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Abstract

The surface area of a general n-dimensional ellipsoid is represented as
an Abelian integral, which can readily be evaluated numerically. If there
are only 2 values for the semi-axes then the area is expressed as an elliptic
integral, which reduces in most cases to elementary functions.

The capacity of a general n-dimensional ellipsoid is represented as
a hyperelliptic integral, which can readily be evaluated numerically. If
no more than 2 lengths of semi-axes occur with odd multiplicity, then
the capacity is expressed in terms of elementary functions. If only 3 or
4 lengths of semi-axes occur with odd multiplicity, then the capacity is
expressed as an elliptic integral.
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1 Spheroids and ellipses

Consider an ellipsoid centred at the coordinate origin, with rectangular Carte-
sian coordinate axes along the semi-axes a, b, c,

1.1 Surface area of spheroid

In 1714, Roger Cotes found the surface area for ellipsoids of revolution [Cotes],
called spheroids.

For the case in which two axes are equal b = ¢, the surface is generated by
rotation around the z—axis of the half—ellipse z—z + z—j = 1 with y > 0. On that
half-ellipse, dy/dz = —b%z/(a?y), and hence the surface area of the spheroid is
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where u = z/a and § = 1 — b?/a®. Therefore, the surface areas for prolate
spheroids (a > b), spheres (a = b) and oblate spheroids (a < b) are:

arcsin /6
Vo
A = < 2mbla+b) = 4ra? (sphere), (3)

27h (a X w\/f_&_é + b) (oblate) .

Neither the hyperbolic functions nor their inverses had then been invented, and
Cotes gave a logarithmic formula for the oblate spheroid [Cotes, pp. 169-171].
In modern notation [Cotes, p.50],

27h | a x + b) (prolate),

1 1++v—6
A = 2a* + b lo ( )} . 4
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For |0] <« 1, either use the power series for (arcsin z)/x to get
A=2rb(a[l+50+ 56+ 558+ ] +b), (5)

or else expand the integrand in (2) as a power series in u? and integrate that
term by term:
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1.2 Circumference of ellipse

In 1742, Colin MacLaurin constructed a definite integral for the circumference
of an ellipse [MacLaurin]. Consider an ellipse with semi-axes a and b, with
Cartesian coordinates along the axes:

Z+L =1, (7)

On that ellipse, 2z dz/a? + 2y dy/b* = 0, and hence dy/dz = —b?z/(ay), and
the circumference is 4 times the ellipse quadrant with z > 0 and y > 0. That



quadrant has arclength
. b4w2 b*(z/a)?
I = de =
/0 Tare / \/ a?(y/b)?
:r/a
- [ J /e ®
Substitute z = z/a, and the circumference becomes
1 1
/ (b/a)?z? 1—mz?
[:40,/0 l+ﬁdz:4a0 ﬁdz, (9)

b2
mo=1l-—. (10)

where

With a > b this gives 0 <m < 1.
That integral could not be expressed finitely in terms of standard functions.
Many approximations for the circumference L(a,b) of an ellipse have been
published, and some of those give very close upper or lower bounds for L(a,b)

[Barnard, Pearce & Schovanec]. A close approximation was given by Thomas
Muir in 1883:

. 3/2 4 p3/2\ 23
L(a,b) ~ M(a,b) % 2n <%> . (11)

That is a very close lower bound for all values of m € (0,1). Indeed, [Barnard,
Pearce & Schovanec, (2)]:

L(a,b) — M(a,b)

0-00006m* < < 0:00666m* . (12)

1.3 Legendre on elliptic integrals

Adrien-Marie Legendre (1742-1833) worked on elliptic integrals for over 40 years,
and summarized his work in [Legendre 1825]. He investigated systematically
the integrals of the form [ R(t,y) dt, where R is a general rational function and
y? = P(t), where P is a general polynomial of degree 3 or 4. Legendre called
them “fonctions élliptique”, because the formula (9) is of that form — now they
are called elliptic integrals. He shewed how to express any such integral in terms
of elementary functions, supplemented by 3 standard types of elliptic integral.

Each of Legendre’s standard integrals has 2 (or 3) parameters, including
x = sin ¢. Notation for those integrals varies considerably between various
authors. Milne-Thomson’s notation for Legendre’s elliptic integrals [Milne-
Thomson, §17.2] uses the parameter m, where Legendre (and many other au-
thors) had used k2.

Each of the three kinds is given as two integrals. In each case, the second
form is obtained from the first by the substitutions ¢ = sin § and x = sin ¢.

The Incomplete Elliptic Integral of the First Kind is:

F(glm)

(13)

/m /\/1—t2 (1 —mit2)



The Incomplete Elliptic Integral of the Second Kind is:

E(¢Im) / V1—msin®6 df = / Lomt dt . (14)

1—12

That can be rewritten as

1 —mt?
— : (15)
\/ 1—2)(1 — mt?)
which is of the form [ R(t,y) dt, where y* = (1 — t?)(1 — mt?).
The Incomplete Elliptic Integral of the Third Kind is:
¢ dg
def
s gfm) | — _
0 (1—nsin®8)v/1—msin®6
’ dit
- / . (16)
o (1—nt2)/(1—#2)(1 —mt2)

The special cases for which ¢ = 7 (and = 1) are found to be particularly
important, and they are called the Complete Elliptic Integrals [Milne-Thomson,
§17.3].

The Complete Elliptic Integral of the First Kind is:

def

K(m) F (%ﬂ'|m)

/71'/2 da

0 V1 —msin?6
_/1 dt

o JO=2) T —mt2)

The Complete Elliptic Integral of the Second Kind is:

w/2 1 _ 2
E(m) def E(%ﬂm) :/0 V1—msin®’6 df = /0 \/z_im;dt. (18)

The complete elliptic integrals K (m) and E(m) can efficiently be computed
to high precision, by constructing arithmetic-geometric means [Milne-Thomson.
§17.6.3 & 17.6.4].

2 Surface Area of 3-dimensional ellipsoid

For a surface defined by z = z(z,y) in rectangular Cartesian coordinates zyz,
the standard formula for surface area is:

swa = [ [ () (2) ar 19

On the ellipsoid (1),

0z -2z 0z —c%y
or  a’z oy bz (20)




Consider the octant for which z, y, z are all non—negative. Then the surface
area for that octant is
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Hence, if two semi-axes (a and b) are fixed and the other semi-axis ¢ increases,

then the surface area increases.
Denote

For a general ellipsoid, the coordinate axes can be named so that a > b >
¢>0,and then 1 > § > ¢ > 0.

2.1 Legendre’s series expansion for ellipsoid area

In 1788, Legendre converted this double integral to a convergent series [Legendre
1788] [Legendre 1825, pp. 350-351].
Replace the variables of integration (z,y) by (¢, ), where cosf = z/¢, so
that 2—2 + g—j =sin? 6, or
2 2
N —
(asinf)? (b sinf)?

= 1. (24)

Then let cos ¢ = y/(b sinf) so that sin ¢ = x/(a sinh), or

T =asinf sing, y =bsinb cosae. (25)



Differentiating = in (25) with respect to ¢ (with constant #), we get that
dz = a cos ¢ sinf df; and differentiating the equation 2—2 + g—j = sin? # with
respect to 6 (with constant ), we get that 2y dy = 2b?sin 6 cosf df. Thus the
element of area in (23) becomes

dzdy = absinf cos6 df do, (26)

and the area S of the ellipsoid octant becomes [Legendre 1825, p.350]

7r/2 1-6 0 2 — - =
/ \/ sin”§ sin® ¢ — e (sin’ ) ab sinf cosf d¢df
=0 1—sin’6

w/2
=ab / sin § \/1 — (6 sin® ¢ + € cos2 ¢) sin?6 df dp . (27)
=0

Thus,
w/2
= ab/ / sin 6 — p sin 0 dé do¢ , (28)
=0 Jo=0

where p is a function of ¢:
= dsin®gp+ecos’p = e+ (6 —¢)sin®¢ . (29)

Hence, as ¢ increases from 0 to %ﬂ', p increases from € > 0 to § < 1.

