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Anti-apoptotic proteins in the autophagic
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Abstract

X-linked inhibitor of apoptosis protein (XIAP), survivin, and BRUCE are members of the inhibitor-of-apoptosis protein
(IAP) family known for their inhibitory effects on caspase activity and dysregulation of these molecules has widely
been shown to cause embryonic defects and to promote tumorigenesis in human. Besides the anti-apoptotic
functions, recent discoveries have revealed that XIAP, survivin, and BRUCE also exhibit regulatory functions for
autophagy in cells. As the role of autophagy in human diseases has already been discussed extensively in different
reviews; in this review, we will discuss the emerging autophagic role of XIAP, survivin, and BRUCE in cancer cells.
We also provide an update on the anti-apoptotic functions and the roles in maintaining DNA integrity of these
molecules. Second mitochondria-derived activator of caspases (Smac) is a pro-apoptotic protein and IAPs are the
molecular targets of various Smac mimetics currently under clinical trials. Better understanding on the functions of
XIAP, survivin, and BRUCE can enable us to predict possible side effects of these drugs and to design a more
“patient-specific” clinical trial for Smac mimetics in the future.
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Introduction
Apoptosis is a cellular process highly regulated by differ-
ent pro-apoptotic and anti-apoptotic proteins, like mem-
bers of the inhibitor-of-apoptosis protein (IAP) family and
the Bcl-2 family. Currently, there are eight IAP family
members in human - cIAP1, cIAP2, ML-IAP/Livin, Ts-
IAP/ILP-2, NIAP, XIAP, survivin, and BRUCE. Structur-
ally, IAP family members are characterized by the pres-
ence of at least one Baculoviral IAP Repeat (BIR) domain
(Table 1) and it has widely been demonstrated that the
presence of the BIR domain is crucial for IAPs to inhibit
the activity of different caspases through physical interac-
tions. As IAP family members regulate a variety of cellular
physiological processes [1–3] and dysregulations (i.e.
mostly upregulation) of these molecules are known to
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promote tumorigenesis, tumor metastasis, and anti-cancer
therapy resistance in human [4–9], it is important to
understand the biology of different IAP family members
and the mechanism underlying the dysregulation of these
molecules in cancer cells. Although some of the IAP
family members have already been known for more than
two decades and several anti-cancer small-molecule Smac
mimetics (i.e. a class of IAPs-targeting compounds) have
been developed and reached clinical trials [10–12], scien-
tists still not yet fully understand their molecular functions
in cancer cells.
Autophagy is currently one of the hottest topics in

cancer research. Despite intensive research has been
conducted in the past decade to better understand the
process of autophagy [13–23], the detailed regulatory
mechanism and cellular effects are still not yet fully
understood. Generally, autophagy is a dynamic catabolic
process used for removing unnecessary or dysfunctional
proteins and organelles in cells. Pathologically, dysregu-
lation of autophagy promotes tumorigenesis and upregu-
lation of autophagy has widely been shown to provide
extra survival signals in both normal and cancer cells
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Table 1 Different IAP family members of Homo sapiens

Name Location
(chromosome locus)

Length of coding
sequence (bp)

Molecular weight
of protein (kDa)

Number of
BIR domain

Number of
RING domain

NAIP 5q13.2 4212 159.6 3 (BIR 1, 2, and 3) –

cIAP1 11q22.2 1857 69.9 3 (BIR 1, 2, and 3) 1

cIAP2 11q22.2 1815 68.4 3 (BIR 1, 2, and 3) 1

XIAP Xq25 1494 56.7 3 (BIR 1, 2, and 3) 1

Survivin 17q25.3 429 16.4 1 (BIR) –

BRUCE 2p22.3 14,574 530.3 1 (BIR) –

Livin 20q13.33 897 32.8 1 (BIR 3) 1

ILP-2 19q13.42 711 27.1 1 (BIR 3) 1

Cheung et al. Journal of Biomedical Science           (2020) 27:31 Page 2 of 10
exposed to various internal and external stresses [14–22].
For example, hypoxia-induced autophagy process might
contribute to the resistance to chemotherapeutic agent,
cisplatin, in non-small cell lung cancer [19]. The process
of apoptosis and autophagy was believed to be mutually
exclusive; however, emerging evidence suggests that they
are inter-connected and inter-regulated at the molecular
level (e.g. through Bcl-2) in cells. In the following
sections, we will discuss the lately discovered autoph-
agic role of the well-known anti-apoptotic molecules,
XIAP, survivin, and BRUCE.

