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Abstract

We study the stability mechanism of the swirling flow in a finite pipe. We first revisited

the Rayleigh’s linear stability theory, and build up the nonlinear theory in the framework

of Hamiltonian system. We then consider the Lamb-Oseen vortex in a finite pipe with fixed

flowrate condition at the boundaries. By using recently developed perturbation method of

the linear operators, we analyzed the global stability equation and found the disturbance

flow fields. We then conducted a study of the kinetic energy transfer mechanism between

the disturbance and the base flow by using the Reynolds-Orr equation. We found that

the energy transfer takes place actively at the boundaries as well as inside the flow. This

is contrast to the solid body rotation flow. We further investigated Lamb-Oseen vortex

in a slightly divergent pipe and showed that the internal flow has a leading role in the

energy transfer mechanism. This study clarifies the relation of the Rayleigh stability and

the global stability found by Wang and Rusak, and provide a basic understanding of the

stability mechanism of swirling flows in a finite pipe.

∗University of Auckland, Department of mathematics, 38 Princes Street, Auckland, New Zealand

1



Contents

1 Introduction 3

2 Mathematical model and stability equation 6

3 Rayleigh stability theory and the nonlinear theory 9

3.1 Rayleigh stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The nonlinear theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Energy transfer mechanism of the swirling flows in a finite pipe 13

4.1 The global stability as a consequence of the breakup of the Hamiltonian structure 13

4.2 Reynolds-Orr equation in the finite pipe . . . . . . . . . . . . . . . . . . . . . . 14

4.3 The energy transfer mechanism of Lamb-Oseen vortex in a straight pipe . . . . 16

4.3.1 Analysis of the flow field by the perturbation method of the linear operators 17

4.3.2 The energy budget for the Lamb-Oseen vortex in a straight finite pipe . 18

4.4 The energy budget of the Lamb-Oseen vortex in a slightly divergent pipe . . . 21

5 Summary of the findings and the conclusions 24

A The stability analysis of the Lamb-Oseen vortex 27

B Find the disturbance flow fields by using the perturbation method 29

B.1 Find the stream function of the disturbance . . . . . . . . . . . . . . . . . . . 29

B.2 The velocity field of the disturbances . . . . . . . . . . . . . . . . . . . . . . . . 32

C Derive energy transfer functions 33

D Find the steady solution for a long divergent pipe 34

References 36

2



1 Introduction

The study of the stability of axisymmetric swirling flows in a pipe has a long history. There

are excellent review papers on this topic, see for example Leibovich [8]. The development of the

concept and method of global stability is relatively new, see for example Huerre and Rossi [6],

for a review on this subject. In the following we will briefly state some of the previous results

that are directly related to this article. Rayleigh [10] established a fundamental criterion for

swirling flows in an infinitely long straight pipe in 1916. His criterion states that a columnar

swirling flow with a swirl velocity component V (r) and uniform axial velocity components

is stable to infinitesimal axially symmetric disturbances only if the square of the circulation

function, K = rV , decreases nowhere as r increases from the center of the pipe to the pipe

wall, i.e.:

Γ ≡ 1

r3
d

dr
(K2) > 0. (1)

The Rayleigh criterion was later strengthened by Synge to be also sufficient to linear stability.

Howard and Gupta[5] considered a similar flow but with non-uniform axial flow W (r), and

showed that if

J ≡ Γ

(dW/dr)2
>

1

4
, (2)

then the flow is linearly stable. There is a counter example showing that (2) is not necessary

for linear stability. In finite pipe, one shall assume the periodic boundary conditions imposed

at the inlet and outlet. The Rayleigh and Howard and Gupta criteria are all valid for such

flows.

The nonlinear stability of swirling flow was studied by Szeri and Holmes by using the

Arnold’s energy-Casimir method. However, the derived quadratic form suffers the lack of defi-

niteness, a necessity for obtaining the nonlinear stability. This is essentially due to the vortex

stretch mechanism. A high wavenumber cut-off method was thereby proposed to overcome

this difficulty, and many interesting stability results are obtained under the assumption that

the disturbance is limited to the wave frequency below certain cut-off value. One may justify

the assumption such that the high frequency disturbance may eventually be damped by the

viscous effect.

In the application of these criteria to real flows in a finite pipe, caution must be taken as

the periodic boundary conditions can be severely violated. In a long pipe, where the boundary
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condition’s influence is relatively weak, and the evolution of the disturbance sufficiently away

from the pipe ends may well be predicted by these criteria. However, there are important

cases, for example, the vortex breakdown phenomenon, wherever in a test rig or in a open flow

field, one finds significant upstream and down stream influences. It is questionable whether or

not the Rayleigh criterion can be applied in these situations. This type of problem was first

studied by Wang and Rusak [16] [17]. They considered certain boundary conditions imposed

at the pipe inlet and outlet, and studied the stability of the swirling flow under such boundary

conditions. It was found that the boundary conditions imposed dramatically alter the stability

nature of the swirling flow. In particular, an instability related to the swirl strength was found

that can not be explained by the Rayleigh’s stability theory. This type of stability has been

aptly interpreted by Gallaire and Chomaz [3] as being global in nature.

The global instability is found to be in good correlation with the experimental observations.

Numerical computations can accurately reproduce the initial evolution of the bubble type

vortex breakdown at the swirl predicted by the global instability onset. However, The physical

mechanism of this new stability has remained largely unexplained. The original analysis of

Wang and Rusak was mainly relied on a bifurcation argument, which is mathematically sound,

but lack of a clear physical insight.

Recently Gallaire and Chomaz [3] considered this problem by revisiting the case of the solid

body rotation flow in a finite pipe. They revealed that the unstable mode found in the solid

body rotation flow at a sufficiently high swirl is actually originated by the gain of energy at

the boundaries of the pipe. The vortex core serves only as a neutral waveguide. This identifies

the physical mechanism of the instability in the solid body rotation flow, and raise a question

whether or not this is still true for general swirling flows in a finite pipe.

In this article, we concentrate on revealing the physical mechanism of the stability of the

swirling flow in a finite pipe and filling the major gaps in the research. More specifically, we

consider the following questions:

1. Is the Rayleigh’s criterion a sufficient condition for the nonlinear stability? If it is, what

is the physical mechanism?

2. What is the mechanism of the global stability? How is it related to the Rayleigh’s stability

theory?

3. What is the distinguishing roles of the boundary and the internal flow in the energy
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transfer of general swirling flows in a finite pipe? Is it a necessary condition for the

global instability onset that the disturbance gains energy at the boundaries?

We give definite answers to all these questions in this study in a unified approach. The stability

mechanism is mainly examined from a viewpoint of the energy transfer between the disturbance

and the base flow. The Hamiltonian system theory has a crucial role in this study.

We first revisited the Rayleigh’s stability theory. Thus, we considered swirling flows in

a finite pipe with periodic conditions being imposed at the inlet and outlet. Such a flow

admits a Lie-Poisson bracket derived from the relabellings symmetry. As shown in Szeri and

Holmes, Arnold’s energy-Casimir method can be extended to study the nonlinear stability of

the swirling flows. For columnar swirling flows in a finite pipe with uniform axial velocity (the

case considered by Rayleigh), a crucial observation is that there is no active energy transfer

between the azimuthal and axial velocity components, and thus, a simplified Arnold function

can be found which enable us to avoid the high wave cut-off procedure. We are then able to

prove the formal stability. For the Lamb-Oseen vortex, we show further the nonlinear stability

and derive a global, a prior bound for the disturbance’s kinetic energy.

We then consider the Lamb-Oseen vortex in a finite pipe with fixed flowrate at the outlet.

This flow does not hold the Hamiltonian structure. The stability nature is expected to be

altered. By using recently developed perturbation method of the linear operators, we were

able to find the approximated growth rate function and the corresponding eigenmodes. We

then conducted a study of the kinetic energy transfer mechanism between the disturbance and

the base flow by using the Reynold-Orr equation. We found that the energy transfer takes

place actively at the boundaries as well as in the internal flow. This is sharply contrast to

the solid body rotation flow. We further investigated Lamb-Oseen vortex in a slightly divergent

pipe. It has been found that even though overall the boundaries have a damping mechanism,

the flow can nevertheless become neutral or even unstable. In this case, the internal flow has

been shown to be a main agency to transfer energy from the base flow to the disturbance.

This study clarifies the relation of the Rayleigh stability and the global stability, and

provides the understanding of the basic stability mechanism for swirling flows in a finite pipe

with various boundary conditions imposed. The new findings and their physical implications

are summarized and discussed in depth at the concluding section.

