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ABSTRACT

We propose a new elementary definition of the Higman-Sims graph in which the 100
vertices are parametrised with Z4 ×Z5 ×Z5 and adjacencies are described by linear and
quadratic equations. This definition extends Robertson’s pentagon-pentagram definition
of the Hoffman-Singleton graph and is obtained by studying maximum cocliques of the
Hoffman-Singleton graph in Robertson’s parametrisation. The new description is used to
count the 704 Hoffman-Singleton subgraphs in the Higman-Sims graph, and to describe
the two orbits of the simple group HS on them, including a description of the doubly
transitive action of HS within the Higman-Sims graph. Numerous geometric connections
are pointed out. As a by-product we also have a new construction of the Steiner system
S(3, 6, 22).
MR Subject Classifications: 05C62, 05C25; 05B25, 51E10, 51E26.
Keywords: Hoffman-Singleton graph, Higman-Sims graph, Higman-Sims group, biaffine
plane, S(3,6,22).

1. Introduction

The Higman-Sims graph is the unique strongly regular graph whose parameters are
(100, 22, 0, 6), i.e. it is a graph of order 100, regular of degree 22; it is triangle-free (any
two adjacent vertices have 0 common neighbours), and any two non-adjacent vertices
have exactly 6 neighbours in common. This graph made its first official appearance [23]
in the context of the construction of the sporadic simple group HS which is a subgroup
of index 2 in the automorphism group of the graph (note Section 13 for a comment on
the history).

In this paper we provide a new and elementary construction of the Higman-Sims
graph, combining a geometric interpretation [16] of Robertson’s pentagon-pentagram
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construction of the Hoffman-Singleton graph with the known construction of the Higman-
Sims graph via maximum cocliques in the Hoffman-Singleton graph. We demonstrate
the flavour of the construction by exploring some automorphisms, counting the Hoffman-
Singleton subgraphs and describing the doubly transitive action of degree 176 of the
sporadic simple group HS from within the Higman-Sims graph. It will become clear that
significant pieces of geometry are at home in this graph.

Structure of the paper. We give some background information about the Hoffman-
Singleton graph in Section 2. Section 3 contains our new construction of the Higman-Sims
graph. A first verification that the given graph is the Higman-Sims graph is given as
Theorem 1 whose proof is left as an exercise. Section 4 introduces some of the auto-
morphisms of the graph which can be used to show that the Higman-Sims graph is in
fact a Cayley graph. These automorphisms also give a hint of the remarkable symme-
tries of this graph. Sections 5 and 6 show how to derive the new definition from the
description of the Higman-Sims graph as (modified) incidence graph of the vertices of
the Hoffman-Singleton graph and one family of its maximum cocliques. This is achieved
by extending the parametrisation of the Hoffman-Singleton graph in Definition 1 to a
parametrisation of the maximum cocliques, allowing adjacencies (incidences and certain
intersection properties) to be expressed in the form of simple equations (Fig. 2) without
any reference to cocliques. Along the way we highlight some properties of maximum
cocliques in the Hoffman-Singleton graph. The well-known existence of two families of
maximum cocliques (containing 50 cocliques each) is captured very effectively by our
parametrisation. Section 7 extends our definition of the Higman-Sims graph to a graph
of order 150 which encapsulates everything about maximum cocliques of the Hoffman-
Singleton graph. In Section 8 we show how to count the Hoffman-Singleton subgraphs in
the Higman-Sims graph and characterise their two orbits under HS by means of certain
intersection numbers. Section 9 is a brief sidetrack to demonstrate that some classical
gems are explicitly present in the Higman-Sims graph: from the correspondence between
lines of PG(3, 2) and triples of a 7-element set to (almost) the exceptional isomorphism
between the alternating group A8 and PSL(4, 2), as well as the Alt(7) and Alt(8) ge-
ometries. In Section 10 we demonstrate the doubly transitive action of HS on 176 points
as it manifests itself within the Higman-Sims graph. Section 11 picks up the geometric
theme again, showing that the adjacencies of the Higman-Sims graph can be understood
in terms of geometric relationships between points, lines, conics and dual conics in a
biaffine plane, with strong connections to Wild’s semibiplanes [49]. In Section 12 we
highlight a decomposition of the Higman-Sims graph into 5 isomorphic subgraphs of
order 20, concluding with a brief historical note in Section 13.

In the remainder of this introduction, we give a brief overview of some constructions
of the Higman-Sims graph, and establish the notational conventions for the rest of the
paper.

Constructions of the Higman-Sims graph. The original construction by Higman
and Sims [23] is based on the Steiner system S(3, 6, 22). This construction is visible in
Fig. 4, if one considers only H3 ∪ H2. In a variation on this theme, [2] begins with the
projective plane of order 4 and effectively incorporates some of the construction steps
of S(3, 6, 22) into the construction of the Higman-Sims graph. Elsewhere [18], we will
describe the extension of S(2, 5, 21) to S(5, 8, 24) from within the Higman-Sims graph.

It is known that the maximum cocliques of the Hoffman-Singleton graph form a graph
with two connected components (each isomorphic to the Hoffman-Singleton graph) if
adjacency is defined by disjointness. This allows to construct the Higman-Sims graph
either by introducing additional edges between those cocliques which meet in 8 vertices, or
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else one can take the original Hoffman-Singleton graph together with one of the connected
components of the max-coclique graph, defining further adjacencies by incidence. This
latter approach is the basis of our new construction. A neat unification of these methods
leads to a graph of order 150 ([5], p.108, [6], p.394, cf. Section 7 below).

In [35] Mathon and Street present ‘the first elementary construction of the Higman-
Sims graph, starting from scratch without having to refer to cocliques in the Hoffman-
Singleton graph.’ Their interesting construction should be seen as describing an occur-
rence of the Higman-Sims graph in an unexpected place, perhaps stretching the meaning
of the word ‘elementary’. Another elementary description of the Higman-Sims graph is
its representation as a Cayley graph, found independently by Heinze [21], Jørgensen-Klin
[32] and Praeger-Schneider [44] (cf. Theorem 3).

Apart from the Cayley graph construction, there are other group-theoretic approaches
to the Higman-Sims graph, for example [10]. In Remark 27 we will indicate a construction
based on an incidence graph combined with a group action.

Hughes [27] uses semisymmetric 3-designs, while Yoshiara [52] has a construction of
the Higman-Sims graph with vertices in the Leech lattice. A comprehensive description of
the Higman-Sims graph (and G. Higman’s related geometry) in the Leech lattice appears
in R.A. Wilson’s paper [51].

Notation and Terminology. The following notation will be used throughout this
paper:
Z5 denotes the field of order 5, Z

∗
5 its multiplicative group.

G will always denote the graph defined in Definition 2 (which is the Higman-Sims graph,
cf. Theorem 1 and Remark 5).
Vi (i = 0, . . . , 5) are sets of 25 elements (i, x, y), x, y ∈ Z5; elements (0, x, y) ∈ V0 will
sometimes be referred to as point vertices, and in Section 5 just as points (x, y). Similarly
for line vertices (1,m, c) ∈ V1; these are also referred to as “the line y = mx + c” in
Section 5.
H,H1,H2,H3 denote Hoffman-Singleton graphs: H and H1 will have V0 ∪ V1 as vertex
set; the vertex set of H2 is V2 ∪ V3 and for H3 it is V4 ∪ V5.
K denotes the supergraph of order 150, defined in Section 7; vertex set: V0 ∪ · · · ∪ V5.
Aut(X) denotes the automorphism group of a graph X.
HS denotes the index 2 subgroup of Aut(G), consisting of all even permutations of the
vertices of G (cf. Remark 12 and Section 10); this is the Higman-Sims group.
g, h are special automorphisms of the Higman-Sims graph, defined in Lemma 10.
In [16] we introduced the term affine automorphism to denote automorphisms of H which
preserve the partition {V0, V1} (they are induced by collineations or correlations of the
biaffine plane).
A set of five disjoint 5-cycles with no further edges between any vertices will be denoted
by 5C5.

Numbering of items: there are three distinct numbering schemes: Remarks and Lem-
mas are in one sequence; Definitions and Theorems each have a sequence of their own.

Web resources for this paper: some Magma [3] files and links related to this
paper are available at [15].

2. The Hoffman-Singleton Graph

The Hoffman-Singleton graph is the unique Moore graph of degree 7 [26, 6]. There
are essentially three constructions of this graph which may be described succinctly as
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(0, x, y)
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3
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0

(1, m, c)

Points, V0 Lines, V1

vertical lines =
parallel classes of points of lines

FIGURE 1. Geometric interpretation of Robertson’s description of the Hoffman-Singleton graph

“1 + 7 + 42”, “15+35”, and “25+25”. For our purposes, Robertson’s [45] pentagon-
pentagram construction (“25+25”) with the geometric interpretation in the affine plane
AG(2,5) from [16] is pivotal and given as Definition 1 below. The “15+35” construction
is related to the projective space PG(3, 2) and will come into focus in Section 8 and
Remark 42, whilst the Moore graph definition (“1 + 7 + 42”) is visible in Fig. 4 (H3).