Define P
T(m) % / sin /1 —m sin26 df . (30)
0

Clearly, Z(m) is a decreasing function of m (for m < 1). That integral can be
expressed explicitly. For m € (0, 1),

-l

Expand the integrand in (30) as a power series in p and integrate for 6 from
0 to %w, to get a series expansion for Z(p):

w/2
I(p) = / sinf (1 — p sin®6)'/? d
=0

w/2 1 1
/ sint‘)( 1psin® g + 2 2' 22 p?ginth — 22 2p3sin69+---> dé
0

3!
m/2 /2 w/2
= / sinf df — %p/ sin®f df — %pz/ sin® # df
0 0 0
/2 w/2
- %zﬁ/ sin”§ df — ;;i;g;gp‘l/ sin” @ df —--- . (32)
0 0
Define
m-1-3-5...(k—-1
wt [ 7 246 Ec ), (even k > 2) ,
s, = / sin" 0 do = > 16 k . (33)
0 . 5.7...](6— ), (0dd k> 3) |



with so = %n and s; = 1. For all k£ > —1 [Dwight, §854.1],

_ VT L(3(1+k)) .

20 (1 + k)
In particular,
51:1733:§;35:§_é;35:%7"'7 (35)
and hence
I(p) = 1— 50— 350" — 0" — 750" — - . (36)
Therefore, the surface area of the ellipsoid is
w/2
A = Sab/ Z(p) d¢
0
w/2
= 8ab (1_1_31“_3-51"2_571’3_791"4_ ) d¢
0
= 4mab(1 — 1%3P1 — 3%5P2 — %Pg — 5P — ) do, (37)
where
2 7l'/2
P = —/ (6sin® ¢ + e cos® ¢) dp = %(54—%6,
T Jo
_2”/2.2 2 412 _ 132, 11 13 2
P, = - (6sin® ¢+ ecos™ @) dp = 550 + 550 + 53¢,
0
2 [ 2 2 1\3
P = — (0sin” ¢ + ecos® ¢)° do
T Jo

_ 1353 131452 11352 1353
= 55607 + 550 e+ 550€ + 555€, et cetera.  (38)

Legendre gave [Legendre 1825, p.51] a generating function for the Pj:
1
(1-062)(1—e€2)
= (14162 + 13527 + 13565328 1) (1 + Lez + 33227+ )
= 14+ P2+ P2 + P32 + P2t + -+ . (39)

= (1—02)"2(1 —ez)1/?

Infinite series had been used by mathematicians since the 13th century in
India and later in Europe, but very little attention had been given to conver-
gence. Consequently much nonsense had been published, resulting from the use
of infinite series which did not converge. From 1820 onwards, Cauchy devel-
oped the theory of infinite series, and he stressed the importance of convergence
[Grabiner, Chapter 4]. In 1825, Legendre carefully explained that his series (37)
for the area does converge [Legendre 1825, p.351].

All terms after the first in Legendre’s series (37) are negative, and hence the
partial sums of that series decrease monotonically towards the surface area.

I have searched many books on elliptic integrals and elliptic functions, and I
have not found any later reference to Legendre’s series (37) for the surface area
of a general ellipsoid.



Derrick H. Lehmer stated (in 1950) a different infinite series for the surface
area, in terms of the eccentricities

/ b2 / c?

S(a,b,c) = 4mab {1 - %(o/" + B7) — %0(3014 +2a°6% +38%) — ]
— (aB) a? + B
= dmaby | T P,,< 2ah > . (41)

where P,(x) is the Legendre polynomial of degree v [Lehmer, (6)].
Philip Kuchel and Brian Bulliman constructed (in 1988) a more complicated
series expansion for the area [Kuchel & Bulliman)].

The surface area is

2.2 Bounds for ellipsoid area

As ¢ increases from 0 to %w, then d sin® ¢4 cos® ¢ = (J —€) sin® ¢ + € increases

from € to §. Hence, for all values of ¢, the integrand in (27) lies between the
upper and lower bounds

sinf V1 —esin?f >

sin 6 \/1 — (6 sin® ¢ + € cos? @) sin?f > sinh V1 —6sin?0 . (42)

Accordingly, for all values of @, the integral over # in (27) lies between the
upper and lower bounds

w/2
Z(e) > /0 sin § \/1 — (6 sin? ¢ + € cos? ¢) sin® @ df > I(6) . (43)

=0
How close are those bounds? As X increases from 0 to 1, Z(\) decreases
from f;r:/g sinf df =1 to f;:/g sin@v/1 —sin® 6 df = f;:/g sinf cosf df = 3 .
Therefore, the upper bound in (43) is not more than twice the upper bound.

Integrating these bounds over ¢ = 0 to ¢ = %ﬂ', we get upper and lower
bounds for the double integral in (27):

T w/2 pw/2 T
—2/ / sinﬁ\/l—(ésin2¢+60052¢) sin?@ df dop > — . (44)
2 ¢ =0

=0

e~

Thus, we get the following bounds for the surface area A = 8S of a general
ellipsoid with semi-axes a > b > c:

drab > 8abZ(e) > A > 8abZ(d) > 2mab. (45)

The extreme upper bound 4wab is attained for the sphere with a = b = ¢,
and the extreme lower bound 27ab is attained with ¢ = 0, when the ellipsoid
collapses into a double-sided ellipse with semi-axes a and b.



2.3 Legendre’s explicit formula for ellipsoid area

In 1825, Legendre constructed [Legendre 1825, pp.352-359] an explicit expres-
sion for the area of a general ellipsoid, in terms of Incomplete Elliptic Integrals.
In Milne-Thomson’s notation, with ¢ and € as in (22),

2mab

Vo

Note that Legendre’s formula does not hold for a sphere, and for a near-sphere
some rapidly-convergent series should be used for F'/ V3, or else Legendre’s series
(37) should be used for the area.

Legendre’s proof of his elliptic integral formula for area is long and compli-
cated, and that formula has been very little known.

In 1953, Frank Bowman published [Bowman] an obscure derivation of the
formula for the area (without mentioning Legendre). In 1958, Albert Eagle
used his interesting version of elliptic functions to derive the formula for the
area [Eagle, p.281 (12)]. He commented [Eagle, §10.313]:

A = 2n + (1 —8)F(V3le/8) + 6 E(V|e/d)| . (46)

The formula (12) giving the solution of this really difficult problem
was actually given by Legendre in his Traité des Fonctions ellip-
tiqgues in 1832,! obtained by means which only involved working
with trig elliptic integrals, and not with elliptic functions as we now
understand them. I think it is only appropriate that I should add a
word here of admiration for the extraordinary mathematical ability
of Legendre for solving such a difficult problem by means which it
would be hopelessly beyond my abilities to accomplish. And yet I
could, I suppose, if I tried, re-write all the steps of my solution in
terms of the old trig integrals. But I am not making the attempt to
do so!

I should also like to add a word of tribute to Legendre for the im-
mense industry and labour he put into the calculation of his exten-
sive tables of the First and Second Incomplete Elliptic Integrals. He
laboured on elliptic integrals and their calculation for something like
40 years. And before his death in 1833, at the age of 81,2 he was a
competent enough mathematician to realize that the new ideas that
had very recently been put forth by Abel and Jacobi were right; and
that the integrals he had spent his life considering were only the
inverses of the functions that he should have been considering.