The article is organized in such a way as to focus on revealing the physics, and neces-

sary mathematical analysis has been postponed to the appendixes. One shall notice that the
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mathematical methods developed in this article are novel and of importance in future study of

vortex dynamics.

2 Mathematical model and stability equation

We consider axisymmetric, incompressible and inviscid flow in a finite length pipe. We

use cylindrical coordinates (r, θ, x), and the velocity components (u, v,w) corresponding to the

radial, azimuthal, and axial velocity, respectively . In the dimensionless form, the pipe radius

is set as a unit and the pipe length as L, rescaled with respect to the pipe radius. By virtue

of the axisymmetry, the stream function ψ(x, r, t) can be defined such that u = −ψx/r, and

w = ψr/r. Let y = r2/2, in terms of this new variable, w = ψy, u = − ψx√
2y

and the reduced

form of azimuthal vorticity χ = −(ψyy + ψxx/2y) ( the azimuthal vorticity η = χ
r ).

The Euler equation in terms of ψ, χ and the circulation function K, defined as K = rv,

can be written in a compact form (see for example Szeri and Holmes [15]):

Kt + {ψ,K} = 0,

χt + {ψ,χ} =
1

4y2
(K2)x, (3)

where the brackets {f, g} is the canonical Poisson bracket or Jacobian defined as:

{f, g} = fygx − fxgy. (4)

The first equation in (3) is a transport equation describing simply that K is conserved along

the stream line and the second describes the interaction of K and χ or the vortex stretch

mechanism.

Let us now consider a steady, columnar swirling base flow with all velocity components

depending only on the radius:

(U(r), V (r),W (r)) = (0, ωv0(r), w0(r)), (5)

where ω > 0 is the swirl parameter, from which, one may find ψ = ψ0(y) =
∫ y
0 w0(y)dy,

K = ωK0(y) with K0(y) =
√
yv0(y). This base flow is a steady state solution of the Euler

equation (3). ψ0(y) satisfies the well-known steady Squire-Long equation, see Squire [13] and

Long [9]:

∆SLψ = H ′(ψ) − I ′(ψ)

2y
, (6)
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where ∆SL denotes the operator

∆SLψ = ψyy +
ψxx
2y

, (7)

and H = p/ρ + (u2 + v2 + w2)/2 is the total head function (p is pressure and ρ density),

I = K2/2 is the extended circulation, both of which are functions of ψ0(y) only. We may write

I = ω2I0 with I0 = K2
0/2.

In the study of linear stability disturbances of stream function ψ1 and circulation K1 are

superimposed to the base flow:

ψ(x, y, t) = ψ0(y) + ǫψ1(x, y, t)...,

K(x, y, t) = ωK0(y) + ǫK1(x, y, t)..., (8)

with ǫ << 1. On substituting these expressions into the Squire-Long equation (3) and neglect-

ing the second order perturbation terms, one obtains the linearized equations of motion of the

swirling flow

K1t +w0K1x − ωK0yψ1x = 0,

χ1t + w0χ1x − χ0yψ1x =
(ωK0K1)x

2y2
, (9)

where χ1 = −∆SLψ1 is the disturbance of the azimuthal vorticity. This equation governs the

evolution of the small disturbance.

With introducing mode analysis:

ψ1(x, y, t) = φ(x, y)eσt,

K1(x, y, t) = k(x, y)eσt. (10)

where σ is the growth rate, one may derive from (9):

(

φyy +
φxx
2y

− (H ′′(ψ0) −
ΩI ′′0 (ψ0)

2y
)φ

)

xx

+
σχ0y

w2
0

φx +
2σ

w0

(

φyy +
φxx
2y

)

x

+
σ2

w2
0

(

φyy +
φxx
2y

)

= 0. (11)

where Ω = ω2, a rescaled swirl parameter. For the detailed derivation of (11), see Wang and

Rusak [17].

In this article, we focus on a particular vortex flow: the Lamb-Oseen vortex with uniform

advection (hither, it will be addressed as Lamb-Oseen vortex.). It contains a vortex core at
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the center in which the flow is similar to the solid body rotation flow whereas outside this

vortex core the flow is close to irrotational flow. The axial velocity of the Lamb-Oseen vortex

is uniform and the movement is specified by its axial velocity and its circumferential velocity,

w0(r) = W0,

ωv0(r) = ω
(1 − e−r

2/r2c )

r
, (12)

in which rc is the vortex core. In the study of the stability, the axial velocity can be always

rescaled as an unit. For convenience, let β = 1/r2c . It can be shown that (see detail in

S.Wang [18]) the stability equation reads as:
(

φyy +
φxx
2y

+
Ω

m(y)
φ

)

xx

+ 2σ

(

φyy +
φxx
2y

)

x

+ σ2
(

φyy +
φxx
2y

)

= 0. (13)

where,

m(y) =
y2

β(1 − e−2βy)e−2βy
. (14)

To study the swirling flow in a finite pipe certain conditions are imposed on the boundaries

to reflect the physical setting. We consider mainly the following boundary conditions:

1. We assume that for any time t, ψ(0, y, t) = ψ0(y) and K(0, y, t) = ωK0(y) are given at

the inlet.

2. We set ψxx(0, y, t) to fix the azimuthal vorticity χ along the inlet for all time t,

χ(0, y, t) = −ψ0yy.

3. At the outlet the flowrate is assumed unchanged at all time t, ψ(L, y, t) = 0.

4. As for a axisymmetric flow, we shall impose ψ(x, 0, t) = 0 for all time t and

ψ(x, 1/2, t) =
∫ 0.5
0 w0(y)dy to describe the total mass flux across the pipe.

From this, we may derive the corresponding boundary conditions for φ:

φ(x, 0) = 0, φ(x, 1/2) = 0, for 0 ≤ x ≤ L,

φ(0, y) = 0, φxx(0, y) = 0, k(0, y) = 0, for 0 ≤ y ≤ 1/2,

φ(L, y) = 0, for 0 ≤ y ≤ 1/2. (15)

Further more, k(0, y) = 0 can be replaced by:

φyyx(0, y) +
φxxx(0, y)

2y
−

(

H ′′(ψ0) −
I ′′(ψ0)

2y

)

φx(0, y) = 0.

(16)

We also consider the periodic boundary conditions imposed at the inlet and outlet.
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3 Rayleigh stability theory and the nonlinear theory

3.1 Rayleigh stability theory

We will first reexamine the basic idea of Rayleigh in his deduction of his criterion, and then

show how by extending his idea to obtain the nonlinear stability results. We consider a finite

straight pipe with periodic boundary conditions specified at the inlet and outlet throughout

this section. This is the finite pipe version of the Rayleigh’s theory.

In his original approach, Rayleigh observed that by Kelvin’s circulation theorem, K is

conserved along the stream line, and that the work done by the centrifugal force acting in

the radial direction actually can be associated with a potential energy density related to the

circulation function as ρK2

2r2 , which is precisely the kinetic energy of the azimuthal motion ρv2

2 .

By further observing that if in the base flow, K0(r) decreases somewhere, the aforementioned

potential energy is not at the minimum state, and the motion in the radial direction will be

liberated with the release of the potential energy. This is Rayleigh’s physical argument for

demonstrating the necessity of stability: Flow can not be stable if K0(r) decreases somewhere.

It is remakable that Rayleigh’s insight of the physics truly contains some deep mathematics.

Indeed, his using potential energy related to the conservation of circulation could be considered

as a pioneer work of Arnold’s energy-Casimir method.

It was shown by Synge[14]that the Rayleigh criterion is necessary and sufficient condition

for linear stability. However, it is not known yet whether or not the Rayleigh criterion is a

sufficient condition for nonlinear stability. We will give a definite answer to this long standing

problem in the following.

3.2 The nonlinear theory

Consider swirling flows in a finite pipe with periodic conditions being imposed at the inlet

and outlet. Such flows admit a Lie-Poisson bracket derived from the relabellings symmetry.

As shown in Szeri and Holmes, Arnold’s energy-Casimir method can be extended to study the

nonlinear stability of the swirling flow.