Definition 1. The Hoffman-Singleton graph H has vertex set Z2 × Z5 × Z5 and the
following edges:

(0, x, y) is adjacent to (0, x, y′) if and only if y − y′ = ±1; (1)
(1,m, c) is adjacent to (1,m, c′) if and only if c − c′ = ±2; (2)
(0, x, y) is adjacent to (1,m, c) if and only if y = mx + c. (3)

In [16] we showed that the geometry of the pentagon/pentagram construction does
not lie in the pentagons and pentagrams but in the adjacency rules y = mx + c. Under
this geometric point of view the Hoffman-Singleton graph is the incidence graph of a
biaffine plane with pentagons and pentagrams as additional edges. (A biaffine plane is an
affine plane with one parallel class of lines — the ‘vertical’ lines, in our coordinatisation
— omitted. These structures inherit the best features of both projective and affine
geometry: duality and parallelism.) In this spirit, we refer to vertices (0, x, y) as points
and to vertices (1,m, c) as lines. Fig. 1 summarises Definition 1, introducing also the
notation V0 = {(0, x, y) : x, y ∈ Z5}, V1 = {(1,m, c) : m, c ∈ Z5}.

We recall from [16] that two parallel lines (1,m, c) and (1,m, c′) of H are adjacent if
and only if their points of intersection (0, x, y) and (0, x, y′) with any vertical line are
non-adjacent. A particular consequence of this is the existence of 125 5-cycles in H
which consist of two adjacent points on a vertical line and three consecutive lines, e.g.
(0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 3), (1, 0, 0) (and the same with 3 points and 2 lines). Each
of these 5-cycles determines a distinct split of H into a pair of 5C5 (cf. [30] or [16]) which
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can be labelled as in Fig. 1 with the same adjacency rules. The 2-fold transitivity of the
automorphism group of the Hoffman-Singleton graph on the 126 splits now follows from
the transitivity on these special 5-cycles of the group of affine automorphisms (which
stabilises the obvious split into the given pair of 5C5.

The biaffine plane underlying our description of the Hoffman-Singleton graph inherits
a duality from the projective geometry into which it can be embedded. An example of
such a mapping ψ which interchanges points and lines and preserves all adjacencies is

(0, x, y)
ψ�→ (1, x, 2y), (1,m, c)

ψ�→ (0, 3m, 2c). (4)

Whenever we need to interchange points and lines, we might use a phrase like ‘by duality’.

Remark 1. This paper as well as its precursor [16] can be seen under the following
general viewpoint. When the Petersen graph is viewed as a pair of 5-cycles, one im-
mediately sees 20 of its automorphisms (dihedral group for the cycle, and swapping the
cycles). The full automorphism group, however, has order 120, due to the fact that
there are 6 distinct ways of choosing a pair of ‘opposite’ 5-cycles. The same holds for the
Hoffman-Singleton graph: looking at the split into points and lines of a biaffine plane, one
immediately sees 2000 affine automorphisms; the full automorphism group, however, has
order 252 000 because there are 126 distinct splits into points and lines of a biaffine plane.
We will note the same for the Higman-Sims graph later in this paper: when we consider
the Higman-Sims graph as a pair of Hoffman-Singleton graphs, we can immediately see
252 000 automorphisms. But the total number of automorphisms is 352 · 252 000, since
there are 352 ways of splitting the Higman-Sims graph into a pair of Hoffman-Singleton
graphs. The same phenomenon was observed [19] on a graph of order 32, the smallest of
the McKay-Miller-Širáň graphs for q = 2.

The remainder of this section deals with non-affine automorphisms of the Hoffman-
Singleton graph, showing how they arise from automorphisms of the Petersen graph. It
is obvious that any of the 5-cycles of V0 together with any of the 5-cycles of V1 induce a
Petersen graph in H. When considering automorphisms of H, we might therefore look
at extending automorphisms of a Petersen graph.

Lemma 2. Let P be a Petersen subgraph of H. Then every automorphism of P can
be extended to an automorphism of H in exactly four ways.

Proof. Implicit in the uniqueness proof [30] of the Hoffman-Singleton graph H is
a proof that Aut(H) is transitive on the 525 Petersen subgraphs of H and that we
may assume the vertices of P to be (0, 0, 0), . . . , (0, 0, 4), (1, 0, 0), . . . , (1, 0, 4). Then it
follows from the orbit-stabiliser theorem that the stabiliser of P in Aut(H) has order
252 000/525 = 480. The identity of P has 4 extensions to an automorphism of H, since
we are free to choose an eigenvalue in the horizontal direction (4 possibilities). Therefore
the stabiliser of P induces 120 distinct automorphism of P , i.e. every automorphism of
P can be extended to an automorphism of H.

Remark 3. We give an example of a (non-affine) automorphism of P , and an extension
to H, since this will be useful later on. It is easy enough to construct an automorphism of
P : just choose any 5-cycle, and find its complementary cycle. We indicate this by listing
the images of the vertices of P in a scheme according to Fig. 1. We also list the image of
the additional vertex ((0, 1, 3). The unique neighbour of this vertex in P is (1, 0, 4), and
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therefore our image must be chosen from one of the 4 neighbours of (1, 0, 4) outside P .
For better orientation we have labelled the rows as they are labelled in Fig. 1, cycles in
the left hand block V0 being labelled differently from those in the right hand block V1.

(V0)

(4) 103 . . . . 104 . . . . (3)

(3) 101 044 . . . 004 . . . . (1)

(2) 001 . . . . 003 . . . . (4)

(1) 000 . . . . 002 . . . . (2)

(0) 100 . . . . 102 . . . . (0)

(V1) (5)

The construction of the automorphism of H is now mechanical (and best left to a com-
puter, although it is easy enough to do it by hand). The key ingredient is that H is an
srg(50, 7, 0,1), and that if one starts with a subgraph X of H which contains P and at
least one more vertex, one obtains all of H by successively adding common neighbours
of pairs of non-adjacent vertices. (The Petersen graph, being an srg(10, 3, 0, 1), is closed
under the operation of taking ‘midpoints’ of non-adjacent vertices.) For example, to
determine the image of v = (1, 3, 0), note that v is the unique common neighbour of
(0, 0, 0) and (0, 1, 3), both of whose images are already known: (0, 4, 0) and (0, 4, 4). The
image of v must therefore be the unique common neighbour of these two vertices, i.e.
(0, 4, 0). After a bit of work one obtains the following automorphism of the graph H.
The significance of the boldface entries will be explained in Section 10.

(V0)

(4) 103 143 123 133 113 104 021 011 041 031 (3)

(3) 101 044 034 024 014 004 130 110 140 120 (1)

(2) 001 132 142 112 122 003 013 033 023 043 (4)

(1) 000 134 144 114 124 002 121 141 111 131 (2)

(0) 100 012 022 032 042 102 020 010 040 030 (0)

(V1) (6)

3. A New Definition of the Higman-Sims Graph

Definition 2. Throughout this paper, G is the graph with vertex set Z4×Z5×Z5 and
adjacencies defined as follows (cf. Figure 2):

(0, x, y) is adjacent to (0, x, y′) ⇔ y − y′ = ±1; (7)
(1,m, c) is adjacent to (1,m, c′) ⇔ c − c′ = ±2; (8)
(2, A,B) is adjacent to (2, A,B′) ⇔ B − B′ = ±1; (9)
(3, a, b) is adjacent to (3, a, b′) ⇔ b − b′ = ±2; (10)
(0, x, y) is adjacent to (1,m, c) ⇔ y = mx + c; (11)

(1,m, c) is adjacent to (2, A,B) ⇔ c = 2(m − A)2 + B; (12)

(2, A,B) is adjacent to (3, a, b) ⇔ B = 2A2 + 3aA − a2 + b; (13)

(3, a, b) is adjacent to (0, x, y) ⇔ y = (x − a)2 + b; (14)

(0, x, y) is adjacent to (2,m, c) ⇔ y = 3x2 + Ax + B ± 1; (15)

(1, x, y) is adjacent to (3,m, c) ⇔ c = m2 − ma + b ± 2. (16)
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V2

V3

(±1)

V0

V1

(0, x, y)

(1, m, c)

y = (x − a)2 + b

c = 2(m − A)2 + B

y
=

3x
2 +

A
x
+

B
± 1c

=
m

2−

am
+

b±
2

y
=

m
x

+
c

(2, A, B)

(3, a, b)

(±2)

B
=

2
A

2
+

3
a
A
−

a
2

+
b

(±1)

(±2)

FIGURE 2. Higman-Sims ‘à la Robertson’

We further define

Vi = {i} × Z5 × Z5 (i = 0, . . . , 3). (17)

Remark 4. The definition is summarised in Fig. 2; each of the four sets V0, . . . , V3

consists of five 5-cycles. They are indicated in the corners of the square, with labels
‘(±1)’ to indicate pentagon 5-cycles, and labels ‘(±2)’ to indicate pentagram 5-cycles
(cf. equations (1), (2), (7)–(10)). Equations between the four sets contain the rules of
adjacency. The sets V0 and V1 together induce a Hoffman-Singleton graph as described
in Definition 1. This subgraph is denoted by H1 throughout the paper.

Theorem 1. The graph G is strongly regular with parameters (100, 22, 0, 6). This
implies that G is the Higman-Sims graph, by the uniqueness theorem of Gewirtz [12].

Remark 5. The proof of Theorem 1 is an exercise in solving quadratic equations over
Z5 and can be tackled head-on. We leave the details to the reader. In Section 5 we
will take a more gentle approach which indicates how the description given above is
obtained, relating it to maximum cocliques in the Hoffman-Singleton graph. This shows
that G is the Higman-Sims graph, without having to rely on the characterisation by
Gewirtz. Alternatively, one can avoid the use of the theorem of Gewirtz by establishing
that given a vertex x of G, the edges between vertices at distance 1 and 2 from x form
the incidence graph of a S(3, 6, 22); as shown in [1], p. 273, this can be achieved by
an ingenious application of a result by Majindar [34] on block intersections. We note
that our construction of the Higman-Sims graph provides also a new construction of
S(3, 6, 22).

