy)

√
p2 + q2

4π2 l
e
−i(pξ+qη) sin nπ(η+l)

2l√
π2n2

4l2
+ p2

:= Km,n(x, ξ),

or, separating the Fourier transform Fu(x) → ũ(p)

Km,n(x, ξ) =

F+
∫ ∞

−∞
dq

∫ l

−l

dy

∫ l

−l

dη
sin mπ(y+l)

2l√
π2m2

4l2
+ p2

e
i qy

√
p2 + q2

2πl
e
−iqη sin nπ(η+l)

2l√
π2n2

4l2
+ p2

F :=
{
F+ K̃(p)F

}
m,n

, (13)

where K̃(p) is the multiplication operator by the infinite matrix K̃m,n(p). We will find the eigenvalues and
eigenvectors of the matrix K(p). Then the spectral modes ϕ of the equation (10) are found by inverse Fourier
transform ϕω = Fφ from the eigen-functions of the equation

K̃(p)φ =
2
q

Σ0φ. (14)
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We will show that the matrix-function K is compact for each p. Then denoting by κ1(p), κ2(p), κ3(p), . . . the
eigenvalues of K̃(p) and by φ1 , φ2 , φ3 , . . . the corresponding normalized eigenvectors, we form the eigenmode
corresponding to κm(s) as Fδ(p − s) φm = (2π)

−1/2
e

isx

φm(s). Hence the spectrum of the multiplication
operator K̃ has a band-structure with thresholds max

r
κ

m
(r) = κ

m
(r). It is more convenient to substitute

now the exponential Fourier transform by the trigonometrical Fourier transform:

δ(y − η) =
1
2π

∫ ∞

∞
e

q(y−η)
dq =

1
2π

∫ ∞

∞
[cos qy cosqη + sin qy sin qη] dq.

Then calculation of the matrix K is reduced to calculation of the elementary integrals obtained via the
change of variable : y + 1 → y:

J
s

r
(q) =

∫ 2l

0

sin q(y − l) sin
πry

2l
dy = cos q l

∫ 2l

0

sin q y sin
πry

2l
dy − sin q l

∫ 2l

0

cos q y sin
πry

2l
dy

and

J
c

r
(q) =

∫ 2l

0

cos q(y − l) sin
πry

2
dy = cos p l

∫ 2l

0

cos q y sin
πry

2l
dy + sin q l

∫ 2l

0

sin q y sin
πry

2l
dy.

We have, with y/l := ŷ:

∫ 2l

0

cos qy sin
πry

2l
dy =

l

2

∫ 2

0

[sin(ql + r π/2)ŷ − sin(ql − r π/2)ŷ] dŷ =

l

2ql + r π
[− cos(2q + r π) + 1] +

l

2ql − r π
[cos(2q − r π)− 1] =

(−1)
r

cos 2ql

(
l

2ql − r π
− 1

2ql + r π

)
+

(
l

2ql + r π
− l

2ql − r π

)
=

[
(−1)

r

cos 2ql − 1
] 2πrl

4q2 l2 − π2 r2 . (15)

Similarly we obtain

∫ 2l

0

sin qy sin
πry

2l
dx =

l

2

∫ 2

0

[cos(ql − r π/2)ŷ − cos(ql + r π/2)ŷ] dŷ =

[
sin 2ql (−1)

r
] 2πrl

4q2 l2 − π2 r2 . (16)

Substituting (15,16) into J
c

r
(p), J

s

r
(p) we see, that all terms J

s

r
with odd r and all terms J

c

r
with even r are

equal to zero, and all remaining terms are equal to

J
s

2m
=

2πm

q2 l2 − π2m2 sin q l, J
c

2m+1
= − π(2m + 1)

q2 l2 − π2(m + 1/2)2 cos q l. (17)

Then for the operator K = K∞ framed by projections onto L2(γ) we obtain the matrix elements:

K̃rt(p) =
1

2π l

∫ ∞

−∞
J

s

r
(q)

√
p2 + q2

√
π2r2

4l2
+ p2

√
π2 t2

4l2
+ p2

J
s

t
(q)dq+

1
2π l

∫ ∞

−∞

√
p2 + q2

√
π2r2

4l2
+ p2

√
π2 t2

4l2
+ p2

J
c

r
(q) p J

c

t
(q)dq =





2π m n√
π
2

r
2

4l
2 +p2

√
π
2

t
2

4l
2 +p2

∫∞
−∞

√
p2+q2 sin

2
q l

l (q2 l2−π2m2 )(q2 l2−π2n2 )
dq, if r = 2m, t = 2n

4π(m+1/2)(n+1/2)√
π
2

r
2

4l
2 +p2

√
π
2

t
2

4l
2 +p2

∫∞
−∞

√
p2+q2 cos

2
q l

l (q2 l2−π2 (m+1/2)2 )(p2−π2 (n+1/2)2 )
dq, if r = 2m + 1, t = 2n + 1,

(18)
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and 0 for complementary sets of indices. For the matrix K̃(0) we obtain, due to the definition (13)

K̃
r,t

(0) =





4
π l

∫∞
0

s sin
2

s
(s2−π2m2 )(s2−π2n2 )

d s, if r = 2m, t = 2n

4
π l

∫∞
0

s cos
2

s
(s2−π2 (m+1/2)2 )(s2−π2 (n+1/2)2 )

d s, if r = 2m + 1, t = 2n + 1,

(19)

One can see from (19) that the matrix K is a sum of two matrixes acting in invariant subspaces spanned
by vectors with non-zero components with even and odd components only. Thus the problem of spectral
analysis splits into two parts in corresponding subspaces on the slot −l < η < l:

∨

m

sin
mπη

l
= E

odd
,

∨

m

cos
(2m + 1) ηπ

2 l
= Eeven .

The subspace sanned E
odd

, for odd r = 2m + 1, is spanned by even functions on the slot, and the subspace
Eeven , for even r = 2m, is spanned by odd functions on the slot. The spectral analysis of K can be
accomplished in these spaces separately.

Based on matrix representation (19) we can prove that the operator K belongs to Hilbert-Schmitd class,
hence is has discrete spectrum, and its square has a finite trace, hence the infinite determinant can be
approximated by determinants of finite cut-off matrices. We derive these facts from asymptotic behavior of
elements of Krt for large (r, t).