The general Arnold function for columnar swirling flow can be written as, see the details

in Szeri and Holmes,

A(χ,K) = H(χ,K) +C(χ,K) (17)
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=

H(χ,K)
︷ ︸︸ ︷

2π

∫

D

1

2

(

ψχ+
K2

2y

)

dydx+ π

∫ L

0
w(x, 0.5)dx

−π
∫ L

0
w(x, 0.5)dx + 2π

∫

D
χf(k)dydx+ 2π

∫

D
j(K)dydx+ 2π

∫

D
cyχdydx

︸ ︷︷ ︸

C(χ,K)

where, H(χ,K) is the kinetic energy, and C(χ,K) is the Casimir function; j and f are arbitrary

real-valued function, c an arbitrary constant. The fourth to sixth terms are constants of motion,

known as generalized swirl, generalized helicity and generalized impulse, respectively. The term

π
∫ L
0 w(x, 0.5)dx is also a constant of motion. The Arnold function is thus an invariant quantity

of the flow.

For columnar swirling flows in a finite pipe with uniform axial velocity W0 = 1, i.e ψ0(y) =

y, a key observation of this article is that there is no active energy transfer between the

azimuthal and axial velocity components, and thus, the general helicity can be outed from the

Arnold function:

A(χ,K) = 2π

∫

D

1

2

(

ψχ+
K2

2y

)

dydx+ 2π

∫

D
j(K)dydx + 2π

∫

D
cyχdydx. (18)

We assume that the circulation function K0(y) is monotonic increasing function of y, and the

Rayleigh’s criterion is thereby satisfied for this flow. We now define the inverse function K0(y)

as Y , namely,

y = Y (K0). (19)

One finds the first variation of (24) as

δA = 2π

∫

D

[

(
ψ0

2
+ cy)δχ+

χ0δψ

2

]

dydx+ 2π

∫

D

(
K0

2y
+ j′(K0)

)

δKdydx. (20)

To make it vanishing at the equilibrium, noticing that χ0 ≡ 0 and thus the term χ0δψ
2 vanishes,

one needs only to choose

c = −1

2
, j′(K0) = − K0

2Y (K0)
. (21)

The second variation is

δ2A = 2π

∫

D

(

δψδχ +
K0Y

′(K0)

2y2
δKδK

)

dydx. (22)

We may write it, in terms of the velocities of the disturbance, as

δ2A = 2π

∫

D

(

u2
1 + w2

1 +
K0Y

′(K0)

y
v2
1

)

dydx. (23)

10



Therefore, if Y ′(K0) ≥ 0, which is exactly the Rayleigh criterion, flow is formally stable. It is a

well known fact that the formal stability implies the linear stability. In finite dimensions, formal

stability also implies the nonlinear stability. However, our system is of infinite dimensions, and

the nonlinear stability must be studied case by case. This is basically because of the non-

compactness of the infinite dimensional space.

We now consider the nonlinear stability. By using the remainder of the second order

Taylor’s expansion, one obtains the following estimate

A(χ0 + δχ,K0 + δK) −A(χ0,K0) = 2π

∫

D

1

2

(

u2
1 + w2

1

)

dydx (24)

+2π

∫

D

{
K

4

(
1

y
− 1

Y (K)

)}′

K=Km

dydx,

where, Km(x, y) = θ(K(x, y, t) −K0(x, y)) +K0(x, y) with 0 ≤ θ ≤ 1 is an intermediate value

between K(x, y, t) and K0(x, y). For the solid body rotation flow, one finds Y (K) = K
2ω and

{
K

4

(
1

y
− 1

Y (K)

)}′

K=Km

=
1

4y
. (25)

And one obtains

A(χ0 + δχ,K0 + δK) −A(χ0,K0) = 2π

∫

D

1

2

(

u2
1 + w2

1

)

+ 2π

∫

D

1

4y
δKδK (26)

= 2π

∫

D

1

2

(

u2
1 + w2

1 + v2
1

)

dydx.

This is exactly the kinetic energy of the disturbance (after multiplying the density). This

is a result as anticipated. In fact, consider a reference frame attached to the solid body of

rotation. The flow is seen static in this reference frame. There are two non-inertial forces

exerted on the flow, the centrifugal and Coriolis forces. The kinetic energy of the disturbance

is conserved because neither can perform work to the flow. Actually, the solid body rotation

flow does strongly indicate that the Rayleigh criterion is essentially a criterion for the nonlinear

stability. It also shows the correctness of our method and the derivation. Applying the same

method to other swirling flows will lead to non-trivial nonlinear stability result and obtain the

global estimate of the disturbance’s energy. We conduct such analysis for our base line flow:

the Lamb-Oseen vortex.

For the Lamb-Oseen vortex, one has K0(y) = ω(1 − e−2βy) and thus

Y ′(K0) =
1

K ′
0(Y )

=
1

2ωβe−2βY
. (27)
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Using this, one obtains

{
K

4

(
1

y
− 1

Y (K)

)}′
=

1

4

(

1

y
− Y − (e2βY − 1)/2β

Y 2

)

. (28)

We may estimate the Arnold function as

A(χ0 + δχ,K0 + δK) −A(χ0,K0) (29)

= 2π

∫

D

1

2

(

u2
1 + w2

1

)

dydx+ 2π

∫

D

1

4

(

1

y
− Y − (e2βY − 1)/2β

Y 2

)

Y=Y (Km)

δKδK dydx,

or

A(χ0 + δχ,K0 + δK) −A(χ0,K0) (30)

= 2π

∫

D

1

2

(

u2
1 + v2

1 + w2
1

)

dydx+ 2π

∫

D

1

4

(

−Y − (e2βY − 1)/2β

Y 2

)

Y=Y (Km)

δKδK dydx.

It is easy to verify that the function in the bracket is an increasing function for Y ∈ (0, 0.5)

and

0.5 = lim
Y→0+

−Y − (e2βY − 1)/2β

Y 2
≤ −Y − (e2βY − 1)/2β

Y 2
≤ −0.5 − (eβ − 1)/2β

0.52
≈ 24.4. (31)

One obtains thus

2π

∫

D

1

2

(

u2
1 + v2

1 + w2
1

)

dydx+ 2π

∫

D

24.4y

4y
δKδK dydx (32)

≥ A(χ0 + δχ,K0 + δK) −A(χ0,K0).

Considering y ∈ (0, 0.5), one has

2π

∫

D

1

2

(

u2
1 + w2

1 + 12.2v2
1

)

dydx ≥ A(χ0 + δχ,K0 + δK) −A(χ0,K0). (33)

One has from (30) obviously

A(χ0 + δχ,K0 + δK) −A(χ0,K0) ≥ 2π

∫

D

1

2

(

u2
1 + w2

1 + v2
1

)

dydx. (34)

One therefore obtains the following global estimate of the disturbance’s kinetic energy related

to the initial disturbance

2π

∫

D

1

2

(

u2
1 + w2

1 + 12.2v2
1

)

|t=0dydx ≥ 2π

∫

D

1

2

(

u2
1 + w2

1 + v2
1

)

dydx. (35)

It is interesting to observe that in the solid body rotation case, the kinetic energy of the distur-

bance is conserved whereas in Lamb-Oseen vortex case, the kinetic energy of the disturbance is
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bounded by the kinetic energy of the initial disturbance. The estimate of the bound is global

and a priori in nature.

The stability theory of inviscid swirling flows in a finite straight pipe with periodic boundary

conditions (or equivalent infinite straight pipe) can be considered as completed. The Rayleigh

criterion is essentially a necessary and sufficient conditions for the nonlinear stability.

4 Energy transfer mechanism of the swirling flows in a finite

pipe

4.1 The global stability as a consequence of the breakup of the Hamiltonian

structure

It is clearly shown in the previous section that the stability nature ties strongly to the

Hamiltonian, namely, the conservation of the kinetic energy, circulation and impulse. In par-

ticular, the conservation of circulation leads to a potential energy-like Casimir function which

modulates the energy exchange between the azimuthal component and the other components.

However, if the boundary conditions are not assumed periodic, the system is not Hamiltonian,

and the conservation of kinetic energy, impulse and circulation does not hold any more. One

shall notice that in practical problem the periodic conditions often do not reflect the real phys-

ical situation. The question is therefore raised as in which degree the more realistic boundary

conditions can change the stability and the dynamics of the flow.

Wang and Rusak introduced the analysis of the linear stability of the swirling flow in a

finite pipe with a set of boundary conditions which models the flow inlet and outlet physical

conditions. They found that the stability nature is very different from the Rayleigh’s stability.