But the elliptic integral formula remained almost unknown. For example, in
1979 Stuart P. Keller asserted that “Except for the special cases of the sphere,
the prolate spheroid and the oblate spheroid, no closed form expression exists
for the surface area of the ellipsoid. This situation arises because of the fact that
it is impossible to carry out the integration in the expression for the surface area
in closed form for the most general case of three unequal axes”[Keller, p.310].

In 1989 Derek Lawden published a clear proof [Lawden, pp.100-102] of the
formula (without mentioning Legendre), and in 1994 Leo Maas derived the ellip-
tic integral formula [Maas], which he credits to Legendre. In 1999 an incorrect

IRather, in 1825.
2Rather, at the age of 91.



version of the formula was published [Wolfram, p.976], without proof or refer-
ences.

The surface area of an ellipsoid was represented by Bille Carlson in terms
of his very complicated function Rg [Carlson 1977, p.271]. In 2003, Edward
Neumann gave a much simpler representation [Neumann, (1.4)] of Carlson’s
function:

x Y N z

L [ t+x t+y t+z
Rg(z,y,2) = —/ tdt. 47
5(®3,%) 4 Jo Vit+a)t+y)t+2) (47)

But neither representation provides any clear way of computing the area.

3 Ellipsoid in n dimensions

Consider an n-dimensional ellipsoid (n > 3) centred at the coordinate origin,

with rectangular Cartesian coordinate axes along the semi-axes a1, as,...,ay,
2 2 2
x x x
S+ 24+ 2 =1 (48)
ar a3 A
The area of the (n — 1)-dimensional surface is given by a generalization of
(23):
22 22 22 22
azy [1==%  ap_iy [l-F %322
a1 1 1 %2 “n—2
4 =on /
z1=0 z9=0 T, _1=0
2 2 2
x x Ty
1—51a—; Gy—3 — = Gy 5
! 5 22 P) n-l da:n_l te d.TQ d5l71, (49)
T S B Tn—1
ai a3 ap_y
where (cf. (22)):
2
def a .
§ = 1—a—g, (t=1,2,...,n—1). (50)
(2

As in 3 dimensions, if any semi-axis increases while the others are fixed, then
the area increases.

Label the axes so that a; > as > -+ > ay, and then 1 > 61 > 6y > --- >
6n—1 > 0.

Scale each variable as z; = a;z;, so that (52) reduces to integration over the
unit n-sphere

24zt +zn =1 (51)
Thus, the area of the ellipsoid is

| VITE A

A = 2na1a2...an_1 / / /

z21=0 22=0 Zp—1=0

10



-1
1-—2f—23—- - — 22 “— dzpq--dzp dz . (52)

\/1 —(512% —(522% — _6n7122

n—1

3.1 Bounds for the area

The unit ball in n dimensions has volume [Smith & Vamanamurthy]

7.‘.n/2
n = —/——— . (53)
T (1+3n)
Thus,
Q> = 27, Q3 = %ﬂ', Q = %71'2, Qs = 18—571'2, Qg = %71'3 et cetera. (54)
For each j =1, 2, --- ,n, scaling the j-th semi-axis from 1 to a; multiplies

the volume by a;, and hence the ellipsoid (48) has the volume

V = Quaiasas---a, . (55)

3.1.1 Carlson’s bounds

The surface area of an n-dimensional ellipsoid was represented by Bille Carlson
in terms of his very complicated function R [Carlson 1966, (4.1)], which is
defined by an integral representation [Carlson 1966, (2.1)]. From that, he proved
the inequalities

n —1/n n
1 1 A
(Hal> < Eza_l < W < 7 o (56)
i=1 i=1
where “ay,---,a, are positive, finite and not all equal” [Carlson 1966, (4.3)].
Therefore,
1 1 1
Qpaias - -ap <_+_+...+_> < A
a1 as (479
n n n
< Qnala2"'an\/a_%+a_§+"'+g . (57
3.1.2 Refined bounds
In terms of b; = 1/a;, (56) becomes
(58)

Thus, A/(nV) is bounded by the root-mean-square r = (b + b3 + --- +
b2)/n)/? of the b; and their arithmetic mean m = (by + by + - - - + by, ) /n, which
is greater than the geometric mean of the b; .

11



For positive numbers b;,

(b + Do+ +b,)° = B +b+- B+ by > bR +B3 4+ b2, (59)

i#]
and so
(60)
and hence
(61)
Therefore,
Ji s Vo i b (62)

% Z?:l bi
Thus, Carlson’s inequalities give simple upper and lower bounds for the area
of an n-dimensional ellipsoid, whose ratio is less than /n.
The variance of the inverse semi-axes is

def 1

_[(bl_m)2—|—(b2—m)2+...+(bn_m)2]

(b7 + b3+ -+ b2 —2m(by + bo + -+ + by) + nm?]

= = [bi+b5+---+b2—nm?] = r*—m”. (63)

SI=3|—g3

Therefore, the ratio of Carlson’s upper and lower bounds for A/(nV’) is expressed
in terms of the mean m of the inverse semi-axes and their standard deviation

s =+/v:

= i b or 2 1+ = /1+(3)2
LSt omo Vm?2 m2 m/

3.1.3 Examples

(64)

For a near-sphere with a;/ay, not much larger than 1, (64) shews that the ratio
of Carlson’s upper and lower bounds is much closer to 1 than to the y/n in (62).

For example, consider ellipsoids in which the semi-axes are in arithmetic
progression, from a; = 1 to a,. Table 1 gives, for each n and a,, Q, and
Carlson’s lower and upper bounds for the area and their ratio, followed by /n.

Table 1. Lower and upper bounds for surface area

| n | an | Qn | Low Bound | Up Bound | Ratio | Vvn
4 2 | 4-9348 x 107 6-251 x 107 6-465 x 10T 1:0343 | 2
10 2 | 2:5502 x 100 8:124 x 102 8:327 x 102 1-0250 | 3-162
20 13 | 2:5807 x 10~2 1-961 x 104 2-708 x 1014 1-3813 | 4-472
256 3| 1-1195 x 10—152 | 1-547 x 10~7® | 1:627 x 10~7® | 1:0515 | 16
256 36 | 1-1195 x 10—152 | 4-996 x 10147 | 8277 x 10147 | 1-6568 | 16
256 | 100 | 1-1195 x 10152 | 3-428 x 1025¢ | 7-804 x 10%25¢ | 22768 | 16

In each of these examples, including that with as56 = 100, the ratio of the

bounds is substantially smaller than \/n.

12




Bounds for area of spheroids If the semi-axes of an ellipsoid are a; = as =
-+ =ap_1 and a, # a1 (with n > 2), then we may call that a spheroid, oblate
if a; > a,, and prolate if a; < a,. That spheroid has volume (55)

V = Q.ala, . (65)
Carlson’s bounds in (57) become

(n =V +by _ <1+(bn/b1)—1>’

_ 2 2
(n—1)b3 +52 \/ n/bl (66)

Hence, for a sequence of spheroids with fixed semi-axes a; and a, as n — oo,

1 -1 1
m = —(1-{—%) and r = —(1+0 (")) . (67)
ay n ay
Therefore, the area is asymptotically
A ~ nV/a, = nQuat 2a, . (68)

However, Carlson’s representation of the area does not provide any clear way
of computing that area.

