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Abstract

Kraft, Pratt and Seidenberg (1959) provided an infinite set of ax-
ioms which, when taken together with de Finetti’s axiom, gives a nec-
essary and sufficient set of “cancellation” conditions for representabil-
ity of an ordering relation on subsets of a set by an order-preserving
probability measure. Fishburn (1996) defined f(n) to be the smallest
positive integer k such that every comparative probability ordering on
an n-element set which satisfies the cancellation conditions C4, . . . , Ck

is representable. By the work of Kraft, Pratt and Seidenberg (1959)
and Fishburn (1996, 1997), it is known that n − 1 ≤ f(n) ≤ n + 1 for
all n ≥ 5. Also Fishburn proved that f(5) = 4, and conjectured that
f(n) = n − 1 for all n ≥ 5. In this paper we confirm that f(6) = 5,
but give counter-examples to Fishburn’s conjecture for n = 7, showing
that f(7) ≥ 7. We summarise, correct and extend many of the known
results on this topic, including the notion of “almost representability”,
and offer an amended version of Fishburn’s conjecture.
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1 Introduction

The topic of this article dates back to fundamental work by Bruno de Finetti
[3], who asked whether a certain axiom for a comparative probability order-
ing relation � on the subsets of a set is sufficient for the existence of an
order-preserving probability measure on that set. For infinite sets, assuming
there is a uniform partition into an arbitrary number of events, Savage [10]
answered this question positively. For finite sets of cardinality 5 or more, a
negative answer to this question was given by Kraft, Pratt and Seidenberg
[6]. It became clear from these observations that comparative probability is
a broader concept than probability.

Nevertheless, de Finetti’s axioms were very attractive, especially for use
in applications where relative frequency characterization of probabilities is
not available or meaningful, for example when we have to deal with the so-
called “subjective probability” (also called “intuitive probability” or “per-
sonal probability”), which is essentially a belief of an individual that some
events are more probable than the others [8]. This led to development of
comparative probability as a separate area of research (see a recent survey
of Giuliana Regoli [9]).

Sometimes comparative probability orderings emerge in circumstances
where we cannot speak even about subjective probability. For example,
they appeared in an article by Vladimir Danilov [2], who, in the case of
dichotomous preferences, characterised all social choice rules which satisfy
the famous Arrow’s condition of Independence of Irrelevant Alternatives. It
appeared that each such rule corresponds to a comparative probability or-
dering, and the rule is a weighted majority rule if and only if the comparative
probability ordering is representable by an order-preserving probability mea-
sure on the set of voters.

Kraft, Pratt and Seidenberg [6] discovered an infinite set of axioms which,
when taken together with de Finetti’s axiom, gives a necessary and sufficient
set of conditions for representability of an ordering relation on subsets by
an order-preserving probability measure. Implicitly, these axioms involved
a concept of a multiset, which was not widely understood at the time, and
reformulation of these axioms by Scott [11] helped to clarify things. Krantz,
Luce, Suppes and Tversky [7] called these axioms cancellation conditions.
Peter Fishburn [4, 5] opined that they “play a central role in the representa-
tional theory of measurement”, and devoted much effort to their study.

Fishburn introduced a function f(n), which for each positive integer n
measures the maximal deviation of a comparative probability ordering on
an n-element set from one which arises from an order-preserving probability
measure. It follows from [6] that f(n) ≤ n+1. Fishburn then proved in [4, 5]
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that f(n) ≥ n − 1 for all n ≥ 5, and so combining these two results gives
the following bounds for this function: n − 1 ≤ f(n) ≤ n + 1. Fishburn also
proved that f(5) = 4, and conjectured that f(n) = n − 1 for all n ≥ 5.

In this paper we confirm that f(6) = 5, but give counter-examples to
Fishburn’s conjecture for n = 7 showing that f(7) ≥ 7. We summarise all
known results, correcting and extending some of them, and offer an amended
version of Fishburn’s conjecture.

2 Preliminaries

To formulate cancellation conditions, let us first recall some other definitions
and fix some notation. Here 2X denotes the set of all subsets of a set X.

Definition 1. Let S be a finite set. Any reflexive, complete and transitive
binary relation � on S will be called an order on S. (Note: sometimes this
is called a complete pre-order.) Such an order � gives rise to two other
relations � and ∼ on S, defined for all x, y ∈ S by

(a) x � y ⇐⇒ x � y and not (y � x);

(b) x ∼ y ⇐⇒ x � y and y � x.