Original neutral mode becomes asymptotic stable at low swirl whereas it becomes unstable at

sufficient high swirl. Comparing this to the Rayleigh stability theory, it is evident that the

boundary conditions used in Wang and Rusak break up the Hamiltonian nature of the system,

and new linearly stable and unstable modes thereby emerge into the picture. It is clear that

such instability can not be understood in the framework of the Rayleigh stability. In our

view, the Rayleigh’s stability and the global stability found by Wang and Rusak are naturally

complement each other, and the combination of the two gives a rather complete picture of the

stability of swirling flow in a finite pipe.

A subtle issue about this new stability is that at low swirling level, the modes are all
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asymptotic stable, and do not change the base flow state. The instability only occurs at

sufficiently high swirl when the standing wave is at the first time sustainable in the flow field.

This coincidence of the wave characteristics has shaded the global instability mechanism for

decades. In real flows such as pipe swirling flows, leading edge vortex over a Delta wing or

many other real situations, such instability often becomes predominant and induces the drastic

change of the flow field.

4.2 Reynolds-Orr equation in the finite pipe

We will concentrate on the study of the energy transfer mechanism for swirling flows in a

finite pipe. We rely on more on the linear stability analysis. Recent progress Wang [18] based

on the perturbation method of linear operators enables us to conduct a semi-analytic analysis

of the stability problem for any columnar swirling flow. In particular, we are now able to find

an approximated analytic expression of the eigenmode. This is very useful in the study of the

energy transfer mechanism. In fact, with such explicit expression, The energy transfer between

the disturbance and the base flow can be readily analyzed by the Reynolds-Orr equation.

We introduce the inviscid Reynolds-Orr equations for swirling flow in a finite pipe. The

total kinetic energy of the disturbance contained in a finite pipe is (with multiplying density

ρ)

E(t) = π

∫

D

(

u2
1 + v2

1 + w2
1

)

dydx. (36)

For an axisymmetric base flow with velocity components (U, V,W ), The Reynolds-Orr equation

(see for example, Schmid and Henningson[12] and Wu, Ma and Zhou[19]) is written as

dE(t)

dt
=

∫

D
(u1, v1, w1)D(u1, v1, w1)

Tdxdy −
∫ 0.5

0
[u1p1]

x=L
x=0 dy −

∫ 0.5

0

[

U(u2
1 + v2

1 + w2
1)
]x=L

x=0
dy(37)

where p1 is the disturbance of the pressure, and D is the symmetric strain rate of the base

flow,

D =
1

2









2Ur r(Vr )r Wr + Uz

r(Vr )r
2U
r Vz

Wr + Uz Vz 2Wr









. (38)

For the columnar swirling flow with uniform axial flow W ≡ 1,

(U(r), V (r),W (r)) = (0, ωv0(r), 1), (39)
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it takes particularly simple form:

D =
1

2









0 ω(dv0dr − v0
r ) 0

ω(dv0dr − v0
r ) 0 0

0 0 0









. (40)

Inserting this into (37), one obtains

dE(t)

dt
= −2π(

∫

D
ω

(
dv0
dr

− v0
r

)

v1u1dydx (41)

−
∫ 0.5

0
[w1p1]

x=L
x=0 dy −

1

2

∫ 0.5

0

[

u2
1 + v2

1 + w2
1

]x=L

x=0
dy).

The first term in RHS represents the contribution to the kinetic energy of the disturbance from

the internal flow. The second term in RHS represents the work done to the disturbance due to

the pressure disturbance which is exerted on the fluid at the inlet and outlet. The third term

in RHS represents the disturbance’s kinetic energy flux at the inlet and outlet.

With periodic boundary conditions imposed at inlet and outlet, the boundary terms vanish,

and one has

dE(t)

dt
= −2π

∫

D
ω

(
dv0
dr

− v0
r

)

v1u1dydx (42)

One may easily verify that for the solid body rotation flow the integral at RHS vanishes (the

solid body rotation flow is apparently strain free). We thus recover the conservation of the

kinetic energy of the disturbance. For the Lamb-Oseen vortex, the same term does not vanishes

and the kinetic energy transfer between the base flow and the disturbance takes place inside

the flow.

In the next section, we consider the Lamb-Oseen vortex with boundary conditions (15).

The fixed flowrate boundary conditions have an advantage such that the second term in (41)

becomes inactive. For Lamb-Oseen vortex, one has

dv0
dr

− v0
r

= 2βe−2βy − (1 − e−2βy)

y
. (43)

And the Reynolds-Orr equation reads as

dE(t)

dt
= 2π

(
∫ 0.5

0

∫ L

0
ω

(

2βe−2βy − (1 − e−2βy)

y

)

u1v1dxdy +
1

2

∫ 0.5

0
[u2

1 + v2
1 ]
x=0
x=Ldy

)

. (44)

This equation clearly distinguishes the contributions to the kinetic energy of the disturbance

from the internal flow and the boundaries.
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One shall notice that the Reynolds-Orr equation alone does not lead to any sharp estimate

of the energy transfer for general swirling flows. However, when the disturbance flow field

has been found, a precise estimate of the energy transfer can be obtained by applying the

Reynolds-Orr equation.

4.3 The energy transfer mechanism of Lamb-Oseen vortex in a straight pipe

The stability of the solid body rotation flow in a finite pipe has been thoroughly studied

by Wang and Rusak [17], Gallaire and Chomaz [3] and Gallaire, Chomaz and Huerre,[4]. It

has been shown in Gallaire and Chomaz [3]that the stability of the solid body rotation flow is

solely dependent on the net gain of the energy at the inlet and outlet. This is natural from the

Reynolds-Orr equation as has been shown that there is no kinetic energy transfer takes place

inside the flow. Actually, a special form of Reynolds-Orr equation is derived in Gallaire and

Chomaz [3].

The subtle point is that the solid body rotation is an exceptional case, and in general case,

the internal flow is active in energy transfer. Flow being neutral under the Rayleigh’s sense

does not by any means imply its being inactive in energy transfer between the disturbance

and base flow. The disturbance may absorb energy from the base flow at one location and

gives it back at another location. The discussion of the nonlinear stability of the Lamb-Oseen

vortex with the periodic boundary conditions shows solely that such energy transfer does not

lead to the net gain of the energy to the disturbance, globally. When boundary conditions

other than the periodic condition are imposed, the Hamiltonian breaks up, and thereby an

important global constraint on the energy transfer is lifted. The stability nature shall thus be

changed. It shall be emphasized that the boundary conditions do not only change the physics

at the boundaries but also the entire flow field. This is the main result of this section.

The stability equation of the Lamb-Oseen vortex has been recently studied by Wang [18]by

using perturbation theory of linear operators, and its growth rate function has been found

approximately. See Appendix A for a brief description of the method and relevant useful

terminologies. An extension of the method would allow us to find the velocity field of the

disturbance, and enable us to conduct a study of the energy transfer mechanism. In order to

focus on the discussion of the physical mechanism we postpone the technical analysis to the

Appendix B.
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4.3.1 Analysis of the flow field by the perturbation method of the linear operators

The stability equation of columnar flow in a finite pipe has been solved by Wang [18]. For

a typical case: β = 4 and L = 6, which will be used as our base flow in this article, the

approximated growth rate function has been found, and is shown in Figure 1. We found that
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Figure 1: Growth rate σ of the Lamb-Oseen vortex with fixed outlet flow. The first to fourth

order approximation. The left plot: First and second branch; The right plot: 3rd and 4th

branch

the growth rate function resembles to the solid body rotation flow case. The approximated

growth rate curve of the Lamb-Oseen vortex shows that at the swirl Ω1,1 ≈ 0.7910, flow

becomes neutral at the first time, which we define as the first critical swirl. Flow is asymptotic

stable when swirl below the critical swirl and becomes unstable when swirl above it. With

fourth order approximation, one found the relation between σ and Ω at the neighborhood of

the first critical swirl, see [18],

Ω ≈ 0.7910 + 3.847σ + 1.868 × 102σ2 + 6.474 × 104σ3 + 3.654 × 106σ4. (45)

In order to use the basic energy transfer equation (44), the flow field of the disturbance,

u1 and v1 must be found. This task will be carried out by using the perturbation method.

In Appendix B we find the eigenfunction φ(x, y;σ) for sufficient small σ with second order

accuracy, see the explicit formula (75) for φ(x, y;σ) and the lengthy derivation there. Figure 2

shows φ(x, y;σ) for σ = 0, 0.0007, 0.0014, 0.0021 A noticeable feature of the eigenfunctions

is that they become more asymmetric as σ increases. In the case where periodic boundary

conditions are imposed, the eigenfunctions are all sine function along the axial direction. The
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Figure 2: The eigenfunctions φ(x, 0.1;σ) for σ = 0, 0.0007, 0.0014, 0.0021 and y = 0.1.

asymmetry found here reflects the influence of the boundary.