4 Reduction to Abelian Integral

The infinite series for surface area of a 3-dimensional ellipsoid has been gener-
alized to n-dimensional ellipsoids by using n-dimensional spherical coordinates
— but that proves to be very complicated [Lehmer, (11)].

For 3-dimensional ellipsoids, Lawden used an ingenious method to reduce the
double integral (23) to a single integral [Lawden, pp.100-102]. For n-dimensional
ellipsoids, Lawden’s method is here generalized to reduce the (n—1)-dimensional
integral (52) to an Abelian integral. That Abelian integral can readily be com-
puted.

The multiple integral in (52) can be rewritten as

A =
Y e R
2a1a2 . / .. /
== zz_f\/lfz% Zno1=—y/l—23—22——22_,
Bt dzp_y---dzy dzy (69)
where
2 2 2
def L—2f =25 = =2,

h = 1 (5 P} (5 P} (5 2 ) (70)

0127 — 0223 — 1~ On—12,

13



with A= > 1. In the (n — 1)-dimensional subspace with z, = 0, the value of h
ranges from 0 on that (n — 1)-sphere 27 + 23 + -+ 22_, = 1 to h = 1 at the
centre.

At any point in the unit (n — 1)-ball which is the domain of integration in
(52), any (n — 1)-dimensional element

dv = dzidzs - dzp_1 (71)

gets enlarged by the factor 1/h, to give an element of surface area of the ellipsoid:

a;as - - an_lh_l le dZQ e dZn_l = h_l da:l d.TQ e dCEn_l . (72)
Thus d
A = 2@1@2 st Qp—1 T/U ) (73)

integrated over the unit (n — 1)-ball.
The points on the unit n-sphere with that value of h satisfy (70), and hence

B2(1 — 612 — 0oz — - —0p 122 1) = 1—27 —25 —--—22 . (74)

Therefore, those points on the n-sphere project onto points in the (n — 1)-sphere
(with 2z, = 0), forming the (n — 1)-dimensional ellipsoid

2 2 2’2
A + = Fob— 0 = 1. (75)

1—h? 1— h? 1—h?
1—01h% 1—0d2h2 1—0,-1h%
(Ellipsoids of this type with different values of h are not confocal.)
This ellipsoid with parameter h has the semi-axes

[ 1—h? .
fj_ 1—76]h2 (.7_]-727"'7”_1)7 (76)

and hence its (n — 1)-dimensional measure is

w(h) = Q,_19(h), (77)

(1 _ h2)(n71)/2
O =01 — 0ok (L= 0nih®)

def

glh) = ffe--foa =

(78)

Counsider the (n — 1)-dimensional measure dw of the shell bounded by the
(n — 1)-dimensional ellipsoids (75) with parameters h and h + dh. This is the
projection of a strip of the n-dimensional sphere (51) (with parameter ranging
from h to h + dh), and hence the element of area for that strip is dA =
2a1a5 - - - ap—1dv/h. It follows that the surface area between the point z, = 1
(with h = 1) and the unit (n — 1)-sphere where z, = 0 (with h = 0) is given by

 [dw dg(h) % 1dg(h)
S = h_Q,H/ i _Q,thdh dh . (79)
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(86)

Denote z = —h? and define
r(z) € 1+ 62)(1+822) - (146, 12),
and a i1
def +2)""
p(z) = f12f22"' 271 = T )
so that
g(h) = \/p(—h?),
and
dy _ g dp dz _ —h dp
dh ~ dp dz dh_\/_dz'
Hence,
ldg(h) -1 dp(2)
h dh - A /p(z) dz
It follows from (81) and (80) that
b (-DA+)"? ()" dr
dz r r2 dz’
and
dr
— = 01(1+022)(1+d32) - (1 + 6p—12)
B 1 d2 On—1
_T<1+(512’+1+622’ +1+5n_lz> ’
and hence
dp (1 —|— 2) n_l d;
1+z” 2’§ LAl Q4" 14
P 1 146z ) r(2) 1+ 0;z
It follows from (84) that
Tdg(h) -1 dp(2)
h V) 2
It otk ( 1-4, L= Gns >
a r(z) 1+ 0,2 1+0n 12
_(1 _ hZ)(nf?))/Q
= X
V(L= 61h2)(1 = 62h2) -+ - (1 — 6,_1h2)
1-4; N 1—945 1—96,1
1—-6h%  1-—06:h2 1—6,_1h2)"
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This last expression is continuous on [0,1] for n > 3, and hence it follows
from (79) that the surface area of the ellipsoid is given explicitly as

14
A = 2(11@2 . an,19n71 . E d_}g}, dh
_ 2a1' (n— 1)/2/ (1— h2)n=3 "
B n+1 (1 —61h2)(1 — 69h2) -+ (1 — §,,_1h2)
1-— 61 1-— 62 6n 1
(1—51h2+1—52h2+" +1—6n1h2> da (89)

which is an Abelian integral.
For n = 2 this gives the circumference of the ellipse

af a3
Ly T2 g 90
with (51 =1- (a2/a1)2, as
4a2 !
PR dh , (91)

a1 Jo (1—0,h2)\/(1—h2)(1— 61h2)

which is an elliptic integral. Indeed, it was shewn in (9) that the circumference
of that ellipse is 4a; E(d;).
For n = 3, writing the semi-axes as a,b,c as in (1), and writing § and € as
n (22), this becomes:
PRy B el el 21 (92)
ab Jo ((1-6h2)(1 - eh2))”

and this reduces to the formula (46) in standard elliptic intehrals.

For odd n = 2k + 1 (with k£ > 0) the integrand in (89) is smooth, with the
polynomial factor (1 —h?)("=3)/2 = (1—h?)¥~1 and hence this Abelian integral
can readily be evaluated by Romberg integration. But for even n = 2k (with
k > 1), the integrand has the factor (1 —h?)("=3)/2 = [(14h)(1 - h)]*=3/2. The
factor (1 — h)¥—3/2 makes the (k — 1)-th derivative of the integrand unbounded
as h /1, so that direct numerical integration would be inefficient.

In order to prevent that near-singularity in the integrand for even n > 4,
make the substitution h = 1 — 22 so that 1 —h? = 22(2 — z?), and (89) becomes
the Abelian integral

A = daras - an_y w72 /1xn—2><
(%) 0

\/ (2 — 22)n—3 y
(1-560-22)2)(1 =060 —-22)2)-- (1 —=0,-1(1 — 22)?)

1—(51 1_6n71
(1—51(1—x2)2+”'+1—5n1(1—332)2) de . (93)

This integrand is smooth for all n > 2, and hence this Abelian integral can
readily be computed by Romberg integration.
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4.1 Examples

A program has been written (in THINK Pascal) to compute A by this formula.
Table 2 gives the actual areas for those ellipsoids for which upper and lower
bounds had been given in Table 1.

Table 2. Areas with lower and upper bounds

| n | an | Lower Bound | Computed Area | Upper Bound |
4 2 | 6:251 x 10! 6-39222065129 x 10! 6:465 x 10*
10 2 | 8124 x 10? 8:29183467191 x 10? 8:327 x 102

20 | 13| 1-961 x 104 2-58913095038 x 10'* | 2-708 x 10
256 3| 1547 x 1078 1-62645053874 x 10~ 78 | 1-627 x 10~ 78
256 | 36 | 4996 x 1047 8-18623897626 x 10'47 | 8277 x 10'47
256 | 100 | 3-428 x 102%* 7-56178774520 x 102°* | 7-804 x 10%%*

5 Equal semi-axes

If any of the semi-axes a; share common values, then the corresponding pairs of
factors under the square root sign in (89) (or in (93)) can be taken outside the
square root sign. If the value of a; occurs with odd multiplicity 2m+1 (amongst
ai, -+,an—1), then a single factor (1 — §;h?) will remain in the denominator
under the square root, with the factor (1 — §;h*)™ in the denominator of the
integrand.