If an order � is anti-symmetric, then all equivalence classes (under the re-
lation ∼) are singletons, and � is called a linear order.

Definition 2. Let X be a finite set. A linear order � on 2X is called a
comparative probability ordering on X, if A � ∅ for every non-empty subset
A of X, and � satisfies de Finetti’s axiom, namely for all A, B, C ∈ 2X ,

A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪ B) ∩ C = ∅ . (1)

For convenience, we will further suppose that X = In = {1, 2, . . . , n}.
Note that if we have a probability measure p = (p1, . . . , pn) on X, where pi

is the probability of i, then we know the probability of every event A, by the
rule p(A) =

∑
i∈A pi. We may now define a relation � on 2X by

A � B if and only if p(A) ≥ p(B).

If pi > 0 for all i, and the probabilities of all events are different, then �
is a comparative probability ordering on X, and any such ordering is called
representable [9]. On the other hand, any comparative probability ordering
� which is not obtainable in this way is called non-representable.

It can also be possible that for some measure p on X the probabilities of
two or more events coincide, that is p(A) = p(B) when A � B but A �= B.
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In this case we have an ordering � which still satisfies the de Finetti axiom
(1), and we call it a weak comparative probability ordering arising from p.

If we have a non-representable comparative probability ordering � on X,
then we cannot specify the exact probability of every event, but if A � B
then we can say that A is more probable than B. The class of comparative
probability measures is therefore broader than the class of probability mea-
sures [6]. A non-representable comparative probability ordering � on X is
said to almost agree with the measure p on X if

A � B =⇒ p(A) ≥ p(B). (2)

If such a measure p exists, then the ordering � is said to be almost repre-
sentable. When p defines a weak comparative probability ordering on X, the
ordering � may not be representable.

We now recall that a set is a special case of a multiset. Multisets are
collections of objects which may include several copies of the same object.
If we consider multisets on X, then we allow an element x ∈ X to enter
such a multiset M with multiplicity µM(x), which is a non-negative integer.
Multiset union ∪ is an operation over multisets that adds multiplicities of
elements, that is, µA∪B(x) = µA(x) + µB(x). See Stanley [12] for more
information on multisets.

Definition 3. A linear order � is said to satisfy the mth cancellation con-
dition Cm if for no m distinct comparisons Ai � Bi (for 1 ≤ i ≤ m), there
exist positive integers a1, . . . , am such that the following two multiset unions
coincide:

m⋃

i=1

(Ai ∪ . . . ∪ Ai)︸ ︷︷ ︸
ai

=
m⋃

i=1

(Bi ∪ . . . ∪ Bi)︸ ︷︷ ︸
ai

. (3)

Alternatively, in the spirit of [11] (and also [13]), condition (3) can be
reformulated in terms of characteristic functions of subsets, as follows:

m∑

i=1

aiχAi
=

m∑

i=1

aiχBi
,

where the characteristic function χS of the set S is given by χS(x) = 1 if
x ∈ S and χS(x) = 0 if x /∈ S.

Example 1. The non-representable linear order � on I5 constructed in [6]
does not satisfy the condition C4 since it contains the following comparisons:

{2, 4, 5} ≺ {1, 3}, {1, 5} ≺ {2, 4}, {3, 4} ≺ {2, 5}, {2} ≺ {4, 5}. (4)
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Indeed, the multiset union of the sets on the right and the multiset union
of the sets on the left are both equal to the multiset {1, 22, 3, 42, 52}, where
powers denote multiplicities. Hence the cancellation condition C4 is violated
with a1 = a2 = a3 = a4 = 1.

Proposition 1 (Kraft-Pratt-Seidenberg [6]). For a comparative proba-
bility ordering to be representable, it is necessary and sufficient that all can-
cellation conditions Cm are satisfied.

These cancellation conditions look rather unnatural and complicated.
Since they are derived from linear algebra, it is not surprising that they
can be made to look much more natural by being reformulated in terms of
vectors, as we do later in this paper.

It is clear that any representable linear order satisfies Cm for all m ≥ 1.
It was also shown in [4] that C2 and C3 follow from de Finetti’s axiom and
properties of linear orders. Hence C4 is the first nontrivial cancellation con-
dition.