Theorem 2.1 Elements of the matrix K̃(0) have the following asymptotic for large r, t:

π

4 l
K̃rt = Const

ln r t
−1

(r − t)(r + t)
, r, t > 0. (20)

Proof will be given for the part of the operator K̃(0) in the subspace of anti-symmetric modes, r = 2m, t = 2n.
The asymptotic of elements of the part of K in the symmetric subspace r = 2m + 1, t = 2n + 1 is derived in
a similar way.

We present the integrand in the first integral (19) the following way :

s
sin

2
s

(s2 − π2m2)(s2 − π2n2)
=

1
π2(m2 − n2)

[
s

s2(s2 − π2 m2)
− s

s2(s2 − π2 n2)

]

Then the corresponding integral is presented as

2
π3(m2 − n2)

[∫ ∞

0

s sin
2

s ds

s2(s2 − π2 m2)
−

∫ ∞

0

s sin
2

s ds

s2(s2 − π2 n2)

]
:=

2
π3(m2 − n2)

[Jm − Jn ] . (21)

Each of integrals in the right side can be presented, due to Jordan lemma as an integral on the imaginary
axis p, e.g.:

Jm =
1
2

∫ i∞

0

1− e
2is

s (s2 − π2 m2)
ds = −1

2

∫ ∞

0

1− e
−2t

t(t2 − π2 m2)
dt

The last integral can be presented as a sum of two integrals
∫ A

0
+

∫∞
A

:= J A

m
+ J∞

m
. The first of them

is estimated for large m by Const m
−2

, and the second may be calculated explicity after neglecting the
exponential for large A:

J∞
m
≈ 1

4
ln

A
2
+ π

2
m

2

A2 ≈ 1
2

ln m. (22)

Taking into account only the dominating term for large m we obtain, due to (21) the following asymptotic
for the integral (19) for m,n →∞

π l

4
K̃2m,2n(0) =

∫ ∞

0

s
sin

2
s

(s2 − π2m2)(s2 − π2n2)
ds ≈ ln m/n

π3(m2 − n2)
. (23)
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End of the proof.
Corollary. The operator K̃(0) is from Hilbert-Schmidt class because the series

∑
rt
|K̃rt(0)|2 = TraceK̃+ K̃

is convergent. Convergence of this series, due to smoothness of the asymptotic (23), is equivalent to the
convergence of the corresponding integral on the first quadrant outside the unit disc:

1
π6

∫

m
2+n

2≥1

| ln m/n|2
(m2 − n2)2 dmdn =

1
π6

∫

ρ≥1

dρ

ρ3

∫ π/2

θ=0

| ln tan θ|2
| cos 2θ|2 dθ.

It is convergent because the integrand is a bounded continuous function of θ. Similar statement is true
for K̃(p), −∞ < p,∞ as well. This statement allows us to calculate the eigenvalues of the operator K̃(p)
approximating K̃(p) by finite cut-off matrices, see the corresponding calculation for K̃(0) in Appendix B.

Summarising above results we conclude that in case of simplest geometry of the device with only two
basic electrodes the spectrum of the problem (10) has band-structure with tresholds defined by maxima of
the eivenvalues κ(p) of the operator K̃(p). One can guess that these maximal values are acieved at p = 0,
then the upper thresholds can be calculated from the data given in Appendix B.

3 The slot-device with governing electrodes

In this section we will show that the presence of the electrodes defines the resonance properties of the device.
These properties can be used for selecting excitations spreading in the slot. The corresponding device with
periodic array of governing electrodes can possess even more interesting spectral properties defined by the
resonance band-gaps, see for instance a series of mathematical papers concerning spectral properties of
periodic and a-periodic lattices caused by resonance ”decoration” at the nodes, [22, 23, 24, 25, 26, 27].

In this section we consider the simplest device with two governing electrodes γ1 , γ2 , two basic electrdes
Γ1 , Γ2 and one plazma-channel Γ squeezed between Γ1 , Γ2 . It is convenient to begin with slightly more
general Dirichlet problem with boundary data on the surface ∂γ0 := S ⊃ {

Γ ∪ Γ+ ∪ Γ− ∪ Γ
}

and on the
governing electrodes γs , s = 1, 2, . . .. To apply the general construction of the Dirichlet problem via series
of iterations, suggested in [10], we need to have the Poisson maps in the complements Ω0 , Ω1 , Ω2 of S := γ0

and governing electrodes. In special case when γs , s = 1, 2, . . . are circular cylinders and S is horizontal
the kernels of the corresponding Poisson maps are known, see [11]. For instance, the Poisson-kernel for the
half-space z > 0 is:

P0(x, y, z; ξ, η, 0) =
1

4π2

∫ ∫
dp dqe

−
√

p
2+q

2
z

e
ip(x−ξ)+iq(y−η)

, (24)

and the Poisson-kernel of the complement R3\γs of the cilinder γs radius ρs is

Ps(ϕ, ρ, y; θ, η) =
∫ ∞

−∞
dq

∞∑

k=−∞

e
ik(ϕ−θ)

e
iq(y−η) H1

k
(iqρ)

H1

k
(iqρs)

, (25)

where H1
is the conventional Bessel function of the first kind. We assume that the slot with non-trivial

plazma current on it is a domain Γ ⊂ S between the basic electrodes Γ± , with the voltages V± on them.
Then the plazma - current will develop on Γ if the electric field on the slot is strong enough:

E− <
d−
d±

[
V+ − V−

]
. (26)

Here E− is the ioniozation thresholds ( the electron’s exit work) on Γ− , d± is the distance between Γ+ , Γ−
and d− the thickness of the layer of dimensional quantization near the edge of Γ− . Physically the plazma-
current can develop also between the governing electrodes and the basic electrode Γ+ . We assume that
now it is not the case, because the potentials Vs lie between V± and the ioniozation thresholds Es , E− (the

8



electron’s exit work) on the govering elecrtodes and the negative electrode is large enough, compared with
the voltage between the basic and govering elecrodes,

Es >
d

s

ds,+

[
V+ − Vs

]
, E− >

d−
d−,s

[
Vs − V−

]
. (27)

Here ds,+ , d−,s are distances from γs to Γ+ and from Γ− to γs , and ds is the thickness of the surface layer
on γ

s
.

We postpone discussion of the above physical limitations (26,27) for typical materials to the forthcoming
publication, but will concentrate now on calculation of the amplitudes of oscillations of the characteristics
values Σω , uω , ϕω of the plazma-current about the equilibrium values Σ0 , ϕ0 , u0 of these variables, which
are supposed already known.