XIAP as a regulator of apoptosis and necroptosis
XIAP, discovered in 1996, contains three BIR domains
(BIR1, BIR2, and BIR3) and a single Really Interesting
New Gene (RING) finger domain (Fig. 1). As an apop-
tosis inhibitor, the caspase-3 and -7 inhibiting activity
has been localized to the BIR2 domain and the BIR3
domain of XIAP is responsible for the inhibition of
caspase-9 [24, 25]. In contrast, the RING domain of
XIAP exhibits E3 ubiquitin ligase activity and this activ-
ity is required for the XIAP-mediated cancer cell migra-
tion [26–28]. Besides interacting with caspase-9 and
caspase-3, XIAP also directly or indirectly interacts with
different IAPs and Smac [also known as direct inhibitor
Fig. 1 Identified binding partners of XIAP
of apoptosis-binding protein with low pI (DIABLO)]
[29–32]. The RING finger domain of XIAP is capable of
interacting with the BIR2 and BIR3 domain of cIAP2
and this XIAP-cIAP2 complexation upregulates the pro-
tein stability of cIAP2 in glioblastoma cells [33]. On the
other hand, formation of the survivin-XIAP complex
prevents XIAP undergoing polyubiquitination and the
subsequent proteasomal degradation, thereby stabilizing
XIAP in cancer cells [29]. In contrast, Smac is a known
pro-apoptotic molecule and formation of the Smac-
XIAP complex prevents XIAP binding to different cas-
pases and promotes cellular apoptosis [30–32]. A recent
study by Caballero-Lopez et al. reveals that XIAP binds
to the pro-apoptotic molecule, FAS-associated factor 1
(FAF1), leads to the polyubiquitination and degradation
of this molecule, and consequently inhibits FAF1-
mediated cell death in cancer cells [34]. However, the ef-
fects of the E3 ubiquitin ligase activity of XIAP seems
not to be “pro-apoptotic molecule specific” as XIAP also
stimulates ubiquitin proteasome system (UPS)-mediated
degradation of the anti-apoptotic molecule, Bcl-2, to
promote apoptosis upon the formation of an XIAP-
apoptosis related protein in TGF-β signaling pathway
(ARTS)-Bcl-2 ternary complex [35]. These findings are
indeed interesting because they suggest that even though
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XIAP exhibits both anti-apoptotic and pro-apoptotic ac-
tivities, the anti-apoptotic activity seems to be prominent
as overexpression of XIAP has widely been demon-
strated to promote cells survival and tumorigenesis,
whereas, downregulation of this molecule promotes can-
cer cells death. Besides apoptosis, cells can also undergo
a specific type of programmed self-destruction called
necroptosis. Necroptosis is a form of programmed cell
death mediated by receptor-interacting kinase 1 (RIPK1),
RIPK3, and mixed lineage kinase domain-like protein
(MLKL). It is now clear that that XIAP also plays an im-
portant role in regulating necroptosis in innate immune
cells [36–38]. For example, loss of XIAP has been shown
to promote the switch from tumor necrosis factor-α
(TNFα; at high concentrations)-induced apoptosis to
RIPK3-dependent necroptosis in mouse neutrophils [37].

XIAP as a controversial autophagy modulator
Despite XIAP was originally discovered as an inhibitor
of caspases and apoptosis, a number of studies suggest
that XIAP is an autophagy modulator. An inverse correl-
ation in the expression between XIAP and a known
Fig. 2 Schematic diagram showing the interactions between XIAP, survivin
autophagy-related molecule, microtubule-associated pro-
tein light chain 3 (LC3), in hepatocellular carcinoma
tissue specimens has been reported in the past [39]. The
most direct evidence supporting its role as an autophagy
negative-regulator came from a study by Huang et al. In
this study, XIAP was shown to be capable of inhibiting
autophagy via a XIAP-Mouse double minute 2 homolog
(Mdm2)-p53 signaling pathway in the wild-type p53
(p53WT)-expressing HCT116 cancer cells, but not in the
p53−/− HCT116 cancer cells [40]. Bone morphogenetic
protein receptor 2 (BMPR2) is a growth factor receptor
and downregulation of BMPR2 by siRNA was demon-
strated to induce autophagy in chondrosarcoma cells,
again, via the XIAP-Mdm2-p53 signaling pathway [41].
Recent studies further reveal that direct or indirect inhibi-
tions/downregulations of XIAP can promote the induction
of cellular autophagy. For example, the microRNA miR-
23a was found to be a negative regulator of XIAP (i.e.
downregulates the expression) and overexpression of
miR-23a was shown to upregulate the endogenous au-
tophagic levels of breast cancer cells in a XIAP-dependent
manner (Fig. 2) [42]. Embelin (2,5-dihydroxy-3-undecyl-2,
, BRUCE, and other molecules in the regulation of cellular autophagy
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5-cyclohexadiene-1,4-dione) is a natural compound iso-
lated from Embelia ribes [43]. Lee et al. showed that inhi-
biting XIAP by embelin induced autophagy in the human
oral Ca9–22 squamous carcinoma cells in vitro [44]. Fur-
thermore, it has been demonstrated that adenovirus
vector-mediated XIAP-associated factor 1 (XAF1) expres-
sion induces autophagy and autophagic cell death via
Beclin-1 upregulation in gastric cancer cells [45]. Of note,
XAF1 is a known XIAP molecular antagonist that nega-
tively modulates the caspase inhibitory function of XIAP
through physical interactions and the subsequent redistri-
bution of XIAP from the cytoplasm to the nucleus [46].
XIAP has also been suggested as an autophagy upregu-