4.3.2 The energy budget for the Lamb-Oseen vortex in a straight finite pipe

After the finding of the stream function of the disturbance, one may readily proceed to find

u1 and v1 from φ(x, y;σ), (See (78) and (82) in Appendix B for the explicit expressions of u1

and v1) and substitute them into the Reynolds-Orr equation. This can be done by a direct

numerical computation. However, the mathematical expression can be significantly simplified.

And we conduct the analytic work in Appendix C. Based on the analysis we may write the

Reynolds-Orr equation of the Lamb-Oseen vortex (44) in the form

dE(t)

dt
= 2π

∫ 0.5

0
(Ein(y;σ) + Eb(y;σ)) dy, (46)

where,

Ein(y;σ) = ω

(

2βe−2βy − (1 − e−2βy)

y

)
∫ L

0
u1v1dx, (47)

and

Eb(y;σ) =
1

2

[

u2
1 + v2

1

]x=0

x=L
. (48)

Eb(y;σ) represents the density of the boundary energy transfer rate at the radial location y,

and Ein(y, σ), the density of the internal energy transfer rate at y which takes into account

of the axially accumulated effect. A neat close form (89) has been derived for Ein(y;σ) in

Appendix C. See also (91) for Eb(y;σ). Based on these formulas we calculate Ein(y;σ) and
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Figure 3: The energy transfer density functions: solid line: Ein(y;σ) and dashed line: Eb(y;σ) with

σ = 0.0001.

Eb(y;σ), and plot the results in Figure 3. It is clear from this plot that the energy transfer

between the base flow and the disturbance does take place in the internal flow. One shall

notice that the Lamb-Oseen vortex is neutrally stable according to the Rayleigh criterion. In

the analysis of Rayleigh theory, Fourier modes are introduced in axial direction. This is a valid

analysis for swirling flow in a infinitely long pipe, for in the case all disturbance with finite

kinetic energy (or mathematically the disturbance is belong to L2 space) can be decomposed

into Fourier modes. One may understand the situation as that in an infinite pipe, all finite

energy disturbance appears symmetric from the far field. Applying the Reynolds-Orr equation

to this flow, one should find the gain and loss of the disturbance’s kinetic energy are perfectly

balanced because of the symmetry of the Fourier modes.

In our case, the boundary conditions imposed certainly change the energy transfer mecha-

nism at the boundaries. It is also true that the physical nature of the internal flow is changed

too. In fact, we have already found that the eigenmode is not any more sine function along the

axial direction, and it becomes more asymmetric when Ω moves further away from the critical

swirl. Such an asymmetric mode certainly results from the reaction to the non-symmetric flow

conditions at the inlet and outlet. We now demonstrate that the asymmetry directly induces

the energy exchange between the disturbance and the base flow. We need thus to examine the

integrand in the Reynolds-Orr equation:

ein(x, y) = ω

(

2βe−2βy − (1 − e−2βy)

y

)

u1v1. (49)
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We examine the axial variation of this function at a fixed radial position. Figure 4 shows the

typical behavior of ein(x, y) by a slice of this function with fixed y = 0.05. The computation is

based on σ = 0.001, which gives a swirl level slightly above the critical swirl Ω1,1. The primary

flow is slightly unstable. It is found from this plot that ein(x, 0.05) is asymmetric, as expected.
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Figure 4: The axial variation of the energy transfer density ein(x, y0) with y0 = 0.05.

The disturbance absorbs the energy from base flow up to the axial location x = 2.772, which

is significantly away from the middle point of the pipe x = 3. The disturbance loses its energy

to the base flow in the rear part of the pipe after x = 2.772. From this plot, it can be seen

that the area below the x axis is slightly larger than the area above the x axis. Therefore, the

axially accumulated disturbance’s energy gain is negative.

In the case of the swirling flow in the finite pipe, the first critical swirl, at which the standing

wave is sustainable at the first time in the base flow, turns out to be a clear sign for the global

instability arising. In fact, as a manifestation of the breakup of the Hamiltonian, the original

neutral mode becomes asymptotic stable at low swirl, eventually regains the neutrality at the

critical swirl, and becomes unstable when the swirl is above the critical swirl.

For our particular base flow, namely the Lamb-Oseen vortex, it is found that the disturbance

actually loses its kinetic energy to the base flow in the internal flow when the flow is in the

unstable range whereas it gains the energy otherwise. One shall notice that this is not a general

behavior. It is not hard to find examples to show the opposite. The key observation is that

the internal flow is generally active in the energy transfer.

One also find that the loss and the gain in this case are seen less than 10% of the total
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energy exchange. The majority of the energy exchange still occurs at the boundaries. This

gives a good explanation why the growth rate curves of Lamb-Oseen vortex resembles the solid

body rotation flow.

We also calculate the energy exchange rate based on the second order approximation of

the eigenfunction. We found that the contribution from the second order is small, and can be
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Figure 5: The first and second order of the energy transfer density functions ein and eb at σ = 0.001.

ignored. See Figure 5.

4.4 The energy budget of the Lamb-Oseen vortex in a slightly divergent

pipe

In the previous paragraph, we found that in the Lamb-Oseen vortex in a straight pipe, the

boundaries are still the main agency for energy transfer, and the internal energy transfer does

take place but has a minor role in the total energy transfer. It is of great interest, therefore, to

find an example such that the internal energy exchange is more significant, and has a leading

role in the creation of the flow instability. We found that a divergent pipe can be an appropriate

example.

To study the roles of the boundary and the internal flow in the energy transfer mechanism

one may concentrate on the neutral state. It has the advantage that the relevant analysis can

be greatly simplified, yet the physics can be sufficiently clarified. In the straight pipe case, for

example, one finds that the neutral eigenmode, as shown in Figure 2, is a sine-function along

the axial direction, and thus the energy gain at the inlet is equal to the loss at the outlet.
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Considering this energy balance at the boundaries and the neutrality of the flow state, one

may instantly conclude that the net internal energy transfer must be zero.

We will show in the following that the inlet will become less active after introducing a

divergent section at the pipe entrance. In another word, the radial velocity at the inlet is

less sensitive to the change of the flow in the pipe. Accordingly the energy gain at the inlet is

reduced. The basic idea by using a divergent pipe is based on the change of the physical nature

of the base flow in such a pipe. In fact, the swirling flow in a long pipe with a divergent section

at the pipe entrance reaches the critical state in such a manner that at the divergent section it

is locally supercritical and it becomes locally subcritical at the rear part of the pipe. As such,

the standing wave consists of two parts of spatial development: an evanescent standing wave

at the divergent section and followed by a sinuous bending standing wave. The streamline of

the standing wave at the inlet is flatten as its being evanescent, and the amount of energy

absorbed at the inlet is thus reduced according to the Reynolds-Orr equation. One finds that

the energy gain at the inlet can not supply sufficient energy to offset the loss at the outlet.

The total energy gain at the boundaries becomes negative. As the flow considered is in the

critical state, the leftover loss must be compensated by the energy gain in the internal flow.

Technically, the critical state in a long divergent pipe can be found by a long wave approach.

A similar problem with a different outlet boundary condition, namely, assuming non-radial flow

at the outlet, has been studied by Rusak, Judd and Wang [11]. The method used there can

be applied to our case almost identically. See Appendix D for the analysis of the Lamb-Oseen

vortex in a slightly divergent pipe. The pipe length is chosen as L = 10, and the pipe shape is

defined by a smooth function, see (92) for the exact definition.

We found the bifurcation diagram of the steady solution with regarding to the swirl change

∆Ω for this case, see figure 6. In this figure, the vertical coordinate is the minimum axial

velocity of the flow at the centerline of the pipe and the horizontal coordinate refers to the

change of the swirl, respectively.