As a further alternative, Corollary 21 proves that G is the Higman-Sims graph based
on its construction from maximum cocliques in the Hoffman-Singleton graph. The con-
struction from S(3, 6, 22) is visible in Fig. 4, H1 ∪ H3.

It should be pointed out that the proof of Theorem 1 becomes simpler if one makes
use of Remark 7 below, as well as taking advantage of the automorphisms which we
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describe in Section 4. To show that G is triangle-free, one invokes the fact that the
Hoffman-Singleton graph is triangle-free and proves by a simple calculation that there
do not exist 3 vertices v0, v1, v2 with vi ∈ Vi which form a triangle, nor do there exist
any v0, v1 ∈ V0, v2 ∈ V2 forming a triangle. Similarly, when proving that non-adjacent
vertices u, v have 6 common neighbours, only the following cases need to be considered:
(1) v, w ∈ V0, belonging to the same 5-cycle of V0; (2) v, w ∈ V0, belonging to distinct
5-cycles of V0; (3) v ∈ V0, w ∈ V1; (4) v ∈ V0, w ∈ V2.

For a different angle on this, we refer to Remark 24 and Lemma 25.

Remark 6. Alerted by the geometric interpretation of Definition 1, the attentive reader
will have noted that for (i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)} adjacencies between Vi and
Vj correspond to incidences of certain points or lines with certain parabolas or dual
parabolas. Less obvious is that adjacencies between V2 and V3, as well as those within V2

and V3, indicate disjointness of certain sets (cf. Corollary 21). Geometric interpretations
of all adjacencies between Vi and Vj (i �= j) are found in Theorem 6.

Remark 7. Any two consecutive sets Vi and Vi+1 (where subscripts are taken mod-
ulo 4) induce a subgraph of G which is isomorphic to the Hoffman-Singleton graph. We
demonstrate this for i = 2: the two sets V2 and V3 each induce five 5-cycles, the first one
arranged as pentagons, the second one arranged as pentagrams, as in the case of V0 and
V1. The vertices (2, A,B) and (3, a, b) are adjacent if and only if Y = MA + C where
Y = B − 2A2, C = b− a2, M = 3a. Thus, after choosing the 0-point on each 5-cycle ap-
propriately (additive adjustments), and after permuting the 5-cycles in V3 (multiplication
by 3), we get the equations which define the Hoffman-Singleton graph in Definition 1.

Remark 8. The ‘diagonal’ subgraphs of order 50 induced in G by V0 ∪ V2 and by
V1 ∪ V3 have automorphism groups of order 2000, isomorphic to the group of the affine
transformations of the Hoffman-Singleton graph (cf. [16]). See Section 11 for more.

4. Some Automorphisms of G

Automorphisms φ of H which map V0 to itself are mappings (0, x, y) �→ (0, x′, y′) where
(x, y) �→ (x′, y′) is an affine transformation whose linear part has (0, 1) as eigenvector
with eigenvalue ±1:

(x, y)
φ�→ (x, y)

(
r s
0 t

)
+ (e, f) = (rx + e, sx + ty + f), (18)

where r, t ∈ Z
∗
5, s, e, f ∈ Z5, t = ±1. Such transformations can be extended readily

to automorphisms of the Hoffman-Singleton graph H1 (cf. [16]). If we stipulate further
that r2 = t, the mapping φ can be extended to an automorphism of G, preserving each
of the sets Vi (i = 0, . . . , 3). Note that (0, x, y) �→ (0, x,−y) can be extended to an
automorphism of H1, but not to an automorphism of G.

Theorem 2. Let r, s, t, e, f ∈ Z5, t = ±1 and r2 = t. The mapping φ : V0 → V0 defined
by

(0, x, y)φ = (0, rx + e, sx + ty + f) (19)
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can be extended to an automorphism φ of G by defining:

(1,m, c)φ = (1, rm + rst,−rme + tc + f − rest), (20)

(2, A,B)φ = (2, rA − e + rst,−rAe + tB + f − rest − 2e2), (21)

(3, a, b)φ = (3, ra + e + 2rst, sa + tb + f + s2t). (22)

Proof. Verifications are by direct calculation and are left to the reader. The formulas
are found by determining how the lines y = mx + c and parabolas y = (x − a)2 + b and
c = 2(m − A)2 + B transform when the points are transformed as in (19). Then one
only needs to check that the adjacencies between V0 and V2 and between V1 and V3 are
preserved.

We note that the condition t = ±1 is needed in order to preserve the (vertical) 5-
cycles in V0, and the condition r2 = t is needed to preserve the family of parabolas
y = (x− a)2 + b, (a, b ∈ Z5), and thus the adjacencies between V0 and V3. After sections
5 and 6 we will see this in a different light: preservation of a family of maximum cocliques
of H1.

Remark 9. The square of the duality ψ of H introduced in Remark 4 is (0, x, y)
ψ2

�→
(0, 3x,−y), (1,m, c)

ψ2

�→ (1, 3m,−c) and satisfies the hypotheses of Theorem 2. Therefore

ψ2 can be extended to an automorphism of G: (2, A,B)
ψ2

�→ (2, 3A,−B), (3, a, b)
ψ2

�→
(3, 3a,−b). Clearly, ψ2 and its extension to G have order 4. It is not hard to find that
ψ itself can be extended to an automorphism of G (of order 8) which interchanges V0

with V1 and V2 with V3 by defining (2, A,B)
ψ�→ (3, 3A, 2B), (3, a, b)

ψ�→ (2, a, 2b). The
automorphism ψ4 is an involution whose fixed-point set of order 20 is the set W0 defined
in Section 12.

In conjunction with Remark 7 and Theorem 2 it follows from Remark 9 that G is
vertex transitive. The following Lemma introduces further automorphisms which will
allow us to show that G is a Cayley graph (Theorem 2).

Lemma 10. Define mappings g, h : G → G by

(0, x, y)
g�→ (0, x + 1, y − x)

(1,m, c)
g�→ (1,m − 1, c − m + 1)

(2, A,B)
g�→ (2, A − 2,−A + B − 1)

(3, a, b)
g�→ (3, a − 1,−a + b + 1)

∣∣∣∣∣∣∣∣∣

(0, x, y) h�→ (1, 2x, 2y − 2x2)
(1,m, c) h�→ (2,m, 2c − 2m2)
(2, A,B) h�→ (3,−A, 2B)
(3, a, b) h�→ (0, 2a, 2b + 2a2)

Then g is an automorphism of order 5 which fixes each of the sets V0, . . . , V3, and h is
an automorphism of order 4 of G which cyclically permutes V0, . . . , V3.

The proof is left as a computational exercise. The automorphism h confirms our earlier
observation that the four sides of the square in Fig. 2 are Hoffman-Singleton graphs.

Remark 11. Considering the automorphism h and its powers, we note that for v ∈
Vi ∪ Vi+1, the neighbours of v in Vi+2 ∪ Vi+3 (subscripts modulo 4) form a coclique of
order 15 in the Hoffman-Singleton subgraph induced in G by Vi+2 ∪ Vi+3.
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Theorem 3. (Heinze [21], Jørgensen-Klin [32], Praeger and Schneider [44]) The Higman-
Sims graph is a Cayley graph.

Proof. We can obtain a direct proof of this result from our explicit knowledge of
the automorphisms g and h. Note first that g and k = h−1gh together generate an
elementary abelian group of order 25 which acts transitively on V0. It is easy to see that
〈g, h〉 has order 100 and is a regular group of automorphisms of G. An abstract definition
of this group by generators and relations as well as a suitable generator set are given
on [15].

Remark 12. We note that, as a permutation, h is product of 25 cycles of length 4 and
hence an odd permutation. This implies that the automorphism group of the Higman-
Sims graph contains a subgroup of index 2, consisting of the automorphisms which are
even permutations. This subgroup is the sporadic simple group HS.

Remark 13. Anticipating notation and results that will be introduced later, we note
that an automorphism of H1 can be extended to an automorphism of all of G if and only
if it preserves the family F2 of maximum cocliques of H1.

5. Maximum Cocliques
in the Hoffman-Singleton Graph

We will now derive a description of the maximum cocliques in the Hoffman-Singleton
graph as sets of parabolas in the biaffine plane. It is well-known that maximum cocliques
in the Hoffman-Singleton graph are of order 15; this can be proved via eigenvalues ([14],
Theorem 2.12) or via an application of the Cauchy-Schwarz inequality ([31, 13]). It will
also be a by-product of Lemma 14.

In this section we will use geometric notation and terminology as much as possible.
In particular, we will refer to the ‘point vertices’ (0, x, y) of the Hoffman-Singleton graph
as points (x, y), and a ‘line vertex’ (1,m, c) will be referred to as the line y = mx + c.
We remind the reader that ‘a vertical line’ consists of vertices (0, x, y) on a 5-cycle of V0,
with x constant, y ∈ Z5 (and that vertical lines are not lines of our biaffine plane).

Lemma 14. A coclique of order n ≥ 15 in the Hoffman-Singleton graph consists either
of 5 points, one from each vertical line, and 5 pairs of non-adjacent parallel lines, or of
5 pairs of non-adjacent points on vertical lines and 5 lines, one from each parallel class.
In particular, the order of a maximum coclique in the Hoffman-Singleton graph is 15.

Proof. Let C be a coclique of order n ≥ 15 in the Hoffman-Singleton graph. Since
each parallel class of lines is a 5-cycle, there can be at most two elements of each class
in a coclique. In particular, C must contain at least 5 points and at least 5 lines.