lator. Even though targeting IAPs including XIAP,
cIAP1, and cIAP2 by a Smac mimetic, APG-1387, was
shown to induce autophagy and cell death in human
ovarian cancer cells [47]; contrary, addition of a different
Smac mimetic, LCL161 (a drug known to target cIAP1,
cIAP2, and XIAP), at high dose was shown to inhibit the
fusion between autophagosome and lysosome in mouse
embryonic cells (MEFs) [48]. Downregulations of cIAP2
and XIAP by siRNA were demonstrated to induce simi-
lar cellular phenotypes in MEFs [48], further suggesting
that XIAP can act as an autophagy suppressor, despite
the detailed molecular mechanism remains to be deter-
mined. Noticeably, XIAP and cIAP1 have also been sug-
gested to positively-regulate the expression of Beclin 1,
which is a protein crucial for the biogenesis of autopha-
gosome during canonical autophagy, via an nuclear
factor-κB (NFκB)-signaling pathway [49]. Thus, XIAP
seems to exhibit differential autophagic roles in different
cells under different circumstances.

Survivin as an apoptosis inhibitor and a mitosis positive
regulator
Survivin, discovered in 1997, is the smallest member of
the IAP family proteins and it contains only a single BIR
domain. Similar to other IAP family members, survivin
is believed or has been demonstrated to be an apoptosis
negative-regulator [50]. For example, Chandele et al.
showed that survivin inhibited caspase-9 activity and
promoted staurosporine-resistance in human SK-N-MC
neuroblastoma cells [51]. A purified recombinant human
survivin protein expressed in E. coli was shown capable
of binding to caspase-3 and caspase-7 in solution [52].
Furthermore, activation of caspase-3 and induction of
apoptosis were widely observed in cancer cells with sur-
vivin downregulations or inhibitions [53–59]. As afore-
mentioned, Smac is a negative-regulator of XIAP and it
promotes caspase activation and apoptosis through for-
mation of the XIAP-Smac protein complex. As an anti-
apoptotic molecule, survivin binds to Smac and conse-
quently prevents this molecule from binding onto XIAP,
resulting in the inhibition of caspase-9 and caspase-3
[60–62]. In addition, it has been shown that survivin nega-
tively modulates the activation of caspase-independent
apoptosis through regulation of the nuclear translocation of
apoptosis-inducing factor (AIF) [63].
Unlike other IAP family members, survivin also plays

an important role in mitosis. At the molecular level, sur-
vivin forms the chromosomal passenger complex (CPC)
with inner centromere protein (INCENP), borealin (also
known as Dasra), and Aurora B kinase and proper for-
mation (and localization) of the CPC during M phase of
the cell cycle are both crucial for the completion of mi-
tosis [64, 65]. Interestingly, a recent study revealed that
the survivin homodimer interacts with myosin II to
regulate cytokinesis [66]. Therefore, survivin is widely
accepted as a multi-functions protein, which is cap-
able of inhibiting caspase-dependent and -independent
apoptosis through both direct and indirect modula-
tions and promoting mitosis through formation of the
CPC in cancer cells.