In particular, for odd n = 2k + 1, if only one value of a; has odd multiplicity
then select that as a,,. The square root term then reduces to 1, since all factors
in the denominator, and also (1—h2)2*~2 in the numerator, can be taken outside
the square root sign. In such a case the integrand in (89) is a rational function
of h%, and thatcan be integrated in terms of elementary functions. If only 3
values of a; have odd multiplicities then select the smallest as a,, and the others
as a; and ag, so that the integrand becomes a rational function of h? divided
by v/(1 — 61h%)(1 — 62h?). Thus, in that case the integral is an elliptic integral.

For even n, if all values of a; have even multiplicity then select the smallest
value as a,,, so that 6, 1 = 0. After all pairs of factors have been taken outside
the square root the integrand becomes a rational function of h? multiplied by
V1 — h2, and that can be integrated in terms of elementary functions by the
substitution h = sin@. If only 2 values of a; have odd multiplicities then select
the smaller as a, and the other as a;, so that the integrand becomes a ratio-
nal function of A% multiplied by /(1 — h?)/(1 — 61h?). Thus, in that case the
integral is an elliptic integral.

5.1 Biaxial ellipsoids

Consider biaxial ellipsoids of the type B, 4, with p semi-axes equal to 3 and ¢
semi-axes equal to vy, so that spheroids are of type B,_; 1. Denote n = p + ¢,
and then

B=a =a = =aqFa = a2 = =a, =7, (94
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and
2
(51:(52 :"':6p:1—@, (Serl :(5p+2 ::(57171:0(95)
Hereafter, abbreviate d; to §. Thus, 1 —§ = ~2/32.
If either (or both) of 5 and 7 has even multiplicity p = 2m then choose that
as aq, so that the ellipsoid is of type Bap, 4. With n = 2m + ¢. the formula (89)
becomes

2m g+l (n—1)/2 2)\2m+q—3 _
4 - ¥ 7 h 2m a1y g,
h2 2m /82(1_6h2)
232mAq—1 (n 1)/2 _ 12)(n=3)/ 2 2
_ 2Ty nfl / i ( Y +q—1>dh. (96)
rEn o (1—6h)m B2(1 - o1)

For odd ¢ = 2k +1, the factor (1 — h2)("_3)/2 becomes the polynomial factor
(1 — h2)m+k=1_ Thus, the area for ellipsoids of type Bay, ak+1 is

_ 452m72kﬂ.m+k 1 (1 _ h2)m+k—1 TH’)/Q
4= (m + k)! /0 (1 —6h2)m (/32(1 — 6h?) + k) dh. (97)

The integrand is a rational function of A%, and hence this integral can be ex-
pressed in terms of elementary functions. The detailed working is given in
Appendix A.

For even q = 2k,

(1 — h2)mtk=1
V1—h?
Thus, for biaxial ellipsoids of type Bam, 2k , the formula (89) reduces to
922k mtk=1 /r
r (m +k+ %)

1 2\m+k—1 2
/ (1= K™ ( 2my +2k—1>dh. (99)
o (- on2ym/T—h2 \F(1— 0%)
The integrand is a rational function of A2 and v/1 — h2, which can be integrated
in terms of elementary functions. The detailed working is given in Appendix B.
Thus, for biaxial ellipsoids with one (or both) semi-axes having even multi-
plicity, the surface area can be expressed in terms of elementary functions.
If neither of 8 and y have even multiplicity then both have odd multiplicities
2m + 1 and 2k + 1, and n = 2k + 2m + 2 is even. Thus, for ellipsoids of type
Bam+1,26+1 the formula (89) becomes

(1= h2)n=3)/2 = (98)

A =

932m 12kt 2 (2mt2k+1) /2

A = T (2m+2k+3 X
/ — h2)2mt2k—1 om + 1 +% W
(1 — §h2)2m+1 B2(1—06h%) A2
ﬂ2m+1,)/2k7.rm+k\/,].r
- I(m+k+1+ )
1 2\m+k 2
(1-h7) ( (2m + 1)y )
+ 2k ) dh, (100
/0 (1 —6n2)m\/(1 —o6h2)(1 — h2) \B2(1 — 0h?) (100)
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which is an elliptic integral.

6 Capacity

James Clerk Maxwell gave (in 1873) the first extensive mathematical treatment
of electrostatic capacity [Maxwell], in his epoch-making monograph® A Trea-
tise on Electricity and Magnetism. He defined Capacity of a Conductor in
§50 [Maxwell v.1, p.48]:

If one conductor is insulated while all the surrounding conductors
are kept at the zero potential by being put in communication with
the earth, and if the conductor, when charged with a quantity F
of electricity, has a potential V', the ratio of E to V is called the
Capacity of the conductor. If the conductor is completely enclosed
within a conducting vessel without touching it, then the charge on
the inner conductor will be equal and opposite to the charge on
the inner surface of the outer conductor, and will be equal to the
capacity of the inner conductor multiplied by the difference of the
potentials of the two conductors.

Maxwell then considered the General Theory of a System of Conductors:
“Let Ay, As, ...A, be any number of conductors of any form. Let the charge
or total quantity of electricity on each of them be Ey, E,, ...E,, and let their
potentials be Vi, Vs, ...V, respectively.” [Maxwell v.1, p.89]. He explained
how

we should obtain n equations® of the form [Maxwell v.1, p.90].

Ei = quVi...+qsVs...+qaVh,
E. = ¢giVi...+qsVs... +qrVa,
E, = guVi...+qusVs...+ q@unVa. (101)

The coefficients in these equations --- may be called Coefficients of
Induction.

Of these g11 is numerically equal to the quantity of electricity on
A; when A; is at potential unity and all the other bodies are at
potential zero. This is called the Capacity of A;. It depends on the
form and position of all the conductors in the system.

Maxwell remarked that “The mathematical determination of the coefficients

- of capacity from the known forms and positions of the conductors is in
general difficult.” [Maxwell v.1, p.90]. He explained how to compute an upper
bound for the capacity [Maxwell v.1, p.117], and he explained the method of

3My copy was formerly in the library of the Wellington Philosophical Society, and then in
the library of the Royal Society of New Zealand.

4This is a noteworthy early example of a system of linear algebraic equations, written with
double and single subscripts. GJT
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J. W. Strutt (later Lord Rayleigh) for calculating upper and lower bounds for
capacity “in the very important case in which the electrical action is entirely
between two conducting surfaces S; and Ss, of which S; completely surrounds
S1 and is kept at potential zero” [Maxwell v.1, p.118].

6.1 Capacity of spheres

Maxwell considered “two concentric spherical surfaces of radii a and b, of which
b be the greater, be maintained at potentials A and B respectively,” and he
shewed that the potential at radius r between those spheres is of the form

V = Ci+Cort. (102)
From this he found the capacity of the enclosed sphere:

ab

C:b—a'

(103)

[Maxwell v.1, p.153].
Fix the radius a of the inner sphere and let the radius b of the outer sphere
increase without bound. As r * co the potential is

V = Ci + 021“_1 — O . (104)
and as b /* oo the capacity converges to the limit

a
C = — . 105
[Maxwell v.1, p.153].

Thus, we say that a sphere of radius a, in a 3-dimensional universe otherwise
empty, has capacity equal to a.

And similar results hold (110) in space of more than 3 dimensions.