Case 1: C contains one pair of non-adjacent parallel lines. We may assume that they
are the horizontal lines y = 0 and y = 1, since otherwise an adjacency-preserving affine
transformation can bring us into this situation. Then none of the points (x, 0) and (x, 1),
x ∈ Z5, can belong to C. Now C contains at least 3 more lines, and we may assume that
one of them is y = mx, (m �= 0) —represented by the vertex (1,m, 0)— otherwise we
perform a translation x �→ x + r. The line y = mx is incident with the points (2/m, 2)
and (4/m, 4). Consequently, there can be at most one point in C whose first coordinate
is 2/m because (2/m, 0), (2/m, 1), (2/m, 2) do not belong to C, and the points (2/m, 3)
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and (2/m, 4) are adjacent. Similarly, C can contain only one point with first coordinate
4/m.

It follows that if C contains a pair of non-adjacent parallel lines then C contains at
most 8 points, and therefore at least two pairs of non-adjacent parallel lines. By duality,
the analogous statement with points and lines interchanged is also valid.

Case 2: C contains two pairs of non-adjacent parallel lines, say y = 0, y = 1, y = mx
and y = mx + 1. The line y = mx meets the horizontal lines y = 0, 1 in (0, 0) and
(1/m, 1) respectively. Then the line y = mx + c + 1 passes through (1/m, 2), allowing
only one of the adjacent points (1/m, 3) and (1/m, 4) to belong to C. Similarly, only
one of the points on the vertical line x = 4/m can belong to C. Our four lines have 4
distinct points of intersection with each of the vertical lines x = 2/m and x = 3/m, so
that C cannot contain a pair of points from these vertical lines either.

It follows that if C contains two non-adjacent parallel lines then C can contain at most
1 pair of points from a vertical line. Since we established above that it is impossible for
a maximum coclique to contain precisely one such pair of points, we conclude that if C
contains one pair of parallel lines then C contains 5 pairs of parallel lines, but at most one
point from each vertical line. By duality, if C contains 2 points on a vertical line, then
C contains 5 such pairs and no pairs of parallel lines. In particular, we have established
that the order of a maximum coclique in the Hoffman-Singleton graph is 15.

Lemma 15. Let C be a maximum coclique in the Hoffman-Singleton graph, and as-
sume that C consists of 5 points pi and 10 lines �j (i = 1, . . . , 5, j = 1, . . . , 10). Then no
three of the points are collinear in the biaffine plane.

Proof. We note that the 10 lines must be partitioned into pairs of non-adjacent par-
allel lines. Assume that p1, p2, p3 are collinear points of C, incident with the line � with
equation y = 0. This is no loss of generality since we can always use an admissible affine
transformation to transform a given line into �. Then the lines y = mx + c (m �= 0)
in C must pass through the remaining two points of �, say (x4, 0) and (x5, 0). We now
see that it is impossible for all four pairs of parallel lines to be non-adjacent, since if we
take two parallel lines y = mx + c1 and y = mx + c2, their adjacency is governed by the
difference c1 − c2 = m(x4 − x5). There are exactly two values for m which will make
this a square and two which make it a non-square in Z

∗
5. This means that C contains at

most 3 pairs of non-adjacent lines, a contradiction.

Corollary 16. Assume that C is a coclique in the Hoffman-Singleton graph consisting
of 5 points and 10 lines. Then the 5 points form one of the sets with equation y =
±(x − a)2 + b in the biaffine plane.

Proof. The 5 points together with the point of intersection of the vertical lines form
an oval in the projective plane over Z

∗
5. By Segre’s theorem [46], this is a conic. Since

the line at infinity is a tangent, this conic is a parabola y = r(x − a)2 + b, r �= 0 (in
the affine plane). The 10 lines in the coclique represented by vertices (1,m, c) are non-
adjacent in the graph H if and only if r = ±1, because the 3 values (b, b + r, b − r) of
r(x − a)2 + b (x ∈ Z5) are consecutive mod 5 if and only if r = ±1. In that case, any
pair of parallel lines which do not meet the parabola intersect a vertical line in adjacent
points, and consequently the lines are non-adjacent in the graph (cf. the comment in the
introduction).
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Corollary 17. There are exactly 100 distinct cocliques of order 15 in the Hoffman-
Singleton graph.

Remark 18. It is an easy exercise to verify that the passants of the parabola y =
(x− a)2 + b are the 10 lines y = mx + c, where c = m2 −ma + b± 2; in other words: for
any a, b ∈ Z5 the 15 vertices

(0, x, (x − a)2 + b), x ∈ Z5

(1,m,m2 − ma + b + 2), m ∈ Z5,
(1,m,m2 − ma + b − 2), m ∈ Z5,

form a 15-coclique in the Hoffman-Singleton graph. Similarly, the passants of the parabola
y = −(x − e)2 + f are given by the 10 lines y = mx + c where c = −m2 − me + f ± 2.

Dually, the 5 lines y = mx + c where c = 2(m − E)2 + F avoid all the points (x, y)
where y = 3x2 + Ex + F ± 1; and the 5 lines y = mx + c where c = 3(m + E)2 −F avoid
all the points (x, y) where y = 2x2 − Ex − F ± 1. This leads us to define the following
15-element sets for a, b, A,B, e, f, E, F ∈ Z5:

P (a, b) = {(0, x, (x − a)2 + b) : x ∈ Z5} ∪ {(1,m,m2 − ma + b ± 2) : m ∈ Z5}, (23)

Q(A,B) = {(1,m, 2(m − A)2 + B) : m ∈ Z5} ∪ {(0, x, 3x2 + Ax + B ± 1) : x ∈ Z5};
(24)

P ′(e, f) = {(0, x,−(x − e)2 + f} ∪ {(1,m,−m2 − me + f ± 2) : m ∈ Z5}, (25)

Q′(E,F ) = {(1,m, 3(m + E)2 − F ) : x ∈ Z5} ∪ {(0, x, 2x2 − Ex − F ± 1) : x ∈ Z5}.
(26)

These sets P (a, b) etc. are the 100 maximum cocliques of the Hoffman-Singleton graph,
grouped into 4 sets of 25.

6. Two Families of Maximum Cocliques and
the Max-coclique Graph

We define 2 families of 50 maximum cocliques of the Hoffman-Singleton graph as follows:

F1 = {P (a, b) : a, b ∈ Z5} ∪ {Q(A,B) : A,B ∈ Z5}, (27)
F2 = {P ′(e, f) : e, f ∈ Z5} ∪ {Q′(E,F ) : E,F ∈ Z5}. (28)

These two families can be transformed into each other by means of the affine automor-
phism of H induced by (0, x, y) �→ (0, x,−y). Each of them is invariant under dualities
of the Hoffman-Singleton graph. An intrinsic characterisation of these two families is
obtained by looking at the cardinality of intersections of their members:

Lemma 19. Let X ∈ F1, and let Y be any maximum coclique of the Hoffman-Singleton
graph. Then

Y ∈ F1 if and only if |X ∩ Y | ∈ {0, 5}, (29)
Y ∈ F2 if and only if |X ∩ Y | ∈ {3, 8}. (30)

The corresponding result with F1 and F2 interchanged also holds.
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Proof. We give a sample calculation. Let a, b, e, f ∈ Z5 and consider the two cocliques
X = P (a, b) and Y = P ′(e, f) (cf. (23) and (25)). One constructs two quadratic
equations to determine their common points; after minimal manipulations they are:

2x2 − 2(e + a)x + a2 + e2 + b − f = 0,

2m2 + m(e − a) + b − f + ν + μ = 0, where ν, μ ∈ {2,−2}.
The discriminants are Δ1 = (a− e)2 +2(b− f) and Δ2 = (e−a)2 +2(b− f)+2(ν +μ) =
Δ1 + 2ν + 2μ, respectively.

It is impossible that Δ1 and Δ2 are both ±2 for all choices of ν, μ, hence X and Y
cannot be disjoint.

When Δ1 = ±1 then X and Y have 2 vertices of V0 in common, and consideration
of the possibilities for Δ2 reveals 3 combinations of μ, ν such that Δ2 = ±1 (and one
combination yielding Δ2 = ±2). Hence X and Y have 3 ·2 = 6 vertices of V1 in common,
for an intersection of cardinality 8 in total.

When Δ1 = 0 then X and Y have 1 common neighbour in V0, and consideration of the
possibilities for Δ2 reveals 2 combinations of μ, ν such that Δ2 = 0 (and 2 combinations
yielding Δ2 = ±2). Hence X and Y have 2 vertices of V1 in common for an intersection
of cardinality 3 in total.

Remark 20. If one goes through all the detail of the preceding proof, the following
stronger result is obtained: for given X ∈ F1 the number of maximum cocliques Y with
|X ∩ Y | = 0, 3, 5, 8, 15 is 7, 35, 42, 15, 1, respectively.

Theorem 4 The max-coclique graph. Let C be the graph whose vertex set is F1∪
F2 and adjacency is defined by disjointness. Then F1 and F2 each induce a connected
component of Z, each of the components being isomorphic to the Hoffman-Singleton
graph.

Proof. Lemma 19 and Remark 20 imply that there are two connected components. It
remains to show that F1 induces a Hoffman-Singleton graph. The case for F2 then follows
by applying the automorphism induced by the affine transformation (0, x, y) �→ (0, x,−y).
Thinking of the sets P (a, b) and Q(A,B) as unions of parabolas in the (x, y)- and (m, c)-
coordinate systems, it is obvious that P (a, b) ∩ P (r, s) = ∅ if and only if r = a and
s = b ± 2. Similarly, Q(A,B) ∩ Q(R,S) = ∅ if and only if R = A and S = B ± 1. Next
we observe that P (a, b)∩Q(A,B) = ∅ if and only if none of the following 4 equations (in
x or m) has a solution in Z5:

(x − a)2 + b = 3x2 + Ax + B ± 1,

2(m − A)2 + B = m2 − am + b ± 2.