Survivin negatively modulates autophagy
Emerging evidence indicates that survivin is a negative
regulator of autophagy. For example, the small molecule
survivin suppressant, YM155, was shown to induce the
death of salivary adenoid cystic carcinoma, breast cancer,
and the Bcl-xL silenced glioma cells in an autophagy-
dependent manner [67–69]. Despite autophagy upregula-
tion is known to promote homologous recombination and
DNA repair in cells under genotoxic stress [70, 71], Cheng
et al. demonstrated YM155 also induces autophagy-
dependent DNA damage in breast cancer cells regardless
to the expression of p53 and caspase-3 [68]. Moreover, de-
livery of a survivin promoter-driven antisense survivin-
expressing plasmid DNA was shown to induce apoptosis
and autophagy in A549, MDA-MB-231, and PANC-1 can-
cer cells in vitro [58]. Conversely, survivin overexpression
inhibits autophagy. For example, chemokine (C-C motif)
ligand 2 (CCL2, also known as MCP1) was found to pro-
tect human PC3 prostate cancer cells from undergoing
autophagic death via PI3K/AKT-dependent survivin upre-
gulations (Fig. 2) [72].
Mechanistically, survivin suppresses autophagy pos-

sibly through interference with the development of
autophagosome in cells [73]. It has been demonstrated
autophagy related protein 5 (ATG5) interacts with survi-
vin to displace Aurora B kinase from survivin in the nu-
cleus in MDA-MB-231 breast cancer cells treated with
DNA-damaging agents [74]. Interestingly, we recently
discovered that survivin inhibits the conjugation between
autophagy related protein 12 (ATG12) and ATG5 (i.e.
the formation of ATG12-ATG5 conjugate) through
physical interactions with both ATG12 (i.e. ATG12-
survivin complexation) and ATG5 (i.e. ATG5-survivin
complexation) [75]. We also found that survivin binds to
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ATG12-ATG5 conjugate (i.e. ATG12-ATG5-survivin
complexation) and inhibits the formation of ATG12-ATG5-
ATG16L1 in human cancer and mouse embryonic fibroblast
cells (Fig. 2) [75]. Besides inhibiting the conjugation and
complexation between ATG12, ATG5, and ATG16L1, sur-
vivin also negatively modulates the protein stability of au-
tophagy related protein 7 (ATG7; a protein that facilitates
LC3 lipidation) in part through an heat shock protein 27
(Hsp27) dependent mechanism [75]. Given that successful
formation of the ATG12-ATG5-ATG16L1 protein complex
is crucial for the elongation of autophagophore during ca-
nonical autophagy, inhibiting the formation of this protein
complex shall block the autophagic flux in cells (Fig. 2).
It is worth noting that the translation of survivin

mRNA transcripts is positively regulated by the AKT/
mTOR signaling pathway and targeting this signaling
pathway by small molecule inhibitor, rapamycin, has
been shown to induce autophagy in cells [76–80]. Fur-
thermore, as mentioned, XIAP inhibits autophagy via an
XIAP-Mdm2-p53 signaling pathway in p53WT-express-
ing cancer cells. Thus, survivin may inhibit autophagy in
part through interference with the XIAP-Mdm2-p53
pathway in p53WT-expressing cells. Collectively, even
though the detailed mechanistic role of XIAP and survi-
vin on autophagy regulation remains to be fully eluci-
dated, especially in p53−/− and p53mutant expressing cells;
however, it is clear that XIAP and survivin are not solely
an apoptosis inhibitor but a dual/multi-functions pro-
tein, which participates in both apoptosis, mitosis, and
autophagy regulations in cells.

BRUCE mediates homologous recombination and
autophagosome-lysosome fusion
BIR repeat containing ubiquitin-conjugating enzyme
(BRUCE, also known as Apollon) was discovered in 1998
Fig. 3 The dynamic autophagic environments model
as a member of IAPs family [81]. Structurally, it contains
a single BIR domain and a single Ubiquitin-conjugating
enzymes (UBC) domain (i.e. exhibits E2/E3 ubiquitin lig-
ase activity) [82, 83]. Mechanistically, BRUCE inhibits
apoptosis through physical interactions with DIABLO/
Smac and caspase-9 and promotes their degradation
through protein ubiquitination [84, 85]. Like survivin,
BRUCE was also found to exhibit caspase inhibitory un-
related functions in cells. Breast cancer susceptibility gene
C terminus-repeat inhibitor of human telomerase repeat
transcriptase expression 1 (BRIT1) is an early double dam-
age response factor. During DNA damage, BRIT1 is re-
cruited to the phosphated-H2AX (γ-H2AX) attached DNA
double-strand breaks and subsequently to facilitate DNA
repair. Downregulation of BRUCE was shown to inhibit the
ataxia-telangiectasia mutated and RAD3-related (ATR)-sig-
naling pathway and to impair BRIT1 deubiquitinationin in
U2OS cells. As demonstrated by Ge et al., the presence of
BRUCE is crucial during DNA replication and the DNA
double-strand breaks repair [86, 87]. Besides acting as an
apoptosis inhibitor, a study by Kikuchi et al. showed that
BRUCE also regulates mitosis through modulating the ubi-
quitylation and protein stability of cyclin A [88].
Recent evidence suggests that BRUCE may play a role in