As was noticed in [6], for n < 5 all comparative probability orderings are
representable, but for n = 5 there are non-representable ones. Fishburn [4]
showed that all non-representable comparative probability orderings on a 5-
element set X fail to satisfy C4, and conjectured [4, 5] that any such ordering
on an n-element set X, which satisfies C4, . . . , Cn−1, is representable.

In Section 3 we will exhibit counter-examples to this conjecture for n = 7.
More precisely, we will construct non-representable comparative probability
orderings on a 7-element set X which satisfy C4, C5 and C6. In addition, we
will show these orderings are almost representable.

We will always assume here that a linear order � on 2X is a comparative
probability ordering. As in [4, 5], we will also assume that 1 � 2 � . . . � n,
which is equivalent to assuming that p1 > p2 > . . . > pn for a comparative
probability ordering arising from a probability measure p = (p1, . . . , pn). To
every such linear order �, there corresponds a discrete cone C(�) in T n,
where T = {−1, 0, 1} (as defined in [4]).

Definition 4. A subset C ⊆ T n is said to be a discrete cone if the following
properties hold:

D1. {e1 − e2, . . . , en−1 − en, en} ⊆ C, where {e1, . . . , en} is the standard
basis of R

n,

D2. {−x,x} ∩ C �= ∅ for every x ∈ T n,

D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ T n.
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We note that in [4], Fishburn requires 0 /∈ C because his orders are
anti-reflexive. In our case, condition D2 implies 0 ∈ C.

Given a (weak) comparative probability ordering � on X, we may con-
struct a characteristic vector χ(A, B) = χA−χB ∈ T n for every possible
comparison A � B. The cone C(�) is then defined as the set of all charac-
teristic vectors χ(A, B), for A, B ∈ 2X such that A � B. The two axioms of
comparative probability guarantee that C(�) is indeed a discrete cone (see
[4, Lemma 2.1]).

Example 2. For the comparative probability ordering � from Example 1,
the four vectors

(1,−1, 1,−1,−1), (−1, 1, 0, 1,−1), (0, 1,−1,−1, 1), (0,−1, 0, 1, 1) (5)

all belong to C(�), and correspond to the four comparisons listed in (4) above.

We will say that a discrete cone C ⊆ T n is generated by a set of vectors
V = {v1, . . . ,vm} ⊆ T n if C is the smallest discrete cone containing V .
It follows that the cone C(�) associated with a comparative probability
ordering � must always contains the discrete cone U in T n generated by

{e1 − e2, . . . , en−1 − en, en}. (6)

We observe that a vector x = (x1, . . . , xn) ∈ T n belongs to U if and only if

x1 ≥ 0, x1 + x2 ≥ 0, . . . , x1 + x2 + . . . + xn ≥ 0. (7)

Hence we can reformulate the cancellation conditions as follows [4]:

Proposition 2. A comparative probability ordering � satisfies the mth can-
cellation condition Cm if and only if for no set {x1, . . . ,xm} of non-zero
vectors in C(�) do there exist positive integers a1, . . . , am such that

a1x1 + a2x2 + · · · + amxm = 0. (8)

Proof. Take a vector xi = χ(Ai, Bi) ∈ C(�) for each comparison Ai � Bi

(for 1 ≤ i ≤ m) involved in Definition 3, and observe that condition (3) is
equivalent to the equation a1x1 + a2x2 + · · · + amxm = 0.

Example 3. The four vectors from the cone C(�) given in Example 2 add
up to the zero vector, hence the corresponding ordering � is not representable.
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Geometrically, what happens is clear. A comparative probability ordering
� is representable if and only if there exists a positive integer-valued vector
a ∈ R

n such that

x ∈ C(�) ⇐⇒ (a,x) > 0 for all x ∈ T n \ {0},

that is, every vector in the cone C(�), apart from the zero vector, lies in the
open half-space Sa = {x ∈ R

n | (a,x) > 0}.
Similarly, for a non-representable but almost representable comparative

probability ordering �, there exists an integer-valued vector a ∈ R
n with

non-negative entries such that

x ∈ C(�) ⇐⇒ (a,x) ≥ 0 for all x ∈ T n \ {0},

and hence in this case the whole cone C(�) must lie in the closed half-space
Sa = {x ∈ R

n | (a,x) ≥ 0}.
In both cases, the normalised vector a gives us the probability measure,

namely p = (a1 + . . .+an)−1 (a1, . . . , an), from which � arises or with which
it almost agrees.