The discriminants of these equations equal ±2 if and only if B = 2A2 + 3aA − a2 + b.
Now we see that F1 induces a component which is isomorphic to the subgraph of G

induced by V2 ∪V3: just identify the cocliques P (a, b), Q(A,B) with the vertices (3, a, b)
and (2, A,B) of G, respectively. We have seen in Remark 7 that this graph is isomorphic
to the Hoffman-Singleton graph.

Corollary 21. (1) The graph G is isomorphic to the graph whose vertex set is H ∪F1,
where adjacency in H is defined as in Definition 1, adjacency in F1 is disjointness of
cocliques, and v ∈ H is adjacent to X ∈ F1 if and only if v ∈ X.
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(2) The graph G is isomorphic to the graph whose vertex set is H∪F2, where adjacency
in H is defined as in Definition 1, adjacency in F2 is disjointness of cocliques, and v ∈ H
is adjacent to X ∈ F2 if and only if v ∈ X.

(3) Each coclique in Fi, i ∈ {1, 2}, contains 15 vertices of H, and each vertex of H is
contained in 15 cocliques of Fi.

Proof. (1) is an immediate consequence of the adjacency rules of G together with the
proof of Theorem 4.

(2) Application of the automorphism of H induced by (0, x, y) �→ (0, x,−y) maps F1

to F2 and preserves disjointness of cocliques and incidence of vertices with cocliques.
(3) One part of this statement is evident from the definition of Fi, and the other

follows by applying the automorphism h2, bearing in mind Theorem 4.

Remark 22. Note that overall we have established the following: whenever {V ′
0 , V ′

1}
is a split of H1 into a pair of 5C5 then there exists an automorphism of G mapping V0

to V ′
0 and V1 to V ′

1 . In particular, this means that given a 15-coclique C of H1 and a
split of H1 into a pair {V ′

0 , V ′
1} of 5C5, the number of elements of C in V ′

0 will be 5 or
10; and the intersection of C with any 5-cycle of H1 will consist of 1 or 2 vertices.

Remark 23. Corollary 21 characterises the cocliques of F1 as the sets of neighbours
in H1 of vertices in H2. Application of h and its powers shows more generally that if
v ∈ Vi ∪ Vi+1 then the neighbours of v in Vi+2 ∪ Vi+3 (indices mod 4) form a coclique
in the Hoffman-Singleton subgraph induced by Vi+2 ∪ Vi+3; i.e. edges between Vi ∪ Vi+1

and Vi+2∪Vi+3 correspond to incidence of vertices of a Hoffman-Singleton subgraph and
its maximum cocliques.

Remark 24. We now look back at Theorem 1 in the light of Corollary 21. To see
that G is triangle-free, consider three vertices v1, v2, v3 of G. If all three are contained in
H1 or in its complement H2, they cannot form a triangle because the Hoffman-Singleton
graph has girth 5. If not all three belong to H1 or to H2, we may assume that v1 ∈ H1,
v2, v3 ∈ H2 (apply the automorphism h2 if need be). If v2 and v3 are adjacent, then their
neighbourhoods in H1 are disjoint cocliques, which means that v1 cannot belong to both
of them.

To see that any two non-adjacent vertices v1, v2 of G have exactly 6 common neigh-
bours, assume first that both vertices belong to H1. There is a unique common neighbour
v in H1, and we may assume that v1, v, v2 belong to a vertical 5-cycle. Now our knowledge
of maximum cocliques makes it evident that there are exactly 5 of them which contain
v1 and v2 (i.e. there are exactly 5 common neighbours of v1 and v2 in H2). If, secondly,
v1 ∈ H1, v2 ∈ H2, we prove the following result (the first part is contained in Neumaier’s
Proposition 3 or Jeurissen’s Lemma 6.2) by a simple calculation.

Lemma 25. (Neumaier [38], Jeurissen [31]) Let v be a vertex of the Hoffman-Singleton
graph and C a maximum coclique in F1 not containing v.

(1) There exist exactly 3 cocliques in F1 which contain v and which are disjoint from C.
(2) There are exactly 3 vertices in C which are adjacent to v.

The same is true if F1 is replaced by F2 throughout.
Proof. We first consider the case where v = (0, x, y) ∈ V0, assuming that C consists

of all neighbours in H1 of w = (2, A,B) ∈ V2, with y = 3x2 +Ax+B + δ and δ ∈ {0,±2}
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(non-adjacency). If δ = 0, then v and C have two common neighbours (2, A,B ± 1) in
V2, and otherwise only one. Any further common neighbours in V2 ∪ V3 must belong to
V3 and satisfy the equation

−x2 + 2ax − a2 + y = B − 2A2 + 2aA + a2

(refer to Fig. 2). Substitute y = 3x2 +Ax+B + δ into this quadratic equation for a, and
note that its discriminant is −2δ. This shows that there are 1 resp. 2 further neighbours
common to v and w in H2, according to whether δ = 0 or δ = ±2. In the language of
maximum cocliques of H1 this means that there are exactly three cocliques of F1 which
contain v and which are disjoint from C.

The proof of (1) in the case where v = (0, x, y) ∈ V0, w = (3, a, b) ∈ V3, with
y = (x − a)2 + b + δ and δ �= 0 is similar: if δ = ±1 then v and w have no common
neighbours in V3, and if δ = ±2, v and w have 1 common neighbour in V3. Vertices
(2, A,B) which are adjacent to v as well as w must satisfy the equation

(x − a)2 + b + δ = 3x2 + Ax + B ± 1

where B = 2A2 + 3aA − a2 + b. The discriminant of the resulting quadratic equation
for A is 3(δ ± 1). This shows that there are 3 solutions in the case when δ = ±1 and 2
solutions in the case when δ = ±2, so that in each case we have 3 common neighbours
of v and w in H2.

To see that part (2) is merely a ‘dual’ of part (1), consider the Hoffman-Singleton graph
H1 in G. The vertex v has 15 neighbours in H2, forming a coclique D (and each vertex
of D representing a coclique in H1). The coclique C in H1 consists of all neighbours in
H1 of a vertex w ∈ H2. Now apply part (1) in H2: there exist precisely 3 vertices in D
which are adjacent to w. These three vertices represent cocliques containing v which are
disjoint from C.

To get the same results for C ∈ F2, we extend the affine mapping (0, x, y) �→ (0, x,−y)
to an automorphism of H which swaps F1 and F2.

Remark 26. The previous lemma looks very much like a parallel axiom in a geometry
made up of the vertices of H as points and maximum cocliques from F1 as blocks. This
incidence structure, a partial 5-geometry, was first observed by Neumaier [38]. In the
terminology of [28] it is a semisymmetric design D with parameters (50, 15, [5]) while [35]
speaks of an SPBIBD(50, 15; 0, 5). We note that [38] has a realisation of the incidence
graph of this design in the Leech lattice, but also describes it in terms of the 100 maximum
cocliques in the Hoffman-Singleton graph.

Remark 27. Here is another approach to constructing the Higman-Sims graph: let T
be the incidence graph of the semisymmetric design D defined in Remark 26 (whose au-
tomorphism group A is isomorphic to the automorphism group of the Hoffman-Singleton
graph); now add one of the edges {x, y} of H as well as all the images of {x, y} under A.
The result is the Higman-Sims graph — the new edges producing a vast increase in the
order of the automorphism group.

For future reference, we include the following simple result about vertex stabilisers
without proof.
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FIGURE 3. The supergraph K (note the wraparound, and twist)

Lemma 28. Let H be the Hoffman-Singleton graph and denote by Aut+(H) the sub-
group of Aut(H) consisting of those automorphisms which preserve the two families F1

and F2.

(1) The stabiliser of a vertex of H in Aut(H) is the symmetric group S7 in its natural
action on the neighbours of the vertex.

(2) The stabiliser of a vertex of H in Aut+(H) is the alternating group A7.

7. The Supergraph

We will now give an explicit construction of a ‘supergraph’ K of order 150, constructed
from 3 Hoffman-Singleton graphs which are linked cyclically, so that removal of any one
of them produces a graph isomorphic to G. This graph K is mentioned in [5], p.108,
[6], p. 394. It provides an ideal environment for the study of maximum cocliques in the
Hoffman-Singleton graph (and therefore for the study of the Higman-Sims graph), as we
shall see.

The vertex set of the graph K is V0∪· · ·∪V5, with adjacencies on V0∪· · ·∪V3 defined as
before (vertices in V2∪V3 representing 15-cocliques of F1). A second Higman-Sims graph
is constructed on V0 ∪ V1 ∪ V4 ∪ V5 (vertices in V4 ∪ V5 representing 15-cocliques of F2),
using equations 25 and 26. Finally, we define vertices of u ∈ V2 ∪ V3 and v ∈ V4 ∪ V5 to
be adjacent when they have 8 common neighbours in H1 (i.e. when their corresponding
15-cocliques intersect in 8 vertices). The resulting graph is described in Fig. 3; note that
the figure wraps around, but a twist is needed when identifying the left and right. To
see that the graph induced by V2 ∪ · · · ∪ V5 is isomorphic to the Higman-Sims graph
G, one shows that the neighbours of vertices in H2 form 15-cocliques in H3, and that
cocliques corresponding to adjacent vertices of H2 are disjoint. We omit the calculations.
(H1,H2,H3 are the subgraphs of order 50 induced by V0 ∪ V1, V2 ∪ V3, and V4 ∪ V5

respectively. All three are isomorphic to the Hoffman-Singleton graph.)