the formation of autolysosome (autophagosome-lysosome
fusion). As described in the above sections, autophago-
some and autolysosome formations are medicated by both
sequential activations and complex formations between
different ATG family proteins. Among these ATG family
proteins, Autophagy related protein 8 (ATG8) family pro-
teins such as LC3, GABA type A receptor-associated pro-
tein (GABARAP), and GABARAP-LIKE 1 (GABARAPL1/
GEC1) govern the fusion between autophagosome and
lysosome (i.e. formation of autolysosome) [89]. An inter-
esting study by Ebner et al. revealed that BRUCE
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physically interacts with syntaxin 17 (STX17), GABARAP,
and GABARAPL1, to promote autophagosome-lysosome
fusion in mammalian cells independent of its catalytic func-
tion (Fig. 2) [90].

IAPs as “pro-survival autophagy” guardians?
Upregulation of autophagy has been shown to promote
the survival of cancer and cancer-related cells treated
with a variety of therapeutics including tamoxifen, pacli-
taxel, epirubicin, and azacytidine [14–18]. Autophagy is
also known to assist homologous recombination, which
is a type of DNA repair mechanisms, in cells treated
with DNA damaging agents and UV radiation [91–93].
Table 2 Status of different Smac mimetics

Name ClinicalTrials.gov Identifier Phase

AZD5582 – Pre-clinical

APG-1387
(SM-1387)

NCT03386526 Phase I

NCT03585322 Phase I

ASTX660 NCT04155580 Phase I

NCT02503423 Phase I/II

Birinapant
(TL32711)

NCT02587962 Phase I/II

NCT00993239 Phase I
(Completed)

NCT01188499 Phase I
(Completed)

NCT01940172 Phase I
(Completed)

NCT01573780 Phase I
(Terminated – safety unr

NCT01681368 Phase II
(Terminated – lack of a c

Debio 1143
(AT-406, SM-406)

NCT04122625 Phase I

NCT03270176 Phase I

NCT03871959 Phase I

NCT02022098 Phase I/II

NCT01078649 Phase I
(Completed)

GDC-0152 NCT00977067 Phase I
(Terminated – safety unr

LCL161 NCT02649673 Phase I

NCT03111992 Phase I

NCT01968915 Phase I
(Completed)

NCT02098161 Phase II

NCT01955434 Phase II
(Completed)

WX20120108 – Pre-clinical
As aforementioned, overexpression of IAPs has widely
been demonstrated to inhibit chemotherapeutic/targeted
therapeutic drugs induced apoptosis in cancer cells.
Therefore, it is unclear on the reason of having IAPs
such as XIAP and survivin as autophagy suppressors,
given that upregulation of autophagy and IAPs should
both promote the survival of cancer cells, especially
under cellular stressful conditions. Perhaps the main
function of XIAP, survivin, and BRUCE on autophagy is
not to largely promote or suppress this process, but to
fine tune and to maintain the level of autophagy within
certain “pro-survival” ranges. Despite upregulation of au-
tophagy is widely believed to promote DNA repair (like
Condition or disease (in patients)

–

Advanced Solid Tumors or Hematologic Malignancies

Chronic Hepatitis B

Relapsed/Refractory Acute Myeloid Leukemia

Advanced Solid Tumors and Lymphomas

Solid Tumors

Refractory Solid Tumors or Lymphoma

Advanced or Metastatic Solid Tumors

Relapsed Ovarian Cancer

elated issue)
Advanced Solid Tumors

linical benefit)
Advanced Ovarian, Fallopian Tube, and
Peritoneal Cancer

Solid Tumor

Advanced or Metastatic Non-Small Cell Lung
Cancer (NSCLC) After Platinum-Based Therapy

Pancreatic and Colorectal Advanced/Metastatic
Adenocarcinoma

Squamous Cell Carcinoma of the Head and Neck

Advanced Solid Tumors and Lymphomas

elated issue)
Locally Advanced or Metastatic Malignancies

Relapsed/Refractory Small Cell Lung Cancer (SCLC)
and Select Gynecologic Malignancies