Note that a saddle node bifurcation is formed at the critical state, and the stability is

expected to be changed in general. One may conduct a local analysis to confirm it. This can

be done by the perturbation method of the linear operators. As this study is concentrated on

the basic mechanism, we turn our attention to the critical state and the neutral mode. We

found that the neutral mode can be expressed in a form with variables separated, namely,

ϕ1(y)Ψ(X), where X = x
10 , a rescaled length. Ψ(X) is plotted in Figure 7. It is found that
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Ψ(X) is indeed significantly deviated from the sine-like function along the axial direction. At

the first half of the pipe, Ψ(X) appears as an evanescent wave whereas at the second half of

the pipe, as a sine-wave. One finds that the magnitudes of the slop at the inlet and outlet are

much different. It is clear that the disturbance’s energy loss at the outlet is much larger than

the gain at the inlet. According to the Reynolds-Orr equation, one finds

Gain at the inlet

Loss at the outlet
=

Ψx(0)
2

Ψx(L)2
≈ 0.12. (50)

Therefore, the gain through the internal energy exchange supplies other 88% of the energy

loss at the outlet. When the swirl is changed from the critical swirl, an unstable branch is

developed as shown in Figure 6. where, the internal gain must surpass the total loss at the

boundaries, and sustains the exponential growth of the disturbance.

5 Summary of the findings and the conclusions

We have studied the stability mechanism of swirling flows in a finite pipe. This study has

revealed the energy transfer mechanisms in the swirling flows, and provided a basic understand-

ing of the physical nature. We summarize in the following the new findings of this research,

discuss the physics in light of the new findings and draw conclusions whenever appropriate.

1. The Rayleigh’s criterion is proved to be necessary and sufficient for flow being formally

stable. The Lamb-Oseen vortex in a finite pipe with periodic conditions imposed is shown

to be nonlinear stable against any axisymmetric disturbance, and a global estimate of the

disturbance’s kinetic energy is obtained. The Hamiltonian structure and the underline

symmetry play crucial role in the proof. The basic physics may be understood as follows.

Considering a pure vortex (with zero axial velocity) as the base flow, one notices that for

such flow the velocities of the radial and axial components of the disturbance are coin-

cident with the total flow velocities with the same components. Therefore, if the kinetic

energy of the axial and radial disturbances grows, the kinetic energy of the azimuthal

component must decay as to balance the total kinetic energy, but this is not possible if the

relevant “potential energy” is at a minimum level. This reveals a subtle energy-locking

mechanism existent in the flow being stable in the sense of the Rayleigh’s stability. One

notes that Rayleigh has given an physical explanation of the necessity of his criterion.

The two explanations, as a whole, offer a rather complete picture of the physics.
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2. When other boundary conditions are imposed at the pipe ends, such as those discussed

in this article, the flow system changes from a closed system to a open system, and the

Hamiltonian structure (Lie-Poisson bracket) does not hold. The aforementioned stability

mechanism for the Rayleigh’s stability is thus also destroyed. One finds that typically,

the original neutral mode becomes asymptotic stable at the low swirl level, a clear sign

that the Hamiltonian structure is destroyed, and that it will becomes neutrally stable at

the first critical swirl, and unstable beyond that level. The appearance of the standing

wave in the base flow is often an clear indication for the occurrence of flow instability.

One shall, however, notice that even though the occurrence of the instability is in certain

way related to the wave propagation nature, the instability itself is certainly more than

a wave phenomenon. It involves the energy transfer mechanism between the disturbance

and the base flow at the boundaries and inside the flow.

For instance, for the Lamb-Oseen vortex one finds such a energy transfer mechanism.

Especially, the vortex core is found being active in energy transfer. This is a new mecha-

nism identified in this study. It is a rather surprising result. It is a well known fact that

the Lamb-Oseen vortex is stable against the axisymmetric disturbance. It is generally

believed that the vortex core in the case serves as solely a neutral waveguide. One must

notice, however, that the boundary conditions have an influence on the whole flow. The

non-symmetric flow conditions at the inlet and outlet naturally induce the non-symmetric

eigenmode which becomes active in energy transfer. One also notice that the solid body

rotation flow is but an exceptional case where the strain rate of the base flow vanishes

everywhere, and thus can not support the internal energy transfer.

3. The boundaries are found still having an important role for the energy transfer mechanism

of the Lamb-Oseen vortex in a finite straight pipe. The disturbance’s kinetic energy influx

and out flux at the pipe ends comprise the principal energy gain and loss in the case. We

found that about 90% of the energy transfer occurs at the boundaries in the Lamb-Oseen

vortex. The internal energy transfer counts another 10%.

However, a net energy gain at the boundaries is not a necessary condition for the onset

of the global instability. This has been demonstrated by the case of the swirling flow

in a divergent pipe. One finds that in this case the disturbance loses its energy at the

boundaries, yet the flow can be shown to be neutral or unstable. This clearly demon-
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strates that the disturbance’s energy gain at the boundary alone does not determine the

stability of the flow. The internal flow energy transfer is found significantly enhanced in

the case.

This seems to suggest that the flow non-uniformity alone can induce the global instability

at a sufficient high swirl. This is, however not true. One may consider an infinitely long,

divergent and convergent pipe filled with the solid body rotation flow, assuming there is

no axial movement. Such flow is apparently nonlinear stable for any type of disturbance

at any swirl level because of the strain-free nature of the base flow. In fact, Hamiltonian

structure is generally preserved for swirling flows in a divergent and convergent pipe

with periodic boundary condition specified at the inlet and outlet. The dynamics of

such flows must follow the general behavior of the Hamiltonian system. For example,

the asymptotic stable mode is not possible, and the stable mode is again always neutral.

See, for example, Arnold’s classical book [1]. We thus conclude that it is the breakup of

the Hamiltonian not the flow non-uniformity that is directly responsible for the the global

stability found in swirling flows.

4. In real flow situations, the periodic boundary conditions are rarely satisfied. Swirling

flows are seen often under strong real flow influence at the boundaries, such as vortex

generations at the upstream and viscous dissipations and breakup of a large scale of

turbulences at the downstream, which certainly yield the ideal conditions for the global

stability onset. Therefore, the global stability is a real flow phenomenon existent in many

flows of importance in real world. Its effects may not be observed at low swirl level, as

flow is asymptotic stable in the case. However, the manifestation of the instability is

strong at sufficient high swirl. In fact, the global instability occurs very robustly and

often induces drastic change of flow state, as has been observed in the vortex breakdown

phenomenon.

The conclusions drawn above shed new light on the physical mechanism of swirling flows in

a finite pipe. The stability mechanism has been studied with the Hamiltonian system theory,

and the physical nature has been revealed in a rather fundamental level. These results build a

clear picture of the stability of swirling flows in a finite pipe. Especially the relation between

the Rayleigh’s stability and the global stability has been clarified, and the energy transfer

mechanism has been identified.
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This study has revealed the complexity of the dynamical behaviors of the swirling flows.

Swirling flows as comprising high density of kinetic energy are highly sensitive to the flow

condition change, and tend to lose the stability whenever circumstances arising that may

liberate the confined kinetic energy, which can be caused certainly by a unstable distribution

of the centrifugal body force but can also be induced by the imbalance of the flow field at

the upstream and the downstream. Therefore, in the study of the swirling flows, the physical

problem must be presented precisely. This raises the “need” of the consistency in the future

study of the dynamics of the swirling flows. In the context of the vortex breakdown, for

example, one uses often different mathematical models for the theoretical studies and for the

numerical simulations. This has led to significant discrepancies between the theories and the

numerical simulations. The author believes that the consistency in all aspects of the researches

would be the key to clarify the fundamental mechanism of this complicated fluid phenomenon.

The physical mechanisms revealed in this article may exist in many other flows. One may

notice that in the discussion of the mechanism, we often give a “qualitative” argument at first

which is then followed and supported by an accurate mathematical analysis. This gives strong

indication that the flow behaviors discussed in this article are of a general nature. Real flows

in various similar situations are expected to share some common features found in this study.

We believe that the mathematical methods developed in this article can be generally useful

for the future extension of the theory to other flow problems, and the physical insight being

gained in this study may provide a good guidance for such studies.

A The stability analysis of the Lamb-Oseen vortex

The stability equation of the Lamb-Oseen vortex in a finite pipe has been studied in

Wang [18], and the approximated growth rate function has been found. We briefly state

the mathematical method used there. This method will be extended in the next section to find

the flow field of the disturbance which is needed for applying the Reynolds-Orr equation.

The stability equation (13) can be formulated as the following perturbation problem:

T (0)

︷ ︸︸ ︷

−m(y)

(

φyy +
φxx
2y

)

+σ

∫ x

0

[

−2m(y)(φyy +
φxx
2y

)

]

dx

︸ ︷︷ ︸

T (1)

27



+
σ2

2

∫ x

0

∫ x

0

[

−2m(y)(φyy +
φxx
2y

)

]

dxdx

︸ ︷︷ ︸

T (2)

= Ωφ (51)

subject to the boundary conditions derived from (15):

φ(x, 0) = 0, φ(x, 1/2) = 0, for 0 ≤ x ≤ L,

φ(0, y) = 0, for 0 ≤ y ≤ 1/2,

φ(L, y) = 0, for 0 ≤ y ≤ 1/2. (52)

One may write (51) as:

T (σ) = T (0) + σT (1) + σ2T (2), (53)

The stability equation can be solved by using the perturbation method of the linear operators.