Remark 29. In the graph G, only those automorphisms of H1 which preserve the
families F1, F2 can be extended to an automorphism of G. By contrast, every automor-
phisms of H1 can be extended to an automorphism of K. Those automorphisms of H1

which interchange F1 and F2 will swap H2 and H3. The full group of automorphisms of
K has order 3 · 252 000 = 756 000.
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8. Hoffman-Singleton Subgraphs of G

In this section we study the Hoffman-Singleton subgraphs of the Higman-Sims graph G.
The structures revealed in the process will be discussed further in Section 9. Lemmas
30 and 31 show that Aut(G) is transitive on Hoffman-Singleton subgraphs; but there are
two orbits under the action of the subgroup HS (which consists of the even permutations
amongst the automorphisms).

Lemma 30. Let G be an srg(100, 22, 0, 6) and assume that X is a Hoffman-Singleton
graph of G. Then Y = G \ X is also a Hoffman-Singleton graph. The neighbours in
X of a vertex v ∈ Y form maximum cocliques in X which intersect in 0 or 5 vertices.
Therefore they all belong to the same family of maximum cocliques of X and hence there
exists an automorphism of G mapping X to Y .

Proof. The statement of the lemma gives sufficient indication of the proof. We note
that the lemma is a slight modification of Exercise 2 in [8], p. 113, but with a different
approach to the proof.

Lemma 31. Let X,Y be Hoffman-Singleton subgraphs of G. If τ ∈ Aut(G) is an even
permutation of degree 100 such that Xτ = Y then all automorphisms of G which map
X to Y are even.

Proof. Let σ ∈ Aut(G) be another automorphism of G with Xσ = Y . Then στ−1

belongs to the stabiliser of X in Aut(G), which is a simple group (cf. Remark 46) and
therefore perfect. As product of commutators, στ−1 is even, thus σ and τ have the same
parity.

Theorem 5. The graph G contains exactly 704 Hoffman-Singleton subgraphs.
We split the proof into a sequence of lemmas which at the same time will help us

become more familiar with the graphs G and K.

Lemma 32. There are (at least) 125 pairs {X1,X2} of Hoffman-Singleton subgraphs
of G such that

X1 ∪ X2 = G, |X1 ∩ V0| = |X1 ∩ V3| = 15, and |X1 ∩ V2| = |X1 ∩ V3| = 10.

Proof. Let {V ′
0 , V ′

1} �= {V0, V1} be a split of H1 into a pair of 5C5 with |V ′
0 ∩V0| = 15.

Then by Remark 22 there exists an automorphism τ of G such that V τ
0 = V ′

0 , and
V τ

1 = V ′
1 . Since V3 ∪ V0 is a Hoffman-Singleton graph and τ preserves H1, we see that

X1 = V τ
3 ∪ V τ

0 and X2 = V τ
2 ∪ V τ

3 have the required properties. Since there are 125
splits of H1 into pairs of 5C5 other than {V0, V1}, we have the numerical result. We add
that our final census (after Lemma 36) of Hoffman-Singleton subgraphs will show that
the estimate of 125 pairs with the desired properties is sharp (hence the parentheses).

Together with the 2 Hoffman-Singleton subgraphs H1 and H2, Lemma 32 produces
252 Hoffman-Singleton subgraphs. A further 252 of them are obtained by applying the
automorphism h. To find another 200 Hoffman-Singleton subgraphs, we consider Fig. 4.
It shows the supergraph K as seen from a vertex w ∈ H3; the graph H3 appears as
the Moore graph of degree 7, with S as neighbours of w. The remaining 30 = 15 + 15
neighbours of w form maximum cocliques C1 ⊂ H1 and C2 ⊂ H2 (C1 is an F2-coclique).
The (set-theoretic) complements of these cocliques in H1 and H2 respectively are L1 and
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L1 L2

C2C1 S
(7)(15) (15)

(35)(35)

w

v

(42)
M

H1 H3 H2

u u′

FIGURE 4. The graph K, as seen from the vertex w.

L2. Note that for i = 1, 2 the subgraph S ∪ Ci is a coclique, since Hi ∪ H3 induces a
Higman-Sims graph and thus is triangle-free.

Lemma 33. There exists a bijection between the vertices of L1 and triples of vertices
from S. This is the well-known bijection between lines of PG(3, 2) and triples of a 7-
element set (cf. Lemma 40), hardwired into the graph G. Similarly, there also exists a
bijection between vertices of L2 and triples of vertices from S.

Proof. Consider a vertex u′ ∈ L2. Since H2 ∪H3 is isomorphic to G and therefore an
srg(100, 22, 0, 6) (Theorem 1), the vertices u′ and w have 6 neighbours in common, with
exactly 3 of them in C2 by Lemma 25. Consequently, u′ has precisely 3 neighbours in S.

By Remark 29, if τ is an automorphism of H3 which fixes w and which preserves the
two families of maximum cocliques of H3 then τ can be extended to an automorphism
of K which maps H1 to H1 and H2 to H2. The restriction of τ to S is A7 (Lemma 28),
and therefore transitive on triples of elements of S. Since there are 35 elements of L2

and
(
7
3

)
= 35 triples of elements of S, the Higman-Sims graph induced by H2 ∪ H3 in

K provides an explicit representation of a one-to-one correspondence between L2 and
triples from S. The same reasoning applies to L1.

Remark 34. We can explore the action of A7 on S a little further, considering orbits
of pairs of triples of elements of S (which correspond to edges or non-edges in L2). One
counts 70 pairs of disjoint triples, 315 pairs of triples which intersect in one point, and
210 pairs of triples which intersect in two points. Since the subgraph induced by L2 is
regular of degree 4, and therefore has 70 edges, we conclude that two vertices of L2 are
adjacent precisely then when their corresponding triples in S are disjoint (edges must
correspond to a union of orbits of A7 on pairs of triples from S, since A7 acts as a group
of automorphisms of L2).

Composing the two bijections from Lemma 33 we obtain a bijection u ↔ u′ between
L1 and L2 which we introduce formally in the following definition.

Definition 3. For u ∈ L1 we define u′ ∈ L2 to be the vertex which has the same 3
neighbours in S as u.
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Lemma 35. Let u ∈ L1. Then u and u′ have the same 3 neighbours in each of C1,
S, and C2. Moreover, if z ∈ L1, then u and z′ are adjacent if and only if u′ and z are
adjacent.

Proof. Let w = (4, 0, 0) and consider 3 of its neighbours in H3, say v1 = (4, 0,−1), v2 =
(4, 0, 1), v3 = (5, 0, 0) (any three neighbours will do, but they can always be transformed
into these by an automorphism of K fixing w, since A7 is transitive on triples from
S). One finds easily that u = (0, 0, 0) and u′ = (2, 0, 0) are the two vertices of L1

resp. L2 having v1, v2, v3 as common neighbours. As one calculates the three neigh-
bours of u, u′ in C1, C2 respectively, it turns out that (0, 0,−1), (0, 0, 1), (1, 0, 0) and
(2, 0,−1), (2, 0, 1), (3, 0, 0) are common neighbours of u and u′, and that there are no
other edges between any of the vertices considered.

Now we let A7 operate. C1 and C2 are invariant, the orbit of u is L1, and u and
u′ are not adjacent. Therefore there is never an edge between a vertex x ∈ L1 and its
counterpart x′ ∈ L2, and x and x′ always share the same neighbours in C1 and in C2.
In addition, observe that for any u, z ∈ L1 there is an edge between u and z′ if and
only if there is an edge between u′ and z (an even permutation of S which swaps the
triples corresponding to u and z can be extended to an automorphism of K which must
interchange u and z, as well as u′ and z′, preserving the presence or absence of any
edges).

When considering the graph G = H1 ∪ H2, we can think of it embedded in the
supergraph K. The neighbours of w ∈ H3 form an F2-coclique C1 in H1, together with
a maximum coclique C2 of H2. These two cocliques are paired in a natural way: each
vertex of C2 has precisely 8 neighbours in C1, and each vertex in C1 has precisely 8
neighbours in C2.

Lemma 36. Let C1 be an F2-coclique in H1, w ∈ H3 the corresponding vertex of
H3, and C2 the associated maximum coclique of H2. Then the mapping τ : G → G
which interchanges u and u′ for all u ∈ L1 and fixes each vertex of C1 and of C2 is an
automorphism of G. Moreover, τ is an odd permutation, hence τ /∈ HS.

Proof. This follows immediately from Lemma 35: adjacencies between L1 resp. Lτ
1

and C1, C2 are unaffected, and τ is compatible with adjacencies between L1 and L2.

Proof of Theorem 5. We have seen that L2 ∪ C1 is a Hoffman-Singleton subgraph of
G. Since there are 50 possibilities to choose w, and hence 50 possibilities to choose C1

and C2, we have found 50 more Hoffman-Singleton graphs. They are all distinct from
the 504 which we have already, since the intersections with V0, V1, V2, V3 have cardinal-
ities 5, 10, 20, 15 or 20, 15, 5, 10 respectively (C1, like any 15-coclique, meets V0 in 5 or
10 vertices and V1 in 10 or 5). Now apply h, h2, h3 to finally obtain the total of 704
Hoffman-Singleton subgraphs. The next two Lemmas show that there are no further
Hoffman-Singleton subgraphs: the total number of 5-cycles in G is 443 520 (Lemma 38),
each contained in two Hoffman-Singleton subgraphs. Therefore the number of Hoffman-
Singleton subgraphs is at most 2 · 443 520/1 260 = 704.