The central problem met in mathematical design of the device for manipulating running waves is the
plazma channel Γ, is the consytuction of the corresponding Green function for Laplacian on the basic domain
Ω = R3\

{
Γ+ ∪ Γ− ∪ γ1 ∪ γ2 ∪ . . .

}
. This problem is equivalent to the construction of the corresponding

Poisson map for boundary data supported by the shores of the slot and electrodes. We will use the above
notations P0 , Ps , s = 1, 2, . . . for Poisson maps of the half-space Z > 0 and ones of the cylinders in the whole
space. Then according to [10] the solution of the Dirichlet problem for Laplace equation

−4 u = 0

in R3\ ∪s≥0 γs := R3\γ with the boundary data uγ (ζ) = {us} on ∂γ = ∪
s≥0∂γs , can be obtained via

appropriate iteration process suggested in [10]. The normalization procedure we suggest below is based on
the iteration process, but gives a compact formula for the Poisson map of the system.

Denote by Ps the Poisson maps in R3\ωs and construct the solution of the Laplace equation in
R3\ (γ1 ∪ γ2) with data us on ∂γs in form

u = P1 û1 + P2 û2 . (28)

Then we obtain the following linear system for “re-normalized” boundary values us

û1 + P12 û2 = u1 (29)
P21 û1 + û2 = u2 , (30)

where Pst =
∣∣

∂γs

Pt defines the restriction of Pt ût onto ∂γs . The operators Pst for s 6= t are contracting in

C
∂γs

× C
∂γt

, due to maximum principle, hence the system (29) has unique solution

û1 =
I

I − P12P21

[u1 − P12 u2 ] (31)

û2 =
I

I − P21P12

[u2 − P21 u1 ] (32)

defined by the renorm-matrix corresponding to the joining γ12 = γ1 ∪ γ−2 of the electrodes:
(

I
I−P12P21

− I
I−P12P21

P12

− I
I−P12P21

P21
I

I−P12P21

)
:= Rγ12

. (33)

This matrix transforms the boundary data u1 , u2 into re-normalized data û1 , û2 which can be used for
construction of the solution of the original boundary problem by the formula (28) based on partial Poisson
maps P1 , P2 . Then the Poisson map Pγ1∪γ2

in the complement R3\ (γ12) of the electrodes is obtained as the
matrix product row by column:

{P1 , P2} Rγ1γ2
:= P(12) . (34)

The corresponding DN-map is obtained via differentiation with respect to the the outward normal:

Λ(12) = {Λ1 , Λ2} Rγ1γ2
. (35)
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Now including the electrode γ0 into the scheme can be done by induction : first we construct corresponding
renorm-matrix of restrictions P(12)0 and P0(12) of the Poisson maps

∣∣
γ12
P0 and

∣∣
γ0
P12 , respectively:

Rγ0 γ(12)
=

( I
I−P0(12)P(21)0

− I
I−P0(12)P(21)0

P0(12)

− I
I−P0(12)P(21)0

P0(21)
I

I−P(12)0P0(21)

)
,

then the corresponding Poisson map is obtained as the matrix product

P(012) = {P0 , P12}Rγ0 γ(12)
.

The corresponding Dirichlet-to-Neumann map is obtainend as:

Λ(012) = {Λ0 , Λ12}Rγ0 γ(12)
. (36)

Convenient approximate formulae are obtained via perlacement inverse operators by a finite sum of the
corresponding Neumann series, for instance: [I − P12 P21 ]

−1

= I + P12 P21 + P12 P21P12 P21 . . ..
Summarize now the derivation of the equation (9) based on formulae obtained for the DN-map

Λ(0,1,2) .Assume that γ1 ∪ γ2 ∈ Ω
+
, , and R3\Ω

+
:= Ω

−
, γ

s
∈ Ω

+
, γ

s
∩ Ω

−
= ∅. Due to the translation

symmetry of Ω
+

= Ω0\ [γ1 ∪ γ2 ], the kernel Λ(0,1,2)(x, y, z) is connected to the DN-map Λ
⊥
(0,1,2)

(x, 0, z; q) of

the Helmholtz equation 42u = q
2
u on the orthogonal cross-section of R2 ∩ Ω

+
by the formula

Λ
+

(0,1,2)
(x, y, z; ξ, ζ, η) =

∫ ∞

−∞

Λ
+

(0,1,2)
(x, 0, z); (ξ, 0, ζ); q)e

iq(y−η)
dq. (37)

Here (x, y, z), (ξ, ζ, η) ∈ ∂Ω
+
, (x, 0, z), (ξ, 0, ζ) ∈ R2 ∩ ∂Ω. Similarly the DN-map Λ

−
(0,1,2)

is defined by
fromula in Ω− similar to (12).

Corsider the perturbed Laplacian on the slot

LΓ = −div2Σ0(x, y)∇2 ,

with zero boundary conditions on the border y = ±l. The electron’s concentration Σ0(x, y) on the slot
is a function of two variables x, y which has, in case of two governing electrodes, the asymptotic Σ0 at
infinity, x → ±∞. On the compact part of the slot Σ(x, y) is defined by the configuration of the governing
electrodes, and can be defined in course of solution of the auxilliary stationary problem (4). We will not
solve this problem now, but we may expect that, under the above conditions on stationary potentials, the
stationary concentration is suppressed on the slot near to the governing electrodes. We assume that it
depends only on the variable x along the channel. Then the spectral problem for LΓ admitts separation of
variables

LΨ = − ∂

∂x
Σ(x)

∂Ψ
∂x

− Σ(x)
∂

2

∂y2 Ψ = λΨ. (38)

For positive rapidly stabilizing concentration Σ0(x) → Σ0 , , , x → ±∞, the spectrum of the problem is pure
continuous. It has band-structure with step-wise growing multiplicity:

σ(L) = ∪∞
r=1

σr ,

with branches σr =
[
Σ0

π
2

r
2

4 l2
, ∞

)
. The corresponding scattered waves Ψ(x, y) = Ψr (x, y, λ) =

1√
l

sin π r (y+l)
2l ψ

+

r
(x) fulfil (38), and the amplitude ψ

+

r
(x) of the scattered wave in the open channel,

λ > Σ0
π

2
r
2

4 l2
is a bounded solution of the spectral problem in the channel

− d

dx
Σ(x)

dψr (x)
dx

+ Σ(x)
π

2
r

2

4 l2
ψr (x) = λψr (x)
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with appropriate asymptotics at infinity. For the plazma waves incoming from +∞ of x − axis, in open
channels λ Σ

−1

0
− π

2
r
2

4l2
> 0

←−
ψ

r
≈ e

iQx

+−→
S e

−iQx

whenx → +∞,

and ←−
ψ

r
≈ ←−

S e
iQx

whenx → −∞.