One first solves the zeroth order eigenvalue problem:

−m(y)

(

φyy +
φxx
2y

)

= Ωφ (54)

with boundary conditions (52), by using the method of separation of variables. The eigenfunc-

tions have been found as:

φ∗o,n(x, y) =

√

2

L
Φ∗
o,n(y) sin(

nπx

L
) (55)

with Φ∗
o,n(y) solving the reduced zeroth order eigenvalue problem

Φyy −
n2π2Φ

2L2y
+

Ωo,n

m(y)
Φ = 0,

Φ(0) = 0,Φ(
1

2
) = 0, (56)

and normalized as

(
∫ 0.5

0

Φ∗2
o,n(y)

m(y)
dy

) 1
2

= 1, (57)

where, Ωo,n are eigenvalues with o = 1, 2, 3... and n = 1, 2, 3... in the order Ωo1,n1 ≤ Ωo2,n2 for

o1 ≤ o2 and n1 ≤ n2. The eigenvalues Ωo,n are critical swirls, where neutral mode exist. At

each critical swirl Ωo,m, let ∆o,mΩ(σ) be the function of the swirl increment at the growth rate

σ. The actual swirl can be written in terms of ∆o,mΩ(σ) as

Ω = Ωo,m + ∆o,mΩ(σ). (58)
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The perturbation theory of linear operators claims that the function ∆o,mΩ(σ) is analytic, see

Kato [7] and has power series expansion:

∆o,mΩ(σ) = Ω(1)
o,mσ + Ω(2)

o,mσ
2 + Ω(3)

o,mσ
3 + ... (59)

The coefficients in the power series are explicitly given by

Ω(1)
o,m = (T (1)φ∗o,m, φ

∗
o,m)

Ω(2)
o,m = (T (2)φ∗o,m, φ

∗
o,m) −

∑

o1,n:(o1,n)6=(o,m)

(T (1)φ∗o,m, φ
∗
o1,n)(T

(1)φ∗o1,n, φ
∗
o,m)

Ωo1,n − Ωo,m
(60)

...

where, (f, g) is a weighted inner product defined as

(f, g) =

∫ 0.5

0

∫ L

0

fg

m(y)
dxdy. (61)

See Kato [7] for the expansion of Ω
(i)
o,m with i = 3, 4.

B Find the disturbance flow fields by using the perturbation

method

B.1 Find the stream function of the disturbance

The references of this appendix are Kato [7] and Wang [18]. We consider the general linear

operator perturbation problem:

T (σ) = T (0) + σT (1) + σ2T (2). (62)

The goal is to find the eigenmodes of (62) by using the perturbation method.

We assume that the spectrum of T (0) is discrete and simple, denoted by λ0, λ1, λ2, ..., with

the corresponding orthonormal eigenvectors {e0, e1, e2, ...}:

T (0)e0 = λ0e0 (63)

T (0)ei = λiei, i = 1, 2, ... .

We single out the eigenvalue λ0 here with which we consider the perturbation problem. We

denote the perturbed eigenvalue of λ0 as λ(σ),

T (σ)e = λ(σ)e. (64)
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In the perturbation theory, λ(σ) can be shown being an analytic function of σ in a neighbor-

hood of σ = 0, and the analytic expansion can be found by using the eigenfunctions of the

unperturbed problem. This fact has been used in Appendix A to find the approximations of

the growth rate function. In the following, we will show how to find the relevant eigenmodes

for the perturbed operator.

The resolvent is defined as

R(ζ, σ) = (T (σ) − ζ)−1 . (65)

The projection P (σ) corresponding to eigenvalues λ(σ) is expressed in terms of the resolvent

as

P (σ) = − 1

2πi

∫

Γ
R(ζ, σ)dζ. (66)

where, Γ is a small positively-oriented curve enclosing the eigenvalue of T (σ). We denote

P = P (0).

It has been shown that P (σ) has the following expansion:

P (σ) = P + σP (1) + σ2P (2) + ... (67)

P (n) can be explicitly expressed as

P (1) = −PT (1)S − ST (1)P,

P (2) = −PT (2)S − ST (2)P + PT (1)ST (1)S + ST (1)PT (1)S + ST (1)ST (1)P − PT (1)PT (1)S2,

− PT (1)S2T (1)P − S2T (1)PT (1)P. (68)

in terms of the operators P and S, where S is the reduced resolvent of T (0), see Kato [7] for the

precise definition. In terms of the basis formed by the orthonormal eigenvectors {e0, e1, e2, ...},
P and S can be simply represented as

P̺ = (̺, e0)e0, (69)

and

S̺ =
∞∑

i=1

(λi − λ0)
−1(̺, ei)ei. (70)

where, ̺ is any vector in the function space under consideration.
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The eigenvector of T (σ) can be approximately expressed as:

P (σ)e0 = e0 + σP (1)e0 + σ2P (2)e0, (71)

with second order accuracy.

Noticing Pe0 = e0 and Se0 = 0, one obtains

P (1)e0 = −ST (1)e0,

P (2)e0 = −ST (2)e0 + ST (1)ST (1)e0 − PT (1)S2T (1)e0 − S2T (1)PT (1)e0. (72)

By using ( 69) and ( 70), one derives from ( 72)

P (1)e0 = −
∑

i

(T (1)e0, ei)ei
(λi − λ0)

, (73)

where
∑

i =
∑∞
i=1

1 and

P (2) =
∑

i

−(T (1)ei, e0)(T
(1)e0, ei)

(λi − λ0)2
e0 +

∑

i

[−(T (2)e0, ei)

(λi − λ0)
+
∑

j

(T (1)e0, ej)(T
(1)ej , ei)

(λj − λ0)(λi − λ0)
(74)

−(T (1)e0, e0)(T
(1)e0, ei)

(λi − λ0)2
]ei,

We now apply (73) and (74) to Lamb-Oseen vortex, and find the eigenmodes near the first

critical swirl Ω1,1 ≈ 0.7910. One obtains the following expansion of φ(x, y;σ) in terms of the

eigenfunctions φ∗1,n for n = 1, 2, ..., 10

φ(x, y;σ) = φ∗1,1 + σ
10∑

n=2

a1,nφ
∗
1,n + σ2

10∑

n=1

b1,nφ
∗
1,n + o(σ2), (75)

where

a1,n = −
(T (1)φ∗1,1, φ

∗
1,n)

Ω1,n − Ω1,1
for n ≥ 2. (76)

b1,1 =
∑

n 6=1

(T (1)φ∗1,1, φ
∗
1,n)(T

(1)φ∗1,n, φ
∗
1,1)

(Ω1,n − Ω1,1)2

b1,n = [−
(T (2)φ∗1,1, φ

∗
1,n)

Ω1,n − Ω1,1
+
∑

l 6=1

(T (1)φ∗1.1, φ
∗
1,l)(T

(1)φ∗1,l, φ
∗
1,n)

(Ω1,n − Ω1,1)(Ω1,l − Ω1,1)

−
(T (1)φ∗1,1, φ

∗
1,1)(T

(1)φ∗1,1, φ
∗
1,n)

(Ω1,n − Ω1,1)2
] for n > 1. (77)

These formulas are comprised of the inner products involved with operators T (1) and T (2). In

the columnar swirling flow, they can be all analytically evaluated, as shown in [18]. One finds
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Table 1: a1,n and b1,n for the Lamb-Oseen vortex with L = 6, β = 4.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

a1,n 0 -74.5021 14.1724 -6.1605 2.9505 -1.7747 1.1041 -0.7653 0.5391 -0.4042

b1,n 5605 136.1 433.7 -80.14 35.31 -23.41 6.745 -10.68 1.506 -6.071

values of a1,n and b1,n in Table 1 for the Lamb-Oseen vortex with L = 6, β = 4. We found

from this table that the first few terms are more important in the expansion, and the values

of the other terms diminish quickly.

Based on the values shown in Table 1, the modes of the stream function φ(x, y;σ) are

calculated for various σ, and the results are plotted in Figure 2.