3 Almost representable orderings

Proposition 3. Let � be a non-representable but almost representable com-
parative probability ordering which almost agrees with a probability measure
p. Suppose that the mth cancellation condition Cm is violated, and that
for some non-zero vectors {x1, . . . ,xm} ⊆ C(�) and some positive integers
a1, . . . , am, the condition (8) holds. Then all of the vectors x1, . . . ,xm lie
in the hyperplane Hp = {x ∈ R

n | (p,x) = 0}.

Proof. First note that for every x ∈ C(�) which does not belong to Hp, we
have (p,x) > 0. Hence the condition (8) can hold only when all xi ∈ Hp.

Corollary 1. Any almost representable comparative probability ordering �
on an n-element set X, which satisfies C4, . . . , Cn, is representable.

Proof. Suppose that (8) holds for some non-zero vectors x1, . . . ,xm ∈ C(�)
and positive integers a1, . . . , am, where m > 0. As all m vectors x1, . . . ,xm

lie in the (n−1)-dimensional subspace Hp, we may, using standard linear
algebra, reduce the number of vectors in this linear combination to at most
n vectors while still having positive coefficients. Hence we may suppose that
m ≤ n. However, this is impossible since we assumed that Cm is satisfied.
Therefore � must be representable.
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Following Fishburn [4], we now define f(n) to be the smallest positive
integer k such that every comparative probability ordering on an n-element
set which satisfies the cancellation conditions C4, . . . , Ck is representable.
Fishburn proved in [4] that f(5) = 4, and in [5] that n − 1 ≤ f(n) ≤ n + 1
for all n ≥ 6, and conjectured that f(n) = n−1 for all n ≥ 5 (see [5, p.354]).

In the spirit of Kraft, Pratt and Seidenberg [6], we further define g(n) to
be the smallest positive integer k such that every almost reresentable compar-
ative probability ordering on an n-element set which satisfies the cancellation
conditions C4, . . . , Ck is representable. Clearly g(n) ≤ f(n) for all n, and
also by Corollary 1 above, we have the following:

Corollary 2. g(n) ≤ n for all n.

Now Fishburn’s conjecture, if valid, would imply that g(n) ≤ n − 1 for
all n. We can confirm that f(6) = 5, which is consistent with Fishburn’s
conjecture, but we also prove that g(7) = 7, which refutes it. To do this, we
will need the following theorem which simplifies and generalises Theorem 6.1
from [4] (and its generalisation to Lemma 1 in [5]).

Theorem 1 (Construction method 1). Let X = {x1, . . . ,xm}, m ≥ 4,
be a system of non-zero vectors from T n, such that

∑m
i=1 aixi = 0 for some

positive integers a1, . . . , am, and such that no proper subsystem X ′ ⊂ X is
linearly dependent with positive coefficients. Suppose further that the m × n
matrix A having the vectors x1, . . . ,xm as its rows has the property that
Ab = 0 for some positive integer-valued vector b = (b1, . . . , bn) with b1 >
b2 > . . . > bn > 0, and that

Span{x1, . . . ,xm} ∩ T n = {±x1, . . . ,±xm}.

Let C(�) be the discrete cone belonging to the weak comparative probability
ordering which arises from the measure p = (b1 + . . . + bn)−1 (b1, . . . , bn),
that is, C(�) = {x ∈ R

n | (x,b) ≥ 0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability ordering which
almost agrees with p, and satisfies Ci for all i < m, but does not satisfy Cm.

Proof. We first note that {±x1, . . . ,±xm} ⊆ Hb = {x ∈ R
n | (b,x) = 0}.

Next (ei − ei+1,b) = bi − bi+1 > 0 for 1 ≤ i < n, and also (en,b) = bn > 0,
so the property D1 holds for the cone C ′. Property D2 holds for C ′ because
it holds for C(�) and when we remove vectors −x1, . . . ,−xm from C ′ the
vectors x1, . . . ,xm remain in C ′. Finally let us prove D3. Suppose that
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y, z ∈ C ′ and y + z ∈ T n, but y + z /∈ C ′. Since y + z ∈ C(�) \ C ′, we
deduce that y + z = −xi for some i. Moreover, y, z ∈ Hb, since otherwise
(y + z,b) = (y,b) + (z,b) > 0. Hence y = xj for some j and z = xk for
some k, but from this it follows that xi + xj + xk = 0, a contradiction since
|X| = m ≥ 4 and hence no three rows of A may have sum zero.