Here Q =
√

λ Σ−1

0
− π2 r2

4l2
. For plazma-waves incoming from −∞ the asymptotiks are

−→
ψ

r
≈ e

−iQx

+←−
S e

iQx

when x → −∞,

−→
ψ

r
≈ −→

S e
−iQx

when x → +∞,

The system of all scattered waves ←−ψ
r
,
−→
ψ

r
, σ0π

2
r

2
(2 l)

−2
< λ < ∞ is complete and orthogonal in each

channel (for each r). The whole system of eigenfunctions

←−Ψ
r

=
1√
l

sin
π r (y + l)

2l

←−
ψ

r
, r = 1, 2, . . .

−→Ψ r (x, λ) =
1√
l

sin
π r (y + l)

2l

−→
ψ

r
, r = 1, 2, . . . (39)

in all open channels, r = 1, 2, . . . is complete and orthogonal in the space L2(Γ) of all square-integrable
functions on the slot. Then the Green function of L is presented in spectral form as

[L − µI]
−1

=
∑

r

∫ ∞

0

dλ

λ− µ

[−→Ψ r (x, λ)〉〈−→Ψ r (ξ, λ) +←−Ψ r (x, λ)〉〈←−Ψ r (ξ, λ)
] 1

2π l
√

λ
.

We will use this formula for the regular point µ = 0. It is convenient, following the previous section, to
re-write the spectral problem (7) in form of equation similar to (14):

L−1/2 [
Λ− − Λ+

]L−1/2
u =

2
q
u. (40)

If the operator Λ− − Λ+ , reduced onto the slot, commutes with L, then the operator in the left side of the
equation (40) can be reduced to the multiplication by the 2 × 2 matrix. But verification of that condition
requires deeper analysis of the Dirichlet-to-Neumann maps. We will do it in forthcoming paper.

4 Solvable model

.
Consider the special case when two cylindrical governing electrodes Γ± ares present in upper and lower

half-spaces Ω± respectrively. We assume that the electrodes are parallel to each other and to the horizontal
plane S : z = 0, and skew-orthogonal to the slot Γ situated between the electrodes Γ± ⊂ S on the horizontal
plane S. We will not calculate the electron’s concentration Σ0 , but assume that it depends only on the
variable x along the slot and is suppressed near the governing electrode:

Σ0(x) =
{

σ0 , if −l < x < l,
Σ0 , if |x| > l,

(41)

We assume that Σ0 coincides with euilibrium electron concentration on the slot without goiverning electrodes,
and the concentration is suppressed near the slot: 0 < σ0 << Σ0 . The scattered waves of the spectral problem

− d

dx
Σ0(x)

du

dx
+ Σ0(x)

d
2
u

dy2 = λu (42)
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are found via separation of variables

− d

dx
Σ0(x)

du

dx
+ Σ0(x)

π
2
r

2

4 l2
= λu (43)

and matching of exponentials with trigonometric functions based on the boundary conditions at x = ±l, for
instance:

1
σ0

∂u

∂x

∣∣∣∣
l−0

=
1
Σ0

∂u

∂x

∣∣∣∣
l+0

.

It is convenient to calculate the scattered waves ←−ψ of the above partial problem () in the r-channel spanned
by sin πry

2l as a linear combination of the incoming scattered waves ψ
r

D
(x) = e

iQ0x

+S
r

D
e
−iQ0x

, x > l, ψ
r

N
(x) =

e
iQ0x

+ S
r

N
e
−iQ0x

, x > l of the corresponding spectral problems on (−∞,∞) with homogeneous Dirichlet or
Neumann boundary condition at the origin, respectively:

←−
ψ

r
(x) =

1
2
[ψ

r

D
(x) + ψ

r

N
(x)],

S
r

D
= e

2iQ0 l e
iQ0 l −Mr

D
(λ)

e
iQ0 l

+Mr

D
(λ)

, S
r

N
= e

2iQ0 l e
iQ

r

0
l −Mr

N
(λ)

e
iQ

r

0
l

+Mr

N
(λ)

with Q
r

0
=

√
λ Σ−1

0
− π2 r2

4 l2
and

Mr

D
(λ) = Q

r

0
Σ0 σ

−1

0
cot Q

r

0
l, MN (λ) = −Q

r

0
Σ0 σ

−1

0
tanQ0 l.

The resonance properties of the transmission and reflection coefficients of the scattered waves ←−ψ
r
(x)

←−
S r =

1
2
[S

r

N
− S

r

D
], −→S r =

1
2
[S

r

D
+ S

r

N
]

are defined by simgularities of S
N,D

, or by eigenvalues of some auxiliary spectral problem on the interval
[−l, l].

To derive a formula for the corresponding operator K we represent the generalized kernel of the formal
integral operator in the left part of the equation (9) using the translation invariance of the system of
electrodes:

[
Λ− − Λ+

]
(x, y, 0; ξ, η, 0) =

∫ +∞

−∞
e

iq(y−η) [
λ−(q)(x, ξ)− λ+(q)(x, ξ)

]
dq.

The kernels λ±(p, q) as Fourier transforms of the kernels of the DN-maps Λ± , which are calculated via
iteration process as suggested in previous section. Multiplying the left side of (9) by L−1/2

from both sides,
and using the notations introduced in section 3

∫ l

−l

e
iqy

sin
π r (y + l)

2l
dy = J c

r
(q) + iJ s

r
(q) := Jr (q),

we obtain the operator L−1/2 [
Λ− − Λ+

]L−1/2
:= K in form of an infinite matrix integral operator with the

generalized kernel:

∫ ∞

−∞
dq

∫ ∞

0

∫ ∞

0

dλ dµ

λ µ
Jr (q)



〈←−ψ

r

[
λ−(q)− λ+(q)

]←−
ψ

t
(λ), ←−

ψ
r

[
λ−(q)− λ+(q)

]−→
ψ

t
(µ)

−→
ψ

r

[
λ−(q)− λ+(q)

]←−
ψ

t
(λ), −→

ψ
r

[
λ−(q)− λ+(q)

]−→
ψ

t
(µ)


Jr K. (44)

One can see from (44) that the operator K contains the scattering matrix of the spectral problem (38), which
defines the resonance and transport properties of the plazma channel. These transport properties may be
manipulated via varying the potential(s) on the governing electrodes.