B.2 The velocity field of the disturbances

One may find the velocity field u1(x, y;σ) from its relation to the stream function.

u1(x, y;σ) = − 1√
2y

∂

∂x

(

φ∗1,1 + σ
10∑

i=2

a1,nφ
∗
1,n + σ2

10∑

i=2

b1,nφ
∗
1,n

)

(78)

We may derive from (9) the following formula of K1.

K1(x, y) =
2y2

K0(y)

∫ x

0
(σχ1 + χ1x)dx. (79)

Using the relation χ1 = −∆SLφ(x, y;σ) and the expansion of φ(x, y;σ) (75), one obtains

K1(x, y) =
2y2

K0(y)
(

∫ x

0
−σ∆SL(φ∗1,1 + σ

10∑

n=2

a1,nφ
∗
1,n + σ2

10∑

n=1

b1,nφ
∗
1,n)dx (80)

− ∆SL(φ∗1,1 + σ
10∑

n=2

a1,nφ
∗
1,n + σ2

10∑

n=1

b1,nφ
∗
1,n))

By using the fact: φ∗o,n are the eigenfunctions of the zeroth order problem, one obtains the

following expansion of K1,

K1(x, y) =
2y2

K0(y)m(y)
(Ω1,1φ

∗
1,1 + σ[

10∑

i=2

a1,nΩ1,nφ
∗
1,n +

∫ x

0
(Ω1,1φ

∗
1,1] (81)

+σ2[
10∑

i=1

b1,nΩ1,nφ
∗
1,n +

∫ x

0

10∑

i=2

a1,nΩ1,nφ
∗
1,n]).

One finds v1 from the relation v1 = K1√
2y

,

v1(x, y) =

√
2y3/2

K0(y)m(y)
(Ω1,1φ

∗
1,1 + σ[

10∑

i=2

a1,nΩ1,nφ
∗
1,n +

∫ x

0
(Ω1,1φ

∗
1,1] (82)

1This notation will be adopted for the similar terms thither. e.g.
∑

i,j
=
∑

∞

i=1

∑
∞

j=1
.
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+σ2[
10∑

i=1

b1,nΩ1,nφ
∗
1,n +

∫ x

0

10∑

i=2

a1,nΩ1,nφ
∗
1,n]).

C Derive energy transfer functions

With the flow field of the disturbance being found, one may insert u1 and v1 into the

Reynolds-Orr equation for Lamb-Oseen vortex. The equation (44) can be written as

dE(t)

dt
= 2π

∫ 0.5

0
(Ein(y;σ) + Eb(y;σ))dy. (83)

where,

Ein(y) = ω

(

2βe−2βy − (1 − e−2βy)

y

)
∫ L

0
u1v1dx (84)

and

Eb(y;σ) =
1

2

[

u2
1 + v2

1

]x=0

x=L
. (85)

are the density of the internal energy transfer and the density of the boundary energy transfer,

respectively, both being function of y.

We can derive close forms for these density functions. For reason of simple, we only derive

the close forms of the first order. First, consider the integral in (84)

∫ L

0
u1v1dx =

y

K0(y)m(y)

∫ L

0
(Ω1,1φ

∗
1,1 + σ[

10∑

i=2

a1,nΩ1,nφ
∗
1,n +

∫ x

0
(Ω1,1φ

∗
1,1] (86)

× ∂

∂x
(φ∗1,1 + σ

10∑

i=2

a1,nφ
∗
1,n + σ2

10∑

i=2

b1,nφ
∗
1,n)dx

By use of integration in parts and the boundary conditions, one finds the first order approxi-

mation as

∫ L

0
u1v1dx =

σy

K0(y)m(y)

∫ L

0

∂φ∗1,1
∂x

[
10∑

n=2

(Ω1,n − Ω1,1)a1,nφ
∗
1,n +

∫ x

0
(Ω1,1φ

∗
1,1]dx (87)

Inserting φ∗1,n = Φ∗
1,n(y) sin nπx

L , one may complete the integration and obtain a close form as

∫ L

0
u1v1dx =

σyΦ∗
1,1

K0(y)m(y)
[

10∑

n=2

(
a1,nn(1 − (−1)n+1)(Ω1,n − Ω1,1)

(n+ 1)(n − 1)
Φ∗

1,n −
Ω1,1L

2
Φ∗

1,1] (88)

In substitution of this into (84), one obtains

Ein = C(y)[
10∑

n=2

(
a1,nn(1 − (−1)n+1)(Ω1,n − Ω1,1)

(n+ 1)(n − 1)
Φ∗

1,n −
Ω1,1L

2
Φ∗

1,1] (89)
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where C(y) denotes the function

C(y) = −ω(2βe−2βy − (1 − e−2βy)

2y
)

σyΦ∗
1,1

K0(y)m(y)
(90)

On the other hand, substituting (78) into (85), one finds:

Eb(y) =
σπ2

L22y
Φ∗

1,1(y)(
10∑

n=2

(1 − (−1)n)na1,nΦ
∗
1,n) (91)

D Find the steady solution for a long divergent pipe

We will develop the weakly nonlinear solution of the steady state in a long divergent pipe

near the critical state. One uses a standard long wave approach. A similar problem with a

different outlet boundary condition, namely, assuming non-radial flow at the outlet, has been

studied by Rusak, Judd and Wang [11]. The method used there can be applied to our case

almost identically. Consider a long pipe with small divergence:

Y0(X) = 0.5 + δe−(X−1
0.5

)6 , x = LX, (92)

where, Y0(X) is the rescaled pipe radius at the pipe location x = LX, and the actual radius

shall be

R0(x) =
√

2Y0(x/L). (93)

Notice that a rescaled length X = x/L is introduced to reflect the influence of the long pipe

and 0 ≤ X ≤ 1. One chooses L = 10 in this study, which is sufficiently long as a long wave

approach being valid. The pipe divergence parameter δ has been chosen as δ = 0.0001, which

is extremely small, but large enough to ensure the nonlinear effect. The critical state is very

sensitive to the pipe shape change.

We seek a steady solution of the Square-Long equation in the form:

ψ(x, y) = ψ0 + ǫ1A(X)ϕ1(y) + ǫ2B(X)ϕ2(y) + ... (94)

where ǫ1 << 1, ǫ1 << ǫ2, the small parameters depending on ∆Ω and δ in the expansion. One

finds ǫ1 = 1
L . Substituting this expression of ψ(x, y) into the Square-Long equation, after a

standard procedure, see Rusak, Judd and Wang [11] for the detailed derivation, one finds that

ϕ1(y) satisfies

ϕ1yy(y) − (H ′′(ψ0; ΩB) − ΩBI0(ψ0)

2y
)ϕ1(y), ϕ1(0) = ϕ1(0.5) = 0, (95)
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where, ΩB is Benjamin’s critical swirl. Let ∆Ω = Ω−ΩB. One finds A(x) satisfies the following

nonlinear equation:

AXX − α(A2) + β
∆Ω

ǫ1
A = − δ

τǫ21

∫ X

0
ϕ1y(0.5)ψ0(0.5)Y0X (X) dx. (96)

where,

α = −ΩB

δ

∫ 1/2

0

1

ψ
3/2
0y




K0K0y

yψ
3/2
0y





y

ϕ3
1

2
dy, (97)

β = −1

τ

∫ 1/2

0

I ′(ψ0)

2y2ψ0y
ϕ2

1 dy, τ =

∫ 1/2

0

ϕ2
1

2y
dy.

For the Lamb-Oseen vortex with β = 4,

α = 5.597, β = 23.52, τ = 0.001237, ϕ1y(0.5) = −0.1048; ΩB = 0.7798. (98)

One obtains the following concrete equation to determine A(X) for the case L = 10 and

δ = 0.0001:

AXX − 5.597A2 + 23.52
∆Ω

100
A = 84.72e−(X−1

0.5
)6 , A(0) = 0, A(1) = 0. (99)

Notice that the outlet boundary condition is set as the fixed flowrate A(1) = 0. The bifurcation

diagram of the steady solution vs. the swirl ∆Ω in terms of the conventional minimum axial

velocity at the centerline of the pipe is obtained by solving (99), and is plotted in figure 6.

We are concerned in the flow field of the critical state. A(X) is found for the critical state as

shown in Figure 8.

The neutral mode can be approximately expressed in the form of separation of variables

ϕ1(y)Ψ(X), and the axial component is found by the difference of the critical state and a

nearby steady state: Ψ(X) = A(X,Ωc)−A(X,Ωc−0.001), where Ωc denotes the critical swirl.

Ψ(X) thus found is plotted in Figure 7.
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