Suppose now that some violation of Ck occurs, say

c1y1 + c2y2 + · · · + ckyk = 0,

with positive integers c1, . . . , ck and yi ∈ C(�) for 1 ≤ i ≤ k, where k < m.
If (yi,b) > 0 from some i, then (0,b) = (c1y1 + c2y2 + · · · + ckyk,b) =
c1(y1,b) + c2(y2,b) + . . . + ck(yk,b) > 0, a contradiction, hence yi ∈ Hb for
all i, and therefore {y1, . . . ,yk} ⊆ {x1, . . . ,xm}, which is impossible. On
the other hand, Cm fails because

∑m
i=1 aixi = 0.

A major difference between our theorem and Theorem 6.1 of [4] is that
we claim almost representability of the constructed ordering. Using this, we
can now prove the following:

Theorem 2. f(7) ≥ g(7) = 7.

Proof. Consider the following 7 × 7 matrix

A =













−1 1 1 −1 0 0 0
1 0 −1 −1 1 0 0
1 −1 1 0 0 −1 −1

−1 −1 0 1 1 0 1
−1 1 −1 1 0 1 −1

1 −1 1 −1 −1 1 0
0 1 −1 1 −1 −1 1













.

Denote the rows of A by x1, . . . ,x7. As the null space of AT is spanned
by the vector (1, 1, 1, 1, 1, 1, 1), we can see that x1 + x2 + . . . + x7 = 0 and
that no six rows of A are linearly dependent. We also observe that Ab = 0
for b = (27, 25, 24, 22, 19, 15, 11). Let us take the probability measure
p = 1

116
(27, 25, 24, 22, 19, 15, 11), and now consider the weak comparative

probability ordering on I7 = {1, 2, 3, 4, 5, 6, 7} that arises from p.
Ignoring braces when writing subsets, and listing only half of all terms (as

A � B if and only if B̄ � Ā), we may describe this ordering by the following
sequence (given in reverse order for simplicity):

∅ ≺ 7 ≺ 6 ≺ 5 ≺ 4 ≺ 3 ≺ 2 ≺ 67 ≺ 1 ≺ 57 ≺ 47 ≺ 56 ≺ 37 ≺ 27 ≺ 46 ≺
17 ≺ 36 ≺ 26 ≺ 45 ≺ 16 ≺ 35 ≺ 25 ≺ 567 ≺ 15 ∼ 34 ≺ 24 ≺ 467 ≺ 23 ∼
14 ≺ 367 ≺ 13 ∼ 267 ≺ 457 ∼ 12 ≺ 167 ≺ 357 ≺ 257 ≺ 456 ≺ 157 ∼ 347 ≺
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247 ∼ 356 ≺ 256 ≺ 237 ∼ 147 ≺ 156 ∼ 346 ≺ 246 ∼ 137 ≺ 127 ≺ 236 ∼
146 ≺ 345 ≺ 136 ∼ 245 ≺ 4567 ∼ 126 ≺ 235 ∼ 145 ≺ 3567 ≺ 135 ∼ 2567 ≺
125 ∼ 234 < . . . .

The only equivalences in the first half of this sequence are these:

15 ∼ 34, 157 ∼ 347, 156 ∼ 346, 125 ∼ 234,

23 ∼ 14, 237 ∼ 147, 236 ∼ 146, 235 ∼ 145,

13 ∼ 267, 135 ∼ 2567,

457 ∼ 12, 4567 ∼ 126,

246 ∼ 137,

136 ∼ 245,

247 ∼ 356.

Note that in each row of the above list, all equivalences are the consequences
of the leftmost equivalence, and all contribute the same pair of vectors ±xi

to the cone C(�), where x1, . . . ,x7 are the rows of A. All equivalences from
the second half of the sequence are also consequences of these. It follows that

Span{x1, . . . ,x7} ∩ T 7 = {±x1, . . . ,±x7}.

We may now apply Theorem 1, to deduce the existence of a non-representable
comparative probability ordering on I7, which satisfies C4, C5 and C6.

Note that the example given in the above proof fails the cancellation
condition C7 with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 1). There are hundreds of
other examples with the same property. Another interesting example will be
given in Section 4.

4 Alternative form of cancellation conditions

In the spirit of Fishburn’s earlier paper [4], we now introduce an alternative
form of cancellation conditions.

