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1 Introduction

In 1973–75 Gibbard and Satterthwaite published a fundamental impossibility
theorem which states that every non-dictatorial social choice function, whose
range contains at least three alternatives, at certain profiles can be manip-
ulated by a single individual [9, 19]. After that, the natural question arose:
if there are no perfect rules, which ones are the best, i.e. least manipulable?
The answer to this question cannot be given in absolute terms. It stipulates
introducing a certain index of manipulability of the rule and a certain model
for the population. The answer may depend both on the choice of the index
and on the choice of the model.

To answer this question, various indices of manipulability of voting rules
have been introduced and studied [1, 5, 11, 17, 18] and various models in-
troduced [2, 18]. Among the models the following two have gained the lion’s
share of attention. The first one, IC (Impartial Cuture) conjecture, assumes
that all voters are independent. The second one, the IAC (Impartial Anony-
mous Culture) conjecture, assumes some degree of dependency.

Among the indices, the probability of obtaining a manipulable profile
either for an individual or for a coalition has attracted most attention, both
for the IC and for the IAC conjectures [5, 14, 17].

In some cases, these indices have been calculated exactly, mainly in the
three-alternative case [8, 14, 15, 16]. In others, they have been estimated in
computer simulations [1, 5, 11, 17, 21].

The probability of manipulation has been especially well-studied for the
important class of scoring voting rules, and significant progress has been
made in comparing them. In his seminal paper [18], Saari showed that in his
“geometric” model, Borda is the least manipulable for the three-alternative
case in relation to micro manipulation, but this does not extend to the case
of four alternatives. Kim and Roush [12], on the other hand, proved that,
asymptotically, when the number of voters tends to infinity Borda becomes
coalitionally manipulable with probability 1.

Some other characteristics have also been used, mostly in computer sim-
ulations [1, 5, 17]. In this paper, we originally aimed to compare scoring
rules under the IC, using the average minimum size of the coalition capable
of manipulation as the principal characteristic of manipulability of the rule.
The greater this characteristic, the better the rule. This characteristic was
first introduced by Chamberlin [5], where he estimated it for four different
rules by means of computer simulation.

To our surprise we discovered that while Chamberlin’s characteristic is
meaningful for most classical rules, it is biased towards antiplurality, and the
closer the rule gets to the antiplurality, the larger is its average minimum
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coalition size. Hence, there are no optimal rules in relation to this charac-
teristic at all. We suggest using the asymptotic average threshold coalition
size instead. This new characteristic coincides with the average minimum
coalition size on classical rules but does not have the bias towards antiplural-
ity. We show how to calculate the limiting value of this characteristic when
n → ∞, and discuss which rule is optimal for large electorates. We prove
that, among all scoring rules, Borda is the optimal rule in this sense in three–
and four–alternative elections. When the number of alternatives m is five or
more, �m/2�-approval voting is optimal, where for each voter most preferred
�m/2� alternatives are considered approved.

2 Scoring Rules

Let A and N be two finite sets of cardinality m and n respectively. The
elements of A = {a1, . . . , am} will be called alternatives, the elements of N
agents. We will denote agents as 1, 2, . . . , n. We assume that the agents have
preferences over the set of alternatives. By L = L(A) we denote the set of
all linear orders on A; they represent the preferences of agents over A. The
elements of the Cartesian product

L(A)n = L(A) × . . . × L(A) (n times)

are called profiles. They represent the collection of preferences of the society
N . If a linear order Ri ∈ L(A) represents the preferences of the i-th agent,
then by aRib, where a, b ∈ A, we denote that this agent prefers a to b. A
family of mappings Fn : L(A)n → A, n ∈ N, is called a social choice function
(SCF).

Definition 1. Let
−→
R = (R1, . . . , Rn) be a profile. We say that a profile−→

R
′

occurred as a result of change of mind of agents of a coalition C =
{i1, . . . , ik} ⊆ N , if agents of C who previously submitted linear orders
Ri1 , . . . , Rik now submit linear orders R′

i1
, . . . , R′

ik
while the remaining voters

submit their original linear orders.