Lemma 37. Let Z be an srg(100, 22, 0, 6), H a Hoffman-Singleton subgraph of Z, and
F a 5-cycle of H. Then F is contained in exactly two Hoffman-Singleton subgraphs of Z.

Proof. In view of Lemma 30 we may assume that Z = G, that H is the subgraph
induced by V0 ∪ V1, and that F is one of the five 5-cycles in V0 (otherwise we apply an
automorphism of H which can be extended to G). Then it is clear that F belongs to
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two Hoffman-Singleton subgraphs, namely to H and also to the subgraph induced by
V0 ∪ V3. To see that there are no other Hoffman-Singleton subgraphs containing F , we
note first that every vertex of G outside V0 has a neighbour in F , and each vertex of V2

has 2 neighbours in F . The latter means that no vertex of V2 can be part of a Hoffman-
Singleton graph X containing F ; the former shows that X must contain V0, since X
must contain four 5-cycles without neighbours in F . Additional 5-cycles of X which are
disjoint from V0 must therefore consist of vertices in V1 ∪ V3 and must contain at least
one edge {u, v} from V1 (without loss of generality). Since each 5-cycle in V3 contains 4
neighbours of this edge, it is impossible to construct five disjoint 5-cycles forming a 5C5

which are not entirely contained in V1 or V3.

Lemma 38. Assume that Z is a strongly regular graph with parameters (100, 22, 0, 6).

(1) Z contains 443 520 pentagons, 22 176 through each vertex.

(2) Z contains 28 875 4-cycles, 1155 through each vertex.

Proof. Let v be a vertex of Z. To count the 5-cycles through v, choose two neighbours
of v, a and b. Since Z is triangle-free, there are exactly 6 neighbours of a which are also
adjacent to b: these must be avoided, otherwise the pentagon v, a, x, y, b contains a
triangle x, y, a. That leaves 22 − 6 = 16 neighbours of a which are not adjacent to b,
each of which allows 6 ways to finish off a pentagon. Hence there are

(
22
2

) ·16 ·6 = 22 176
pentagons through a given vertex v. The total number of pentagons in Z is therefore
22 176 · 100/5 = 443 520.

Now we count the 4-cycles. Any two non-adjacent vertices in Z have 6 common
neighbours. Choosing two of these neighbours determines a 4-cycle with the given non-
edge as diagonal. Z is regular of degree 22, and therefore has 1100 edges and

(
100
2

)
/2 −

1100 = 3850 non-edges. Each of these non-edges is a diagonal in
(
6
2

)
= 15 4-cycles. In

this way every 4-cycle gets counted twice, for a total of 3 850 · 15/2 = 28 875 cycles of
length 4 (or 1155 such cycles through each vertex).

To conclude this section, we list the intersections of the 704 Hoffman-Singleton sub-
graphs of G with the sets V0,. . . , V3.

Lemma 39. The following table lists the cardinalities of the intersections of the 704
Hoffman-Singleton subgraphs of G with the sets V0, . . . , V3. Rows 1 and 2 belong to
one of the HS-orbits, rows 3 and 4 to the other. The last row lists the number of
Hoffman-Singleton graphs with each intersection pattern above it. It is evident that
members X of the HS-orbit of H1 are characterised by the fact that (|X ∩ H1|, |X ∩
H2|) ∈ {(20, 30), (30, 20), (0, 50), (50, 0)}, whilst the corresponding cardinalities are
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FIGURE 5. Distance distribution diagram in K

(15, 35), (35, 15), (25, 25) for the other HS-orbit.

(a) (b) (c) (d)

V0

V1V2

V3 10

1015

15 5

1520

10 15

510

20 25

250

0

V0

V1V2

V3 15

1510

10 20

105

15 10

2015

5 0

025

25

V0

V1V2

V3 10

1515

10 15

2010

5 5

1020

15 0

2525

0

V0

V1V2

V3 15

1010

15 5

1020

15 10

515

20 25

00

25

# 125 25 25 1

(31)

(The first column of the table indicates that the intersection numbers are listed in ac-
cordance with Fig. 2.)

Proof. The description of the Hoffman-Singleton subgraphs in the proof of Theorem 5
leads immediately to all the entries of the table. Together with Lemma 31 it also justifies
the claim about the two orbits. Addition of the entries for V0 and V1 does the rest.

9. Actions of A7, PSL(4, 2), and A8

Fig. 4 and its description in Section 8 show the alternating group A7 acting simultane-
ously on sets of cardinalities 7, 15, 35, and 42 (S; C1 and C2; L1 and L2; M). In this
section we point out some well-known facts which manifest themselves in this view of
the Higman-Sims graph. For additional guidance, we include the distance distribution
diagram around w as Fig. 5.
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We will indicate proofs of the various statements, to make clear how they all flow from
this source. Alternative approaches to these themes can be found in [9, 11, 20].

Lemma 40. The edges between C2 and L2 give the point-line incidence graph of the
projective geometry PG(3, 2) with 15 points and 35 lines.

Proof. Since H2 is an srg(50, 7, 0, 1) and C2 is a coclique in it, any two distinct
vertices in C2 have a unique common neighbour in L2. To verify Veblen’s axiom, one
can proceed as follows. Note first that v = (1, 0, 0) ∈ C1 has 8 neighbours in C2 (v and
w are adjacent, hence their respective cocliques in H2 meet in 8 vertices). It follows that
v has 7 neighbours in L2; they are

(2, 0, 0), (3, 0, 2), (3, 0,−2), (3, 1, 2), (3, 2,−2), (3, 3,−2), (3, 4, 2).

It turns out that these 7 vertices have just 7 neighbours in C2, namely:

(2, 0, 4), (2, 3, 0), (2, 1, 0), (2, 4, 0), (2, 2, 0), (2, 0, 1), (3, 0, 0).

Now it is easy to see that these 7 points and 7 lines form a Fano plane. As one lets A7

act, one obtains the validity of Veblen’s axiom in general.

Remark 41. In the preceding proof, each vertex of C1 represents a Fano plane: its 7
neighbours in L2 as lines, and vertices of S as points. A further 15 such structures on
S are obtained starting with vertices of C2. This demonstrates the well-known fact that
there are 30 possible ways of defining a Fano plane on a 7-element set (S), all equivalent
under the action of the symmetric group S7, but splitting into two orbits of length 15
under the action of A7.

Remark 42. The construction of the Hoffman-Singleton graph from the 15 points
and 35 lines of PG(3, 2), where edges between points and lines indicate incidence, and
edges between lines indicate disjointness of their corresponding triples, is also evident
in the proof of Lemma 40. In addition, one sees again the bijection between lines of
PG(3, 2) and triples of a 7-element set, in which intersecting lines correspond to triples
with intersections of cardinality 1.

It is but a short step from here to establish the exceptional isomorphism of PSL(4, 2)
and A8: the automorphisms induced by A7 are a subgroup of index 8 in the simple group
PSL(4, 2). The reader is encouraged to complete the story.

Remark 43. We note that the graph induced by S∪L2∪C2 is a trivial modification of
Neumaier’s Alt(7)-geometry ([38], see also [40], p.153, or [7], p.523; the usual convention
is to have all edges {s, c} for s ∈ S, c ∈ C2; here, no such edges are present).

Remark 44. In view of the presence of the group A8 it is natural to ask if there is a way
to construct the Alt(8)-geometry [38] (cf. also [40], p. 217) from the Higman-Sims graph
G. The answer is indeed positive: one finds that the stabiliser in HS of an F2-coclique C
of H1 is A8, and that the HS-orbit of the set complement of C in H1 has length 8. The
bijection between lines of PG(3, 2) and partitions of type 42 of an 8-element set becomes
conspicuous. We will consider this in detail elsewhere.
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10. The Doubly Transitive Action of HS on 176 Points

Since the Higman-Sims graph stood at the cradle of the sporadic simple group HS, a few
words about the automorphism group are in order. Firstly, we note that as usual we
can obtain the order of Aut(G) via the orbit-stabiliser theorem; we consider the action
of Aut(G) on the Hoffman-Singleton subgraphs: |Aut(G)| = 704 · 126 000 = 88 704 000.
The index 2 subgroup HS therefore has order 44 352 000. The simplicity of HS is a
consequence of the simplicity of the stabiliser (cf. Remark 46) of a Hoffman-Singleton
subgraph when HS acts on one of its two orbits of Hoffman-Singleton subgraphs. We also
note that whilst HS contains a subgroup which is isomorphic to the full automorphism
group of the Hoffman-Singleton graph, there is no such subgroup of HS which acts on a
Hoffman-Singleton subgraph of G.

G. Higman [24] discovered a doubly transitive permutation representation of the group
HS (at the time it was still undecided whether the group he considered was in fact
isomorphic to HS, though). We will show such an action in the framework of the Higman-
Sims graph G.

Lemma 45. Let S be the set of the 176 pairs of complementary Hoffman-Singleton
subgraphs of G in one of the two HS-orbits. Then the group HS acts doubly transitively
on S.

Proof. We recall (cf. Lemma 39) that there are two orbits of Hoffman-Singleton
graphs under the action of HS, and that the graphs occur in complementary pairs in
each orbit. The two orbits are distinguished by the cardinalities of their intersection
with a fixed Hoffman-Singleton subgraph of G. We also recall that the stabiliser of a
Hoffman-Singleton graph H1 in HS is doubly transitive on the splits of H1 into two 5C5.