Definition 5. A comparative probability ordering � is said to satisfy the
mth cancellation condition C†

m if for no set {x1, . . . ,xk} of non-zero vectors
in C(�) do there exist positive integers a1, . . . , ak such that

a1x1 + a2x2 + · · · + akxk = 0 (9)

and
∑k

i=1 ai = m.
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Note here that while the condition Cm emphasises the total number of
distinct comparisons Ai � Bi involved, the alternative condition C†

m is more
concerned with the total number of (not necessarily distinct) comparisons
actually required for the sum.

It is clear (and was observed by Fishburn [4]) that a comparative prob-
ability ordering satisfies Cm for all m ≥ 4 if and only if it satisfies C†

m for
all m ≥ 4. It follows that these alternative cancellation conditions can also
be used for measuring the degree of deviation of a comparative probability
ordering from one that arises from a probability measure.

Hence we may define f †(n) to be the smallest positive integer k such that
every comparative probability ordering on an n-element set, which satisfies
the cancellation conditions C†

4, . . . , C†
k, is representable. The correspond-

ing analogue of g(n) can also be introduced. We define g†(n) to be the
smallest positive integer k such that every almost reresentable comparative
probability ordering on an n-element set, which satisfies the cancellation
conditions C†

4, . . . , C†
k, is representable. Obviously, f †(n) ≥ g†(n), and also

f †(n) ≥ f(n) and g†(n) ≥ g(n) for all n. Also Kraft, Pratt and Seidenberg
effectively commented without proof that f †(n) ≤ (n + 1)! (see [6, p. 413]).

Despite such a large upper bound, it appears that to date no examples
have been found for which f †(n) �= f(n) or g†(n) �= g(n). We show below that
f †(7) ≥ g†(7) ≥ 8, which, together with our earlier finding that g(7) = 7,
proves that g†(7) > g(7). To do this, we will need a variation of Theorem 1.

Theorem 3 (Construction method 2). Let X = {x1, . . . ,xk}, k ≥ 4,
be a system of non-zero vectors from T n such that

∑k
i=1 aixi = 0 for some

non-negative integers a1, . . . , ak with
∑k

i=1 ai = m, and such that for every

equation
∑k

i=1 a′
ixi = 0 with positive integer coefficients a′

i it happens that
∑k

i=1 a′
i ≥ m. Suppose further that the k × n matrix A having the vectors

x1, . . . ,xk as its rows has the property that Ab = 0 for some positive integer-
valued vector b = (b1, . . . , bn) with b1 > b2 > . . . > bn > 0, and that

Span{x1, . . . ,xk} ∩ T n = {±x1, . . . ,±xk}.

Let C(�) be the discrete cone belonging to the weak comparative probability
ordering which arises from the measure p = (b1 + . . . + bn)−1 (b1, . . . , bn),
that is, C(�) = {x ∈ R

n | (x,b) ≥ 0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable comparative probability ordering which
almost agrees with p, and satisfies C†

i for all i < m, but does not satisfy C†
m.

Proof. The proof is completely analogous to the proof of Theorem 1.
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Theorem 4. f †(7) ≥ g†(7) ≥ 8.

Proof. Consider the following 7 × 7 matrix:

B =













1 −1 −1 1 0 1 −1
1 0 −1 −1 1 −1 −1
1 0 −1 −1 −1 0 1

−1 1 −1 1 1 0 1
0 −1 1 1 0 −1 1
0 −1 1 −1 1 1 1

−1 1 1 0 −1 0 −1













,

and let x1, . . . ,x7 denote its rows. It is easy to check that

x1 + . . . + x6 + 2x7 = 0,

that is, condition C7 is violated with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 2), and
there does not exist any “smaller” violation. Calculations also show that

Span{x1, . . . ,x7} ∩ T 7 = {±x1, . . . ,±x7},

and Ap = 0 for the probability measure p = 1
148

(48, 40, 27, 16, 12, 10, 7).
For the weak comparative probability ordering determined by this measure,
the equivalences are all consequences of one of the following seven: 146 ∼
237, 15 ∼ 3467, 17 ∼ 345, 2457 ∼ 13, 347 ∼ 26, 3567 ∼ 24 and 23 ∼
157. Again this is a non-representable but almost representable comparative
probability ordering on I7, but is one which satisfies C†

4, C†
5, C†

6, and C†
7,

while failing C†
8 with (a1, . . . , a7) = (1, 1, 1, 1, 1, 1, 2).