Multiple Myeloma

Advanced Solid Tumors

Primary Myelofibrosis, Post-Polycythemia Vera
Myelofibrosis, or Post-Essential Thrombocytosis
Myelofibrosis

Relapsed or Refractory Multiple Myeloma

–

http://clinicaltrials.gov
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homologous recombination), a few studies showed that
excessive activation of autophagy causes DNA damage
in cells. For example, it has been demonstrated that
targeting cathepsin S (CTSS) induces autophagy, lead-
ing to the autophagy-dependent reactive oxygen spe-
cies (ROS) production and DNA damage in OEC-M1
cells [94]. A study by Chen et al. showed that upreg-
ulation of autophagy decreases the intracellular pool
of deoxyribonucleotide triphosphate (dNTP) in Huh-7
cells treated with Earle’s balanced salt solution (EBSS)
or rapamycin [95]. We also demonstrated that down-
regulating survivin by YM155 and siRNA induces
autophagy-dependent DNA damage and cell death in
human cancer cells [68, 75]. So clearly, excessive au-
tophagy (passing certain thresholds) can cause gen-
omic instability, and by altering the expression, post-
translational modification, and subcellular-localization
of XIAP, survivin, and BRUCE, cells can precisely
regulate the autophagy level to maintain their survival
under stressful conditions. However, if XIAP, survivin,
and BRUCE are three of the “guardians” of the “pro-
survival autophagy” (via fine tuning the autophagic
Fig. 4 The chemical structure of different Smac mimetics developed for ca
level of cells), then why contradicting results were
frequently reported regarding to the role of the “in-
duced autophagy” (i.e. autophagy-promoted survival
cell or autophagy-induced cell death) in cells treated
with agents targeting XIAP and BRUCE? As most
IAPs can directly or indirectly interact with multiple
molecules, which regulate different molecular and cel-
lular processes like DNA repair and mitosis, the ob-
served “resulting autophagic effects” probably were
not solely caused by the direct protein-protein inter-
action effects of these IAPs on different autophagy
core molecules, but were results of the dynamic
crosstalk between different IAPs-involved molecular
and cellular processes (Fig. 3). As the “weight” of
each of these processes varies under different cellular
environments or treatments, the autophagic outcome
can be completely different. Therefore, besides under-
standing the direct effects of XIAP, survivin, and BRUCE
on various autophagic/apoptotic/mitotic components, it is
also important to understand the dynamic interactions be-
tween the autophagic process and the surrounding mo-
lecular environments within the cell.
ncer treatments
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Conclusion and future directions
IAP family members are traditionally classified as caspase in-
hibitors with negative-modulating effects on cellular apop-
tosis. However, emerging evidence suggest that these
molecules can also regulate cellular autophagy. It is not sur-
prising that the anti-apoptotic molecules XIAP, survivin,
and BRUCE are capable of modulating autophagy, given that
the well-studied anti-apoptotic molecule, Bcl-2, is also
known to be an apoptosis-autophagy dual modulator (i.e.
inhibits Beclin 1-dependent autophagy) in cells [96]. As mi-
tosis, apoptosis, and autophagy are inter-connected, XIAP,
survivin, BRUCE, and Bcl-2 may act as bridging molecules
that control the dynamics and the balance between these
cellular processes. For example, cancer cells can upregulate
autophagy to produce the “minimal” energy needed for their
survival under serum deprivation. In addition, cancer cells
can also temporarily halt mitosis, probably to spare energy,
under serum deprivation. In fact, we found in a previous
study that serum deprivation decreases the complex-
ation between survivin and ATG12/ATG5 (possibly to
upregulate autophagy), but not caspase-3 (concur-
rently maintains apoptosis inhibition), in human cancer
cells [75]. However, it is still unclear on how cancer cells
regulate the expression and protein-protein interaction (i.e.
binding-target switch) of these IAPs to inter-regulate apop-
tosis, mitosis, and autophagy under different circumstances
(like under hypoxia and nutrient deprivation). Thus, further
investigations are needed to understand the differential reg-
ulations of these IAPs at the molecular level in cancer and
non-cancerous cells. As various Smac mimetics (IAP antag-
onists) are currently in different phases of clinical trial and
pre-clinical development (Table 2) (Fig. 4) [12, 97–104],
better understanding on the functions of IAPs (e.g. XIAP,
survivin, and BRUCE) can enable us to predict possible side
effects of the drugs and to design a more “patient-specific”
clinical trial for Smac mimetics in the future.
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