Looking at the table in (31), rows 1 and 2, we must show that any Hoffman-Singleton
subgraph of G with one of the intersection patterns in columns (a)–(c) can be transformed
into any other by an automorphism of G which stabilises H1. This will be established
if we can show that for any Hoffman-Singleton subgraphs X,Y of G such that |X ∩
H1| = |Y ∩ H1| = 20 there exists an automorphism τ in the stabiliser of H1 such that
Xτ = Y . In other words: we need only consider row 1, columns (a)–(c). Remembering
our automorphism ψ from Remark 9, we note that it suffices to prove transitivity of the
stabiliser of H1 on the patterns of columns (a) and (b).

Looking at column (a), note that the 15+10 vertices of X in V3 ∪ V0 are one half of a
split of V3 ∪ V0 into a pair of 5C5. This means that amongst the 10 vertices in V0 there
is a unique pair of adjacent ones, and affine transformations of V0 induce a transitive
action on the 125 sets of 10 vertices.

Considering column (b), note that the 5 vertices of X ∩ V0 are part of an F2-coclique,
and affine transformations with vertival eigenvalue 1 operate transitively on these.

Finally we must show that a pattern from (a) can be transformed into one from column
(b). To this end we return to the example in Remark 3. The automorphism (of H1; but
note that it can be extended to G) defined by (6) will turn the pattern of 20 boldface
positions into a pattern of 5 vertices in V0 and 15 vertices of V1. It remains to show that
the 20 boldface positions are the intersection of a Hoffman-Singleton subgraph with H1.
To this end we define an automorphism τ of G which preserves V3 ∪V0 and such that V τ

3

and V τ
2 each have 10 vertices in V0, resp. V1. This can be achieved following the method

of Remark 3: choose the Petersen graph consisting of the vertices (3, 0, 0)–(3, 0, 4) and
(0, 0, 0)–(0, 0, 4) and define its image so that two V3-vertices of P are mapped onto the



24 PAUL R. HAFNER

bold positions. If we also require that (0, 1, 0) maps to (0, 2, 1), we obtain the following
automorphism τ :

(V3)

(3) 004 341 014 044 311 002 330 344 314 320 (4)

(1) 304 032 340 310 022 003 041 013 043 011 (3)

(4) 302 332 342 312 322 303 040 313 343 010 (2)

(2) 300 334 042 012 324 301 321 024 034 331 (1)

(0) 000 020 323 333 030 001 021 023 033 031 (0)

(V0) (32)

It is easy to verify that V τ
3 has 10 vertices in V0, and that τ can be extended to an

automorphism of G.

Remark 46. In [16] we showed how to use Definition 1 to obtain that the order of
the automorphism group of the Hoffman-Singleton graph is 252 000. We now show that
this automorphism group has a subgroup of index 2 which is simple. (This is of course a
well-known fact, usually by reference to [22], but we want to show that all the arguments
can proceed at a very elementary level.)

The automorphism of the Hoffman-Singleton graph H induced by (0, x, y) �→ (0, x,−y)
interchanges the two families of maximum cocliques. Therefore those automorphisms
which preserve the two families of maximum cocliques form a subgroup U of index 2 in
Aut(H), which is therefore of order 126 000. Since the transposition (0, x, y) �→ (0, x,−y)
does not belong to the vertex stabiliser of (0, 0, 0) in this subgroup, this stabiliser must
have index 2 in the vertex stabiliser of the full automorphism group, which is the sym-
metric group S7. Since U is primitive on the vertices of H, and A7 is simple, we conclude
that U is a simple group of order 126 000. In order to identify the isomorphism type of
this simple group (PSU(3, 5)), we refer to O’Nan [39] or D.G. Higman [22].

11. Coordinate-free Description of G

We have noted that the edges between V0 and V1 describe the incidence graph of a biaffine
plane of order 5, V0 being the set of points, V1 the set of lines. The edges between V0

and V3 form the incidence graph of points and the set of parabolas y = (x − a)2 + b in
this biaffine plane. Further, the edges between V1 and V2 describe the incidence graph
of ‘dual points’ and a certain set of ’dual parabolas’ of the biaffine plane. (Dual points
are, as usual, the lines of the geometry, and dual parabolas are sets of all tangents of a
parabola—it is easy to show that the set of tangents to the parabola y = 3(x − a)2 + b
consists of all lines y = mx + c where c = 2(m + a)2 + b − 2a2.)

The following theorem provides geometric descriptions for all adjacencies between Vi

and Vj (i �= j).

Theorem 6. Interpret the sets V0, . . . , V3 as above and let p, �, P,Q be elements of
V0, . . . , V3 respectively. Then

(1) the parabola P is adjacent (in G) to the dual parabola Q if and only if exactly one
of the lines of Q is a tangent of P ;

(2) the point p is adjacent in G to the dual parabola Q if and only if p does not lie on
any of the lines of Q (i.e. p is an internal point of the dual parabola Q);

(3) the line � is adjacent in G to the parabola P if and only if � is a passant of P
(cf. end of Section 5);
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(4) all other adjacencies in G, apart from the 5-cycles within each of V0, . . . , V3, describe
incidences.

Proof. It suffices to indicate a proof of the first statement. Statements 2 and 3
are duals of each other, and statement 3 was established at the end of Section 5. To
establish statement 1, assume that P has the equation y = (x − a)2 + b and Q is given
by c = 2(m − A)2 + B. Then Q consists of the lines y = mx + 2(m − A)2 + B. Such a
line is a tangent of P if it has a unique point of intersection with P ; i.e. the equation
(x− a)2 + b = mx + 2(m−A)2 + B has discriminant 0 (as equation in x). This leads to
the condition

m2 + (a + A)m − b + 2A2 + B = 0.

This quadratic equation in m has a unique solution if and only if its discriminant equals 0:

(a + A)2 − b + 2A2 + B = 0.

This is the condition of adjacency between vertices (3, a, b) and (2, A,B).

Remark 47. This description opens the way to define families of generalised Higman-
Sims graphs, starting from any McKay-Miller-Širáň graph instead of H (or more gener-
ally, starting from any graph based on the incidence graph of a biaffine plane).

Remark 48. As a point of interest we note that the sets V0, . . . , V3 (as geometric
entities in a biaffine plane) have been considered by Wild [49, 50]. The incidence graphs
of the systems S(C1, C2) of Wild are obtained by removing all edges within each of
V0, . . . , V3, and removing the (diagonal) edges between V0 and V2, and between V1 and V3.

Wild [50] also establishes the isomorphism of the graphs induced by V0 ∪ V1 and
V0 ∪ V3 (points and lines vs points and conics, omitting the 5-cycles; the generalisation
from q = 5 to general q is obvious). This is the biaffine analogue of results for projective
planes [33, 41, 42]. See also [43] for recent work.

Remark 49. Further to Remark 48, we note that the isomorphism between the graphs
induced by V0 ∪ V1 and V0 ∪ V3 manifested itself in [48] (cf. also [17]), disguised by the
language of voltage assignments. In this paper, Šiagiová expressed certain adjacencies
of the McKay-Miller-Širáň graphs [36, 19] by means of quadratic equations, whereas the
original definition uses linear equations which are the direct analogue of the equations
y = mx+c in Robertson’s definition of the Hoffman-Singleton graph. One might say that
the original description operates in V0 ∪ V1, whilst Šiagiová’s description uses V0 ∪ V3.
(Of course, the present paper considers only the case q = 5; [48] deals with arbitrary
q ≡ 1 mod 4.)

12. Decomposition of the Higman-Sims Graph
into Five Isomorphic Subgraphs

In the course of our studies of the Higman-Sims graph, the following decomposition into
5 isomorphic subgraphs of order 20 appeared.
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Lemma 50. Let

Wi =
⋃

r∈Z5

{(0, i, r), (1, 3i, r), (2, 2i, r), (3, 2i, r)} , (i ∈ Z5).

For i ∈ Z5 the subgraphs of G induced by Wi are isomorphic to the Cartesian product
of the Petersen graph with a coclique of order 2.

Proof. Each Wi consists of four 5-cycles, one from each Vk, k = 1, . . . , 4. For each
pair of (cyclically) consecutive values of k the two 5-cycles form a Petersen graph. One
sees without difficulty that (0, i, r) is adjacent to (2, 2i, s) if and only if r = s ± 1, i.e. if
and only if (0, i, r) is adjacent to (0, i, s); and (0, i, r) is adjacent to (3, 2i, s) if and only if
r = s + i2, i.e. if and only if (0, i, r) is adjacent to (1, 3i, r + 2i2). The remaining details
can be left to the reader.

Remark 51. The subgraph of order 80 induced by four of these subgraphs Wi is
identified as the second orbit of the stabiliser of the remaining one of these graphs in [4].
What is new here is the observation that we are actually dealing with five isomorphic
subgraphs of order 20.

As an aside, we add that the orbit of W0 under Aut(G) as well as under HS has length
5775, the number of elements in one of the two conjugacy classes of involutions in HS.
Indeed, each such involution has one of these 20-vertex subgraphs as fixed-point set. For
example, W0 is the fixed-point set of the automorphism ψ4 as mentioned in Remark 9.
(The second class of involutions of HS can be represented by h2 (cf. Lemma 10) which
is fixed-point-free.)

13. Historical Comment

T.B. Jajcayová and R. Jajcay, in their recent biographical note [29] on D.M. Mesner,
report that the Higman-Sims graph made an early appearance in Mesner’s 1956 disserta-
tion, getting a brief mention as NL2(10) in [37] (designs of negative Latin square type).
However, the automorphism group of the graph was not considered in either work. We
add that in [47], p.107, the Higman-Sims graph is indeed identified as NL2(10).

An interesting first-hand account (in English) by C.C. Sims on how the Higman-Sims
group was found is included in a forthcoming paper by G. Hiss [25].
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