Note that the solvable model suggested in this section is based on strong assumprion concerning the
distribution of the concentration Σ0 of electrons. The problem of calculation of the distribution requires
solving an advanced non-linear problem (4). We hope to return to this problem in forthcoming publications.
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6 Appendix A: Dirichlet-to-Neumann map - basic facts

We describe here general features of the DN-map, see also [13, 15, 16], for Laplace Operator, or, more
generally, for Schrödinger Operator (with real bounded measurable potential q) defined in the space L2(Ω)
of square - integrable functions by the differential expression

L
D

v = −4 v,

or
L

D
v = −4 v + q(x)v,

on the class of twice differentiable functions − 4 v ∈ L2(Ω) vanishing on the piecewise smooth boundary
Γ = ∂Ω of the domain Ω. In this section x = (x1 , x2) and y = (y1 , y2) are two-dimensional variables.
(Recall that in the previous section we used another notations (x1 , x2) = (x, z)). If the boundary of the
domain has inner angles, in particular, if the domain is the complement of the interval [−L− l, L + l], then
we assume that functions from the domain are submitted to the additional Meixner boundary condition in
form

∫
Ω
| 5 v|2dx < ∞. This condition guarantees uniqueness of solution of the non-homogeneous equation

L
D

v− λv = f ∈ L2(Ω) for complex values of the spectral parameter λ. Together with the operator L := L
D

we may consider the operator LN defined by the same differential expression L with homogeneous Neumann
conditions on the boundary

∂v

∂n

∣∣∣∣
∂Ω

= 0,

Both L := L
D

and L
N

are self-adjoint operators in L2(Ω). Corresponding resolvent kernels GN,D(x, y, λ)
and the Poisson kernel

Pλ(x, y) = −∂GD(x, y, λ)
∂ny

, y ∈ Γ,

for regular values of the spectral parameter λ are locally smooth if x 6= y and square integrable in Ω with
boundary values GN,D(x, y, λ), P(x, y, λ) from proper Sobolev classes. Behavior of GN (x, y, λ) when both
x, y at a smooth point of the boundary Γ = ∂Ω is described by the following asymptotic which may be
derived from the integral equations of potential theory:

GN (x, xΓ, λ) =

1
π

log
1

|x− xΓ| + Qλ + o(1). (45)

Here the term Qλ contains a spectral information, [18]. If the domain is compact, then the spectra σN,D

of operators LN,D are discrete and real. Solutions of classical boundary problems for operators LN,D may
be represented for regular λ (from the complement of the spectrum) by the “re-normalized” simple layer
potentials - for the Neumann problem

Lu = λu,
∂u

∂n

∣∣∣∣
∂Ω

= ρ,

u(x) =
∫

∂Ω

G
N

(x, y, λ)ρ(y)dΓ, (46)

and by the re-normalized double-layer potentials - for Dirichlet problem:

Lu = λu, u

∣∣∣∣
∂Ω

= û, u(x) =
∫

∂Ω

PD(x, y, λ)û(y)dΓ. (47)
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Generally the DN-map is represented for regular points λ of the operator LD as the derivative of the solution
of the Dirichlet problem in the direction of the outer normal on the boundary of the domain Ω:

(Λ (λ) û ) (xΓ) =
∂

∂n

∣∣∣∣
x=xΓ

∫

∂Ω

PD(x, y, λ)û(y)dΓ. (48)

The inverse map may be presented at the regular points of the operators Lin,out
N :

(
Qin,out(λ)ρin, out

)
(xΓ) =

±
∫

Γ

Gin, out
N (x, y, λ)ρin, out(y)dΓ. (49)

The following simple statement, see [16], shows, that the singularities of the DN-map Λin(λ) as an
unbounded operator in L2(Γ) and the poles at the eigenvalues of the inner Dirichlet problems may be
separated from each other:

Theorem 6.1 Consider the Schrödinger operator L = −4+q(x) in L2(Ω) with real measurable essentially
bounded potential q and homogeneous Dirichlet boundary condition at the C2-smooth boundary Γ of Ω. Then
the DN-map ΛC

in of L has the following representation on the complement of the corresponding spectrum ΣL

in complex plane λ, M > 0:

Λin(λ) = Λin(−M)− (λ + M)P+
−MP−M − (λ + M)2P+

−M
RλP−M

, (50)

where Rλ is the resolvent of L, and P−M is the Poisson kernel of it. The operator P+

−M
P−M (xΓ , yΓ) is bounded

in Sobolev class of boundary values of twice differentiable functions {u : 4u ∈ L2(Ω)} and the operator
(
P+

−M
RλP−M

)
(xΓ, yΓ) =

∑

λs∈ΣL

∂ϕs

∂n (xΓ)∂ϕs

∂n (yΓ)
(λs + M)2(λs − λ)

is compact in W
3/2
2 (Γ).

Similar statement is true for DN-map in exterior domain,

Λout(λ) = Λout(−M) + (λ + M)P+

−M
P−M +

(λ + M)2P+

−M
RλP−M

, (51)

with only difference that first terms of the decomposition contain the DN-map and Poisson kernel for the
exterior domain and the last term may contain both the sum over discrete spectrum and the the integral over
the absolutely continuous spectrum σa

L = [0,∞) of L, with the integrand combined of the normal derivatives
of the corresponding scattered waves ψ(x, |k|, ν), k = |k|ν, |ν| = 1:

P+

−M
RλP−M

(xΓ , yΓ) =
1

(2π)3

∫

|k|2∈Σa
L

∂ψ
∂n (xΓ, |k|, ν)∂ψ̄s

∂n (yΓ |k|, ν)
(|k|2 + M)2(|k|2 − λ)

d3k.

Example 1 Consider the non-compact domain Ωa on the complex plane z = x1 + ix2 obtained via removing
of the interval Γ = [−a < x1 < a] from the real axis x2 = 0. The Green function of the Laplace Operator
with zero boundary condition on both sides of Γ can be calculated explicitly via conformal map

z

a
=

1
2

[
u +

1
u

]
(52)

of the exterior D̂1 of the unit disk D1 = {|u| < 1} onto Ω1 . The inverse function is defined as

u =
z

a
+

√(z

a

)2

− 1, (53)
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with the branch of the square root defined by the asymptotic condition
√(

z
a

)2 − 1 ≈ z
a if z →∞.