5 Account for n = 5 and n = 6

The results of this section were obtained with the help of the computer
algebra system Magma [1], using the same techniques of enumeration as
described by Fishburn in [4, Section 4], but also checking the results for
both representability and almost representability (using techniques of linear
programming). Enumeration of the orderings required less than 60 seconds
of computer time for the case n = 5, and 12 hours for the case n = 6,
while determining representability (and/or partial representability) took just
a little longer.

Theorem 5. There are 546 different comparative probability orderings of
the subsets of I5 = {1, 2, 3, 4, 5}, of which 516 are representable, and the
remaining 30 are almost representable.
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In particular, our computations show that Fishburn’s claimed total num-
ber of 561 orderings in [4] is incorrect.

Note also that it is quite easy to decide if any given one of these order-
ings is almost representable. For example, one of the 30 non-representable
orderings (the last in the list at the end of Section 4 of [4]) is completely
determined by the four mutually-cancelling comparisons 234 � 15, 1 � 245,
25 � 34, 45 � 2, and the extra conditions 235 � 1 and 1 � 23. Now if this
ordering arises from the probability measure p = (p1, . . . , p5), then the first
four comparisons require that p1 = 2p4 + 2p5, p2 = p4 + p5 and p3 = 2p5,
and the two extra conditions require that 2p5 > p4 and p4 > p5. Choosing
p4 = 3 and p5 = 2, for instance, we see that the given ordering almost agrees
with the probability measure p = 1

24
(10, 5, 4, 3, 2).

Theorem 6. There are exactly 169444 different comparative probability or-
derings of the subsets of I6 = {1, 2, 3, 4, 5, 6}. Of these, 124187 are rep-
resentable, while 45257 are not. Of the 45257 that are non-representable,
44987 fail C4 with a1 = a2 = a3 = a4 = 1, while the other 270 satisfy C4 but
fail C5 with a1 = a2 = a3 = a4 = a5 = 1. Moreover, of these 45257 orderings
that are non-representable, 40055 are almost representable, while the other
5202 are not. In particular, of the 44987 non-representable orderings that
fail C4, exactly 39785 are almost representable, while the other 5202 are not,
and all of the 270 non-representable orderings that satisfy C4 but fail C5 are
almost representable. Hence there are exactly 164242 almost representable
orderings, and of these, 124187 are representable, while 40055 are not, with
39785 failing C4 with a1 = a2 = a3 = a4 = 1, and the other 270 satisfying C4

but failing C5 with a1 = a2 = a3 = a4 = a5 = 1.

We say that the dual of a comparison A � B is the comparison B � A,
and then the dual of a set of comparisons is the set of their duals. In the case
n = 5, Fishburn categorised the 30 orderings that are non-representable into
five types (and their duals) according to the violations of C4 that they exhibit,
and noted that some orderings may exhibit more than one type of violation.
For the case n = 6, we find that up to duality there are 423 such types, of
which 385 (and their duals) involve four comparisons that together fail C4

with a1 = a2 = a3 = a4 = 1, while the remaining 38 (and their duals) involve
five comparisons that together fail C5 with a1 = a2 = a3 = a4 = a5 = 1.

We note that the first example of a comparative probability ordering on
a 6-element set which fails to be almost representable was constructed by
Kraft, Pratt, and Seidenberg [6]. Our computations provide the following
extension to the results of Fishburn [4, 5]:

Corollary 3. f(6) = g(6) = f †(6) = g†(6) = 5.
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6 Conclusion and Open Questions

Kraft, Pratt, and Seidenberg [6] left open the question of whether or not
all comparative probability orderings on a 5-element set are almost repre-
sentable. We have answered this question by showing that all of them are
indeed almost representable.

We know now that f(5) = g(5) = 4, and f(6) = g(6) = 5, but g(7) = 7.
The question remains open as to whether f(7) is equal to 7 or 8. Nevertheless,
it is clear that the situation for n ≥ 7 is different to that for n ∈ {5, 6}, so
Fishburn’s conjecture is no longer adequate. We propose amending it to the
following:

Conjecture: f(n) = g(n) = n for all n ≥ 7.

Some more research will have to be undertaken before any reasonable
conjecture about f †(n) and g†(n) can be formulated.
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