6.2 Capacity of coaxial cylinders

Maxwell considered Two Infinite Coaxal Cylindric Surfaces. “Let the radius of
the outer surface of a conducting cylinder be a, and let the radius of the inner
surface of a hollow cylinder, having the same axis with the first, be b. Let their
potentials be A and B respectively”. In any plane orthogonal to the cylinder
axis the potential satisfies the 2-dimensional Laplace equation, and Maxwell
shewed that the potential at radius r between those cylinders is of the form

V = Cy+Cslogr . (106)
From this he found that the capacity of a length [ of the inner cylinder is

l
C = ——. 107
2log(b/a) (107)
[Maxwell v.1, p.155].
Fix the radius a of the inner cylinder and let the radius b of the outer cylinder
increase without bound. As the radius r * co the potential (106) increases (or
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decreases) unboundedly, and as b * co the capacity (107) of a length [ of the
inner cylinder converges to 0.

Thus, in a 2-dimensional potential field, the concept of capacity does not
apply to an isolated finite body in an otherwise empty universe.

Accordingly, for the capacity of isolated figures we shall consider figures with
dimension n > 3.

7 Ellipsoid capacity in n dimensions

Consider the n-dimensional ellipsoid (48).

7.1 Bounds for the capacity

The electrostatic capacity C of an n-dimensional ellipsoid was represented by
Bille Carlson in terms of his very complicated function R [Carlson 1966, (4.2)],
which is defined by an integral representation [Carlson 1966, (2.1)]. From that,
he obtained the inequalities

n 1-2/n c 1 n n—2
i — — i ) 1
<H1a> <— < (nza> (108)

where ay, - -+, a, are positive, finite and not all equal [Carlson 1966, (4.9)].
Taking the (n — 2)-th roots in (108), this becomes

n 1/n 1/(n—2) n
C 1
i — i - 1
<i||1a > < (n = 2) < - ;:1 a (109)

Thus, [C/(n — 2)]*/(»~2?) lies between the geometric mean of the semi-axes a;
and their arithmetic mean.
In particular, for an n-sphere of radius r,

C = n-2r"?2. (110)

Carlson’s inequalities give simple upper and lower bounds for the capacity
of an n-dimensional ellipsoid. But if a,, \( 0 (with fixed a1, as,..., an—1), the
geometric mean converges to 0 but the arithmetic mean converges to (a; +-- -+
an—1)/n. Hence, for each n there is no upper bound to the ratio of Carlson’s
upper and lower bounds for capacity.

Carlson’s representation of the capacity does not provide any clear way of
computing that capacity.

8 Capacity as Hyperelliptic Integral

For a 3-dimensional ellipsoid, the capacity C' can be expressed by a well-known
elliptic integral [Pdlya & Szegd, (6.4)]:

i du

1 oo
c 2/0 Vi(at +u)(a3 + u)(af +u) |

(111)
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For an n-dimensional ellipsoid with n > 3, this generalizes to the integral

du

1 1 [
c - 5/0 \/(a%+u)(a§+u)---(a%+u)’ (112)

which is an elliptic integral if n = 3 or 4, and is a hyperelliptic integral if n > 5.
As a check on the coefficient of the integral, applying this formula to the
n-sphere of radius r, we get

1 1/~ , _nJ2 1[(r? 4 u)t—n/? > r2n
— = = n = — _— = 11
- 2/0 ( +u)="2 du 2[ e (113)

in agreement with (110).

8.1 Evaluation of integral
The hyperelliptic integrand in (112) is not suitable for numerical integration.
Define
def a'2'
pi = 1= _é ) (114)
ay

aq >G,2 >a3 Z Z an > 0, (].].5)

then
0 =m < p2 < pg <o < pp < 1. (116)

Then, with y = u/a? we get
1 1 o0 w a2 u
- - = 14+ — 20 ).
¢ = 2, K *a%><a%+a%>

1 0 CL2 (7/2 71/2
= 1+ 2 4 ><_”+ >:| d
), (00 (o) ()] o

= 5%%5AmK1+yﬂl+y—uﬁ~(1+y—u0]UZdy.aw)

Now substitute 1 +y = 1/22, so that dy = —2dz /23, and we get the hyper-
elliptic integral

1 l.nfS

1 1
C  ap? /o V(= p22?) (1 = pza?) -+ (1 = pna?)

dz . (118)

For even n = 2q > 4 we could substitute 1 +y = 1/z, so that dy = —dz /2>,
and we get the simpler hyperelliptic integral

-2

1

24

-1 /ﬂ
C Qa%q*2 0 \/(1_N2z)(1—,U3Z)"'(1—,u2qz)

dz.  (119)
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8.1.1 Capacity of 3-dimensional ellipsoid

In particular, for a 3-dimensional ellipsoid (not a sphere), substituting z =
L/ 13,

é - a_ll/o V(- uﬂig):(l — p3?)
_ 1 /WT dz
@ Jo \/(1— (ﬁ) 22) (1—22)

dz
) 22) (1-22?)

1 /WT dz _ K(Jps|m)
Vai—az o /(1 —mz2)(1-2?) a2 —dl ’

where m = ps/ps and K (z|m) is Legendre’s Incomplete Elliptic Integral of the
First Kind (13). Therefore, the capacity is

1 s
i SO (2

(120)

2 2
as —a
C = L3 i (121)
2 2 2
. a a; —a
K [ arcsing /1 — —g ; ;
ay | ay —as

8.2 Examples

The integrand in (118) is smooth on the interval [0,1], and hence the integral
can be evaluated readily by Romberg integration, to give the capacity C.

A program has been written (in THINK Pascal) to compute C' by this for-
mula. For the same ellipsoids whose surface areas have been calculated in Table
2, Table 3 gives the computed capacity, with Carlson’s lower and upper bounds.

Table 3. Capacities with lower and upper bounds

| n | an | Lower Bound | Capacity | Upper Bound |
4 2 | 4216 x 10° 4-40659279 x 10° 4-5
10 2 | 1-697 x 10? 1-81082801 x 10? 2:050 x 102

20 | 13| 8854 x 1014 214341967 x 1015 | 2-931 x 1016
256 3| 6832 x 107 8:30807716 x 107 | 7352 x 1078
256 | 36 | 1-991 x 10%%8 115971902 x 1020 | 1-847 x 10324
256 | 100 | 4269 x 10104 599217774 x 101%% | 1-099 x 10*35

9 Capacity for repeated semi-axes
If any of the semi-axes a1, a2, ..., a, share common values, then the cor-

responding pairs of factors under the square root sign in (112) can be taken
outside the square root sign. If the value of a; occurs with odd multiplicity
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2m + 1, then the factor a? + u will remain in the denominator under the square
root, with the factor (a3 4+ u)™ in the denominator of the integrand.

Hence, if no value of a; has odd multiplicity then the integrand in (112) is
the reciprocal of a monic polynomial in u of degree n/2. If only one value of a;
has odd multiplicity then label it as a;, and the integrand in (112) is

1
Plu)y/a2 +u

where P is a monic polynomial of degree (n — 1)/2. If only 2 values of a; have
odd multiplicity then label them as a; and a2, and the integrand in (112) is

1
Q(u)/(a] +u)(a3 +u) ’

where Q is a monic polynomial of degree (n — 2)/2. Therefore, if no more than
2 values of a; have odd multiplicity then the hyperelliptic integral giving the
capacity can be reduced to elementary functions of the semi-axes.