The Green function G(u, v) of the Laplacian with zero boundary condition in D̂1 is obtained as the real
part of the function mapping the domain Ω1 onto the exterior of the unit disk with the point v transferred
to infinity :

G(z, s) =
1
2π

ln
∣∣∣∣
1− uv̄

u− v

∣∣∣∣,

with u = z
a +

√(
z
a

)2 − 1, v = s
a +

√
( s

a )2 − 1. Then, according to the previous formula (48) we obtain the
generalized kernel of the DN-map in Ω1 as an operator in proper Sobolev class on the boundary Γ = Γ+∪Γ− :

ΛL(z, s)
∣∣∣∣

z,s∈Γ

= −∂
2

G(z, s)
∂nz ∂ns

,

where nz , ns - the outer normals on Γ, that is: the normal “up” on the upper shores and the normal “down”
on the lower shores of Γ.

Consider now the jump of the derivative ∂
∂x2

over the slot (−l, l), assuming that a = l + L > l. Denoting

the points on the opposite shore of the slot by s1 ± i0 := s
±
1
, we can calculate the jump of the derivative of

the electric field over the slot as

∂ϕ

∂x2

∣∣∣∣
s
+
2

− ∂ϕ

∂x2

∣∣∣∣
s
−
2

= − [
Λ+ − Λ−

]
ϕ =

∫ l

−l


∂

2
G(z, s)

∂nx2
∂ns2

∣∣∣∣
s
+
2

− ∂
2

G(z, s)
∂nx2

∂ns2

∣∣∣∣
s
−
2


 ϕ(s2)ds2 := KLϕ. (54)

More simple example is the DN-map for the upper or lower half-plane.
Example 2 Consider the case when a = ∞. In this the Poisson maps P± for the upper and lower

half-planes, z = x1 + ix2 , x2 > 0, x2 < 0 are equal to :

P±ϕ(x1) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
e

ip(x1−s1 )
e
∓|p|x2 ϕ(s1 , 0)ds1dp

and hence the DN-maps in upper and lower half-planes are given by the formulae :

Λ±ϕ(x1) = ∓ ∂ϕ

∂x2

=
±1
2π

∫ ∞

−∞
dp

∫ ∞

−∞
ds1 e

ip(x1−s1 ) |p|ϕ(x, 0),

hence they are pseudo-differential operators with the symbols ±|p| respectively. The corresponding jump of
the derivatives is calculated as a positive pseudo-differential operator degree 1. On functions ϕ vanishing on
real axis outside the slot (−l, l) the integration on spacial variable is reduced to the slot, hence

−Λ+ϕ(x1) + Λ−ϕ(x1) =

(
∂ϕ

∂x2

∣∣∣∣
0+

− ∂ϕ

∂x2

∣∣∣∣
0−

)∣∣∣∣
(−l,l)

= K∞ ϕ(x1) =

1
2π

∫ ∞

−∞
dp

∫ l

−l

ds1 e
ip(x1−s1 )

2|p| ϕ(s1 , 0). (55)

Both operators KL , K∞ are positive.
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7 Appendix B: cross-section eigenfunctions in the straignt hori-
zontal slot

In the paper [3] the cros-section eigenfunctions in the slot are found just from the ordinary differential
equation obtained via replacement the non-trivial left side Λ in the equation (9) by the constant. Then
the eigenfunctions are found in explicit form of trigonometric functions. In this paper we developed DN-
mashinery to construct realistic equation for the non-equilibrium part of the quantum current and were
able to prove, see section 2, that the spectral problem for cross-section component in the slot is reduced to
spectral analysis of a Hilbert-Schmidt operator. Nevertheless, it appeared that the eigenfunctions of that
operator look very much the same as the eigenfunctions of the corresponding differential equation in [3].

First 10 eigenvalues of the even series of the operator K are

0.02452621365, 0.02729557291, 0.03073000783, 0.03506244362, 0.04081584109,

0.04880536434, 0.06069115269, 0.08024242096, 0.1184600786, 0.2274134275.

Here are first 10 eigenfunctions of the even series of the operator K, approximated by 10× 10 matrix:

fi1(x) := −.9933100453 sin((x + 1) π) + .1013682884 sin(2 (x + 1) π)
+ .04258288175 sin(3 (x + 1) π) + .02489271434 sin(4 (x + 1) π)
+ .01670171207 sin(5 (x + 1) π) + .01212120481 sin(6 (x + 1) π)
+ .009267077948 sin(7 (x + 1) π) + .007347750075 sin(8 (x + 1) π)
+ .005988729822 sin(9 (x + 1) π) + .005006906427 sin(10 (x + 1) π)

fi2(x) := .09322284072 sin((x + 1) π) + .9863898828 sin(2 (x + 1) π)
− .1167594867 sin(3 (x + 1) π)− .05143930063 sin(4 (x + 1) π)
− .03139491641 sin(5 (x + 1) π)− .02181172171 sin(6 (x + 1) π)
− .01629985716 sin(7 (x + 1) π)− .01275337857 sin(8 (x + 1) π)
− .01017908494 sin(9 (x + 1) π)− .008507649126 sin(10 (x + 1) π)

fi3(x) := .04756215312 sin((x + 1) π) + .1019542428 sin(2 (x + 1) π)
+ .9830180170 sin(3 (x + 1) π)− .1241699449 sin(4 (x + 1) π)
− .05572263389 sin(5 (x + 1) π)− .03468574022 sin(6 (x + 1) π)
− .02457732792 sin(7 (x + 1) π)− .01865238936 sin(8 (x + 1) π)
− .01472675112 sin(9 (x + 1) π)− .01111892307 sin(10 (x + 1) π)

fi4(x) := .03099781436 sin((x + 1) π) + .05402325905 sin(2 (x + 1) π)
+ .1055198724 sin(3 (x + 1) π) + .9809057605 sin(4 (x + 1) π)
− .1292962600 sin(5 (x + 1) π)− .05853282214 sin(6 (x + 1) π)
− .03692961614 sin(7 (x + 1) π)− .02642910664 sin(8 (x + 1) π)
− .02013315988 sin(9 (x + 1) π)− .01410025753 sin(10 (x + 1) π)