If only 3 values of a; have odd multiplicity then label them as a;, a> and
as, and the integrand in (112) is

1
R(w)y/(af +u)(a3 +u)(af +u)

where R is a monic polynomial of degree (n — 3)/2. If only 4 values of a; have
odd multiplicity then label them as a;, a2, as and a4, and the integrand in
(112) is
1
S(u)y/(af +u)(af +u)(af + u)(af +u)

where S is a monic polynomial of degree (n — 4)/2. Therefore, if only 3 or 4
values of a; have odd multiplicity then the hyperelliptic integral (112) giving
the capacity reduces to an elliptic integral of the semi-axes.

In particular, the capacity of a general ellipsoid in 3 or 4 dimensions is given
by an elliptic integral, which reduces to elementary functions if any semi-axis is
repeated.

9.1 Capacity of biaxial ellipsoids

In particular, consider biaxial ellipsoids of type B, 4, which are defined as el-
lipsoids with p semi-axes equal to 8 and ¢ semi-axes equal to v, where (unlike
(94)) we take 8 > 7. Denote n = p + ¢, and then

B=a =a = -+ =a>a+ = apy2 =+ = ap = 7, (122
and
pp o= = pp = 0, Mp+1=“'=Nn:1—@- (123)

Hereafter, abbreviate pu,, to p, where 0 < p < 1.
Then, (118) becomes

1 1 1 ppta—3

i d
C prta=2 J, /(1_Mm2)q

24
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Substitute z1/p = z and then z = sin 6, and this becomes

1 1 Ve ,ptq—3 q
c - (Wu)p+q—2/o (-2
1 arcsiny/p Sinp+q73 0

S /0 . (125)

This can be integrated explicitly in terms of elementary functions — the full
working is given in Appendix C.

9.2 Evaluation of integrals

A general elliptic integral can be reduced to expressions involving Legendre’s
standard elliptic integrals. Legendre’s Incomplete Elliptic Integrals of the First
and Second Kinds can be computed efficiently [Reinsch & Raab], and the
Complete Integrals K(m) and E(m) can be computed very efficiently [Milne-
Thomson §17.6.3 & §17.6.4].

But for a general elliptic integral (e.g. (100)), reduction to the standard el-
liptic integrals is an extremely complicated operation [Milne-Thomson §17.1].
It is usually simplest to evaluate elliptic integrals directly by Romberg integra-
tion, possibly after performing some substitution (e.g. x = sinf) to make the
integrand smooth.

And similarly for complicated integrals which could be expressed in terms
of elementary functions, as in the Appendices.

Acknowledgement. I thank Reinhard Klette and Igor Rivin, for bringing
to my attention the problem of estimating surface area of ellipsoids, and Matti
Vuorinen for providing me with some useful modern references.
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Appendices

A Surface area of biaxial ellipsoids By, 2r+1

Here, m > 1 and k£ > 0.

Denote . (1 p2ymtis
Ik = /0 W dh ,
where § = 1 — (v/3)?, and then the integral in (97) can be represented as
m('y/ﬂ)z.]m,k +kJm—1,k41 -
The integrand in (126) is
L = (11__76’;;)%1 (1—n*)k2 .

This will be converted to partial fractions.
Denote x = 1/(1 — 6h?), so that

1—h? 1+(0—1)z 1+u

1—-6hn2 4] I

where u = (§ — 1)z, and
1-h? = 1=1/8)(1+1/u) =
Thus, the integrand is
L Taa\™ /6 -1\ 2 /14u)\ P2
B ) ) u

(6 = 1)F=2(1 4 w)mth=!
6m+k71uk72

(5 _ 1)k—2 - mikfl (m +k— 1) .
= w7 u u
Jmt+k—1 = q

_9 m+k—1
(6 — 1)k2 mtk—1\ peo

5m+k—1 q
7=0

B 1 S mr k-1 (-1
T ymtk—1 Z q (1 _ 5h2)q—k+2

q=0

1 "N mrk-1 b

= SmrAcT > < . >(6—1)‘1(1—6h) -2
q=0

This partial fraction expansion of L can then be integrated, to give

m+k—1 . 1
Tk = 75m+1k71 > (m th 1) (6 — 1)4/ (1—0h®)F=172 dh .
0

q=0 q
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(126)

(127)

(128)

(129)

(130)

(131)

(132)



Ifk >1and ¢ < k—1then k—q¢—2 > 0, and so the integrand is a polynomial
in h? of degree k — ¢ — 2; but for ¢ > k — 1 the integrand is the reciprocal of a
polynomial in h? of degree ¢ + k — 2. Thus, we need to consider

1
p, ¢ / (1—6h%)7 dh, (133)
0
for integer g.

Denote X =1 — 6h2, so that dX = —26h dh.
Integrating by parts,

1 1
P, = / X9 dh = th‘O—/hd(Xg)
0

1
= (1-6) —g/hxg—ldx = (1-0)9+ 2g/ Sh2X97" dh
0

(1—-6)Y +2g /1 (X971 — (1—6h?)X97'] dh

1
(1-06) + 2g/ [X9~" — X7] dh
0
= (1-6)Y+29P;_1 —29P,, (134)

and hence
(29+1)P, = 2gP;_1 + (1 —10)7 . (135)
Thus we get the reduction formulae
29P;, 1+ (1-9)°
2g+1

P, = (136)

for all g, and
29+ 1P, —(1-0)*

29

P, = (137)
for all nonzero g.

For integrating the polynomials with g > 0, start with Py = 1, and then
apply the reduction formula (136) successively for g =1, 2, 3, ---, to generate
the integrals P, for g > 0.

If >v>0then 0 <éd <1, butify>p >0then § < 0. For integrating
the rational functions with g < 0, start with

Lo, (10
P —/1 dh walg(l—ﬁ) Gz (138)
o 1=k T ) arctan(v9) (8 <7, 6<0)

V= e

Then apply the reduction formula (137) successively for ¢ = —1, —2, =3,-- -,
to generate the integrals P_,, P_3, P_4, ---

Thus, the integral J, r has been constructed in terms of elementary func-
tions.

Then the integral in (97) can be computed (127) from Jp, ; and Jpm—1 k41,
to give explicitly the surface area for a biaxial ellipsoid of type Bam 2k+1, in
terms of elementary functions of its semi-axes 3 and 7.
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B Surface area of biaxial ellipsoids By, 2

Here, m > 1 and k£ > 1.

Denote ) S
T )y Ty e

where § = 1 — (v/3)?, and then the integral in (99) can be represented as

2m(y/B)*Hpn s, + (2k — 1) Hpp 1 1 - (140)

This integrand for H,, j is L/v/1 — h?, where L is the integrand (128) for
Jm,k- Corresponding to the sum (131) of integrals for Jp, i, we get the sum of
integrals

Hm,k =

1 "S- L dh
R _ q
T 2 < q >(6 b /0 (1—oh2)i—h+2y/T—h2 (141)

q=0

Corresponding to P; in (133), we consider

1
def dh
U, , 142

! /0 (1 —6h2)iv/1—h? (142)

and the substitution A = sin converts this to

B w/2 dl/}

In (141),if k> 1 and ¢ < k — 1 then ¢ — k + 2 < 0, and so the integrand is
a polynomial in sin?+). For ¢ = 0 to k — 2, the integral in (141) is

w/2
Uiz = [ (1= dsin® )02 dy
0

Y e
_ / 3 <k g 2)(—5)"sin2’"¢d¢
0

,
r=0

k—q—2 /2

_ k_q_Q _\T in2"

- ZO( ’ )(6)/0 Sin®" 4 dup
k—q—2

= 2 (k_f‘2)<—6>’"s2r, (144)
r=0

(cf. (33)). In particular, Uy = 3.

But for ¢ > k — 1 the integrand is the reciprocal of a polynomial in sin®,
and so we need to consider U; in (142) for positive integer j.