fi5(x) := −.02257248428 sin((x + 1) π)− .03646170107 sin(2 (x + 1) π)
− .05667955653 sin(3 (x + 1) π)− .1081023576 sin(4 (x + 1) π)
− .9793085229 sin(5 (x + 1) π) + .1335081775 sin(6 (x + 1) π)
+ .06094414938 sin(7 (x + 1) π) + .03867020766 sin(8 (x + 1) π)
+ .02761120408 sin(9 (x + 1) π) + .02051259443 sin(10 (x + 1) π)
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fi6(x) := −.01754266704 sin((x + 1) π)− .02732531298 sin(2 (x + 1) π)
− .03883467766 sin(3 (x + 1) π)− .05845804051 sin(4 (x + 1) π)
− .1102840715 sin(5 (x + 1) π)− .9778220785 sin(6 (x + 1) π)
+ .1380082005 sin(7 (x + 1) π) + .06304962682 sin(8 (x + 1) π)
+ .03953768277 sin(9 (x + 1) π) + .03371598339 sin(10 (x + 1) π)

fi7(x) := −.01439693694 sin((x + 1) π)− .02198938350 sin(2 (x + 1) π)
− .02985722341 sin(3 (x + 1) π)− .04082197296 sin(4 (x + 1) π)
− .06046139201 sin(5 (x + 1) π)− .1132102138 sin(6 (x + 1) π)
− .9765507050 sin(7 (x + 1) π) + .1444466843 sin(8 (x + 1) π)
+ .06463188344 sin(9 (x + 1) π) + .03982173960 sin(10 (x + 1) π)

fi8(x) := .01238501069 sin((x + 1) π) + .01870817889 sin(2 (x + 1) π)
+ .02474802277 sin(3 (x + 1) π) + .03218252719 sin(4 (x + 1) π)
+ .04306956519 sin(5 (x + 1) π) + .06304196537 sin(6 (x + 1) π)
+ .1192713277 sin(7 (x + 1) π) + .9757371008 sin(8 (x + 1) π)
− .1459126166 sin(9 (x + 1) π)− .06663427723 sin(10 (x + 1) π)

fi9(x) := −.01037295393 sin((x + 1) π)− .01544717972 sin(2 (x + 1) π)
− .02036106172 sin(3 (x + 1) π)− .02573784222 sin(4 (x + 1) π)
− .03227953659 sin(5 (x + 1) π)− .04174318132 sin(6 (x + 1) π)
− .06362375599 sin(7 (x + 1) π)− .1165340202 sin(8 (x + 1) π)
− .9665573785 sin(9 (x + 1) π) + .2095972077 sin(10 (x + 1) π)

fi10(x) := .01166663095 sin((x + 1) π) + .01726310214 sin(2 (x + 1) π)
+ .02135086391 sin(3 (x + 1) π) + .02592332573 sin(4 (x + 1) π)
+ .03394970562 sin(5 (x + 1) π) + .04747997701 sin(6 (x + 1) π)
+ .05472869579 sin(7 (x + 1) π) + .08220948194 sin(8 (x + 1) π)
+ .1929034873 sin(9 (x + 1) π) + .9736866450 sin(10 (x + 1) π)

> plot(fi1(x),x=-1..1,y=-1.5..1.5);
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> plot(fi2(x),x=-1..1,y=-1.5..1.5);

17



-1.5

-1

-0.5

0

0.5

1

1.5

y

-1 -0.5 0.5 1
x

> plot(fi3(x),x=-1..1,y=-1.5..1.5);
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> plot(fi4(x),x=-1..1,y=-1.5..1.5);
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> plot(fi5(x),x=-1..1,y=-1.5..1.5);
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> plot(fi6(x),x=-1..1,y=-1.5..1.5);

-1.5

-1

-0.5

0

0.5

1

1.5

y

-1 -0.5 0.5 1
x

> plot(fi7(x),x=-1..1,y=-1.5..1.5);
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> plot(fi8(x),x=-1..1,y=-1.5..1.5);
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> plot(fi9(x),x=-1..1,y=-1.5..1.5);
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> plot(fi10(x),x=-1..1,y=-1.5..1.5);
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Here are first 10 eigenvalues of the odd series of the operator K:

0.02580642925, 0.02889694675, 0.03272986513, 0.03766434614, 0.04437798102,

0.05397919120, 0.06886402733, 0.09504925144, 0.1532098038, 0.3914815726,

and first 10 eigenfunctions of the odd series :

20



fiod1(x) := −.9910874586 sin(.5 (x + 1) π) + .1212875218 sin(1.5 (x + 1) π)
+ .04436147780 sin(2.5 (x + 1) π) + .02399915669 sin(3.5 (x + 1) π)
+ .01530090916 sin(4.5 (x + 1) π) + .01070626954 sin(5.5 (x + 1) π)
+ .007958603246 sin(6.5 (x + 1) π) + .006172535946 sin(7.5 (x + 1) π)
+ .004945885162 sin(8.5 (x + 1) π) + .004054924722 sin(9.5 (x + 1) π)

fiod2(x) := .1117423454 sin(.5 (x + 1) π) + .9818943229 sin(1.5 (x + 1) π)
− .1343729349 sin(2.5 (x + 1) π)− .05608113124 sin(3.5 (x + 1) π)
− .03307212574 sin(4.5 (x + 1) π)− .02241035233 sin(5.5 (x + 1) π)
− .01641399421 sin(6.5 (x + 1) π)− .01263518518 sin(7.5 (x + 1) π)
− .01012904963 sin(8.5 (x + 1) π)− .008267623797 sin(9.5 (x + 1) π)

fiod3(x) := .05292785974 sin(.5 (x + 1) π) + .1162634038 sin(1.5 (x + 1) π)
+ .9789142759 sin(2.5 (x + 1) π)− .1380115902 sin(3.5 (x + 1) π)
− .06011078796 sin(4.5 (x + 1) π)− .03670653101 sin(5.5 (x + 1) π)
− .02559615342 sin(6.5 (x + 1) π)− .01916493668 sin(7.5 (x + 1) π)
− .01510111946 sin(8.5 (x + 1) π)− .01224449592 sin(9.5 (x + 1) π)

fiod4(x) := .03274896712 sin(.5 (x + 1) π) + .06043162781 sin(1.5 (x + 1) π)
+ .1157994972 sin(2.5 (x + 1) π) + .9773738676 sin(3.5 (x + 1) π)
− .1405447629 sin(4.5 (x + 1) π)− .06244408352 sin(5.5 (x + 1) π)
− .03885164416 sin(6.5 (x + 1) π)− .02744174349 sin(7.5 (x + 1) π)
− .02092526245 sin(8.5 (x + 1) π)− .01593307543 sin(9.5 (x + 1) π)