For j > 1, from (143) we get

B /2 d,¢} B w/2 sec2i 1/}
Ui = /0 (1—6+6cos2ep)d /0 (1= 6)sec2 ey + 0)J dyp . (145)
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Substitute f = tan so that df =sec?+) dip = (1 + f2) dep, and we get

[ (14 f2)/
v = | arPmosnrmes
Y e DU a2t
= | G = ) Gy @ 00
where )
L (%) > 0. (147)
For j = 1, substitute = f/n, and then
_ e« df _ L *  dz _ ﬁ
v _/0 L+nf? \/77/0 1+a2 2y (148)

The integrand in (146) corresponds to L in (128) for m = j — 1 and k = 1,
with —h? replaced by f2 and § replaced by n. From (131), the partial fraction
expansion of the integrand in (144) is

L+t 1 = 1(;-1) n— 1)

L+nf2)l g ) (L af)rtt

(149)

Therefore, for 7 > 1,
U = /
i—1

> (j ) o /000 T 09

q

j—1
-1\ (-1

9=

Substitute = f/n and then z = tan#f, and we get

/“’L _ L/""dif _ é/""dix
o (+nfett i fy (T+a)ett gy (T4 a2)et!
B w/2 B w/2
= ;/ cos??9 df = —/ sin??9 d6
0

G5 _
Y

(151)

v

CDIUT\2
. o

R
N | =
=] o

in view of (33).

Thus, the integral H,, ; has been constructed in terms of elementary func-
tions.

Then the integral in (99) can be computed (140) from Hp, ; and Hpp—1 g+1,
to give explicitly the surface area for a biaxial ellipsoid of type Bay, 2k, in terms
of elementary functions of its semi-axes § and 7.
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C Capacity for biaxial ellipsoids

The indefinite integral

om
G /Sm % dz . (152)

cosk x

has the reduction formula [Dwight, §452.9] for k # 1:

som—1

sin T m—1
G = — Gm—2.k—2 - 153
mok (k—1)cosh—1z (k—l) m=2 k=2 (153)

Applied to the definite integral
arcsiny/p i, m
Ini / i‘onsk;” dz . (154)
0

this becomes

(m—1)/2 -1
_ H _(m
Imp = (k—1)(1 — p)(k-1)/2 ( k-1 ) Tm—22 - (155)

C.1 Oddg=2j+1

Denote m = p+ g — 3, and let ¢ = 25 + 1 so that m = p + 25 — 2. The formula
(125) requires the integral I, ;—1 = Ipt2j—2,2;. We shall compute I, and
then apply the reduction formula (155) j — 1 times, to compute successively

Ipio4, Iptas, Iptres, - Ipp2j—225.
As our starting value, we require
w P
sin? x
Ipp = — dz . (156)
o cos?x

For a prolate spheroid with the larger semi-axis # having multiplicity p = 1,
this becomes

“sin z dx 1
Ip72 = 3 =
g cos?z COS T

h 1 1
= -1 = —1. (157)
0 cos W 1—p

But for p > 1 we need to compute
w
Iy 2p = / sin %z dz | (158)
0

and then apply the reduction formula once to get I, 2, and then proceed as
above to compute I, 422 2;.

C.1.1 Integrating powers of sines

For non-negative integer h, define

w
Sh = / sin z dz | (159)
0
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where w = arcsin /u. In particular,

S = w = arcsin/p,
G = l—coswzl—\/H:ﬁ. (160)
For h > 1, integrating (159) by parts, we get the reduction formula
h—-1 sin®tw cos w
o = (25Y)a - o
= (M) ae- WtV (161)

Therefore,
b (o~ ViV T=R) = 4§ (arsin i - VAT=70) |
s = 3(2a—n l—u) = a3 (2—(2+u)\/m> ,

S2

(
a = 3 (Be—u/uy/T—n) = s (3arcsinyu— 3+ 20)vul =)
G = (- pVT-p) = 5 (8- B+ap+3d)VT-p)
6 = %(5%—#2\/#\/1—#)

= 41% (15 arcsin/p — (15 + 10p + 4p2)\/ (1 — ,u)) , et cetera. (162)

Thus, the definite integral ¢;, in (158) can be expressed in term of elementary
functions, for all integers h > 0.
C.2 Evenqg=2j

Denote m = p+ q — 3, and let ¢ = 2j so that m = p + 25 — 3. The formula
(125) requires the integral I, g—1 = Ipt2—32j—1. We shall compute I_1 1, and
then apply the reduction formula (155) j — 1 times, to compute successively

Inii3, Iptss, Ipisry ooy Ipynj—30j—1.
As our starting value, we require
w i.p—1
sin”P™" x
Ip,1’1 = dz . (163)
o COSZT

C.2.1 Oddp=29+1
For odd p = 2¢g + 1, this becomes

v d w d
Iyg1 = / sin29 g —2 = / (1 — cos® )9 :v
0 0

COS T COs —

/w zg: g (_ COSQ )7‘ dz _ zg: g (_l)r /UJ COSQT dz
[\ — r v COsS T - — r 0 o COS T

0
= /“’ dr + zg: g (=" /w cos? "t dx (164)
~ Jo cosz = \r 0 '
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Now,

/Ow cc()iswm = /Ow sec v do = log (%) , (165)
and
(1 + tan(w/Q))2 _ (cos(w/2) + sin(w/2)>2
1 — tan(w/2) cos(w/2) — sin(w/2)
_ l4sinw 144/
 l-sinw  1—+/p’ (166)
Therefore,

Yode 1 14+
/0 e §log<1_\/u> . (167)

Next, substitute x = %w —y, and we get

w w/2
/ cost z de = / sinfy dy
0 (m/2)—w
w/2 (m/2)—w
= / sinz dz — / sinfx de = s, — A, . (168)
0 0

Here, s, is the important special case (34) of ¢, with pu = 1.
For non-negative integer h, define

A = / sin z dz | (169)
0

where
v = tm—w = arccosy/u = arcsiny/1—p, (170)
so that
A = v = arcsiny/1 — pu,

At = l—cosv = 1—/u. (171)

The reduction formula (161) for ¢ is to be converted by interchanging sin w
(= V) and cos w (= /1 — p), giving the reduction formula for A, with A > 1

h—1 cos" 1w sin w
An = (T) A2 = —————
4 L =12

Staring from Ao and A; as given in (170), this reduction formula can generate
successively Ao, Az, Ag, ---.
Thus, we compute the required integral

Dyt = %log G * $> + Eg: (i) (=1) (8301 — Aoy_1) - (173)

r=1

And then we apply the reduction formula (155) j — 1 times, to compute succes-
sively Ip+1,3, Ipvss, Ipts,7, oo 5 Ipt2j—3,2j-1-
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C.2.2 Even p=2g

As our starting value, we require

W gin29~1 g
I,_ = Ih,_ = — dx . 174
p—1,1 29—1,1 /0 cosz z ( )

Then substituting ¢ = cos x we get

Y sin?9~Y 2 (sin = dz)
Ipfl,l =
0 cos
B /w (1 —cos®z)9~! (sin z dz)
—Jo cos x

= gi (9; 1)(_1)’"/1 A de

r=0 I-n

1 9-1 1
-1
— / %_‘_ E (g >(_1)'r'/ c2r—1 de
Vi—p c r 1—n

r=1

= —log 1—u+g§_: (g_1>(_1)rL VA

r 2r
r=1

S e

Having computed I,_1 1, we then apply the reduction formula (155) j —1 times,
to Compute successively Ip+173, [p+3,5a Ip+5,77 ey Ip+2j—3,2j—1-
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