fiod5(x) := .02298961699 sin(.5 (x + 1) π) + .03999406558 sin(1.5 (x + 1) π)
+ .06174483906 sin(2.5 (x + 1) π) + .1160041782 sin(3.5 (x + 1) π)
+ .9762227109 sin(4.5 (x + 1) π)− .1431966138 sin(5.5 (x + 1) π)
− .06436782790 sin(6.5 (x + 1) π)− .04031008795 sin(7.5 (x + 1) π)
− .02893430576 sin(8.5 (x + 1) π)− .02193605556 sin(9.5 (x + 1) π)

fiod6(x) := −.01742840040 sin(.5 (x + 1) π)− .02954457432 sin(1.5 (x + 1) π)
− .04197416634 sin(2.5 (x + 1) π)− .06265915699 sin(3.5 (x + 1) π)
− .1169875459 sin(4.5 (x + 1) π)− .9751305478 sin(5.5 (x + 1) π)
+ .1466970244 sin(6.5 (x + 1) π) + .06605302331 sin(7.5 (x + 1) π)
+ .04195037765 sin(8.5 (x + 1) π) + .03044411621 sin(9.5 (x + 1) π)

fiod7(x) := −.01400129365 sin(.5 (x + 1) π)− .02343290315 sin(1.5 (x + 1) π)
− .03194447996 sin(2.5 (x + 1) π)− .04348097673 sin(3.5 (x + 1) π)
− .06406576018 sin(4.5 (x + 1) π)− .1192784284 sin(5.5 (x + 1) π)
− .9740929360 sin(6.5 (x + 1) π) + .1508365385 sin(7.5 (x + 1) π)
+ .06934795728 sin(8.5 (x + 1) π) + .03992749231 sin(9.5 (x + 1) π)
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fiod8(x) := −.01159376012 sin(.5 (x + 1) π)− .01926693060 sin(1.5 (x + 1) π)
− .02565271099 sin(2.5 (x + 1) π)− .03328625898 sin(3.5 (x + 1) π)
− .04447434165 sin(4.5 (x + 1) π)− .06528856960 sin(5.5 (x + 1) π)
− .1217965760 sin(6.5 (x + 1) π)− .9716971126 sin(7.5 (x + 1) π)
+ .1590061693 sin(8.5 (x + 1) π) + .08470609206 sin(9.5 (x + 1) π)

fiod9(x) := −.01037249141 sin(.5 (x + 1) π)− .01720988796 sin(1.5 (x + 1) π)
− .02256025153 sin(2.5 (x + 1) π)− .02849055602 sin(3.5 (x + 1) π)
− .03604306273 sin(4.5 (x + 1) π)− .04779420377 sin(5.5 (x + 1) π)
− .07093271523 sin(6.5 (x + 1) π)− .1278131209 sin(7.5 (x + 1) π)
− .9708913305 sin(8.5 (x + 1) π) + .1751985944 sin(9.5 (x + 1) π)

fiod10(x) := .01072997564 sin(.5 (x + 1) π) + .01774293501 sin(1.5 (x + 1) π)
+ .02305558991 sin(2.5 (x + 1) π) + .02790429532 sin(3.5 (x + 1) π)
+ .03503740995 sin(4.5 (x + 1) π) + .04446837940 sin(5.5 (x + 1) π)
+ .05582553719 sin(6.5 (x + 1) π) + .09700962865 sin(7.5 (x + 1) π)
+ .1545571928 sin(8.5 (x + 1) π) + .9791013768 sin(9.5 (x + 1) π)

> #Drawing plots of the eigenfunctions

> plot(fiod1(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod2(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod3(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod4(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod5(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod6(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod7(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod8(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod9(x),x=-1..1,y=-1.5..1.5);
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> plot(fiod10(x),x=-1..1,y=-1.5..1.5);
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In both cases the operator K is substituted by the matrix 10× 10. Note that the appearance of the first
group of the eigenfunctions of the operator K is almost the same as one of eigenfunctions of the differential
operator L. Mathematically this means that it is possible to neglect the surrounding space when calculating
the eigenfunctions of , replacing Λ− − Λ+ by a constant. This observation was successfuly used in previous
papers about slot-devices, see for instance [2] and helped us to obtain realistic results.

8 Appendix C. Basic Dirichlet problem with basic electrodes

The device with two basic electrodes on the horizontal plane is the most simple construction which is solved
explicitly. In this section we calculate the relevant Poisson map. The corresponding DN-map is obtained via
normal differentiation.

Consider the complex plane {z} = C with two cuts Γ± = [l,∞), (−∞,−l] removed , Γ = Γ+ ∪ Γ− :

Ω
l
= C\ (

Γ+ ∪ Γ+

)
:= C\Γ.

Our aim is: to construct a real harmonic function Φ(x1 , x2) which takes the (real) boundary values on Γ± :

Φ
∣∣∣∣
Γ±

= ±V, V > 0. (56)

This problem can be solved in elementary functions based on conformal map similar to (52,53):

l

z
=

1
2

[
u +

1
u

]
,
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u =
l −

√
l2 − z2

z
,

with the branch fixed by the condition of regularity u(z) at the origin. This map transforms the domain Ω
l

into the exterior of the unit disc |u| > 1
Note that the exterior Dirichlet problem for Laplacian in the complement of the unit disk, |u| > 1, and

the boundary conditions:

Φ(u) = 1 if u = e
iθ

, 0 < θ < π, Φ(u) = −1 if u = e
iθ

, −π < θ < 0 (57)

has the solution Φ = 1
2π< ln 1+u

1−u . Then inserting the above expression for u in terms of z, we obtain the
formula for Φ:

Φ(z) =
1
2π
< ln

1− l−
√

l2−z2

z

1 + l−
√

l2−z2

z

, (58)

which may be verified also via direct calculation, together with the corresponding Meixner condition
∫

Ω
l

| 5 Φ(z)|2dm < ∞.

Summarizing above results and noticing that Φ depends on non-dimensional coordinate z
l we obtain the

expression for the solution of the basic Dirichlet problem in case on infinite plates:

V∞(x, y) =
V

2π
< ln

1− 1−
√

1−(z/l)2

z/l

1 + 1−
√

1−(z/l)2

z/l

. (59)

We denoted here the constructed solution by V∞(x, y)
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