Definition 2. Let F be an SCF and C = {i1, . . . , ik} ⊆ N be a coalition.
We say that a profile

−→
R is manipulable for F by the coalition C, if there is

a profile
−→
R

′
, which occurred as a result of change of mind of the agents of C

with the linear orders Ri1 , . . . , Rik being replaced by them with linear orders

R′
i1
, . . . , R′

ik
, if F (

−→
R ′)RisF (

−→
R ) for all s = 1, 2, . . . , k.

In other words, a profile is manipulable by a coalition C if agents of C
can misrepresent their preferences in such a way that every member of C will
benefit from the change.
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A scoring rule F is characterised by the sequence of scores v1 ≥ v2 ≥
. . . ≥ vm. For each profile

−→
R ∈ L(A)n and for every alternative a ∈ A,

we can define the score of a, denoted ScF (
−→
R , a), which can be computed

as ScF (
−→
R , a) =

∑m
�=1 v�i�, where the number ik shows how many times

the alternative a was ranked kth. The alternative with the highest score is
declared the winner. If more than one alternative has the greatest score,
an agreed-upon tie-breaking procedure is employed to determine the winner.
For most models of the behaviour of the population, the probability of a tie
tends to zero as n → ∞. Note that it is possible, and convenient, to assume
that v1 = 1 and vm = 0.

We can formalise this situation as follows. We write the linear order Ri

as

aPi(1) > aPi(2) > · · · > aPi(m)

where Pi ∈ Sym(m) is a permutation from the symmetric group Sym(m)
on {1, 2, . . . , m}. This way we may assume that each agent i chooses a
permutation Pi ∈ Sym(m). Then the vector total Xn =

∑n
i=1 Piv is found,

whose jth component is the score ScF (
−→
R , aj), and the winning candidate is

the one corresponding to the greatest element of Xn.
Although the score vector v is not random in nature, nevertheless the

following two characteristics of this vector will play a crucial role. We set

v̄ =
1

m

m∑

j=1

vj, and σ2
v =

1

m

m∑

j=1

(vj − v̄)2.

The three most popular scoring rules are as follows.

Example 1. Plurality voting: v = (1, 0, . . . , 0). We have v̄ = 1/m, and
σ2

v = (m − 1)/m2.

Example 2. Borda’s rule: v = (1, m−2
m−1

, . . . , 1
m−1

, 0). We have v̄ = 1/2, and
σ2

v = (m + 1)/12(m − 1).

Example 3. Antiplurality voting: v = (1, . . . , 1, 0). We have v̄ = m−1/m,
and σ2

v = (m − 1)/m2.

Example 4. k-Approval voting: v = (1, . . . , 1, 0, . . . , 0) (k ones). We have
v̄ = k/m, and σ2

v = k(m − k)/m2.

Plurality and antiplurality rules are particular cases of the k-approval
voting for k = 1 and k = m−1, respectively. These scoring rules will be
further called classical.
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The difference between k-Approval voting and Approval voting has to
be emphasised. Under Approval voting any voter may approve as many
alternatives as she wishes, while under k-Approval voting it is compulsory
that any voter approves her exactly k best alternatives. Thus Approval
voting is not a scoring rule. We refer the reader to the book by S. Brams
and P. Fishburn [3] and to the more recent survey of its applications by S.
Brams [4].

3 The Winning Margin

This section addresses the problem: if the voters choose permutations in-
dependently and uniformly at random from Sym(m) (which corresponds to
the IC conjecture), what is the asymptotic behaviour of the winning mar-
gin (i.e. the difference between the greatest and second-greatest elements of
Xn)? The central limit theorem is used to find the asymptotics.

Proposition 1 (Central limit result.).

Xn − nv̄1

σv

√
n

→D N(0, Σ), (1)

where Σ is the m × m matrix with diagonal elements equal to 1 and off-
diagonal elements equal to −1

m−1
.

Proof. The Piv are i.i.d. random vectors with mean v̄1 and covariance matrix
σ2

vΣ. The result follows by the classical central limit theorem (see e.g. [6], p.
170).

Define δ : R
m → [0,∞) such that δ(x) is the difference between the great-

est and second-greatest elements of x. Note that δ is continuous, with the
properties δ(ax) = aδ(x) for a ≥ 0; δ(x + b1) = δ(x) for b ∈ R. We can thus
apply δ to both sides of (1) to obtain

δ(Xn)

σv

√
n

→D δ(Y ), (2)

where Y ∼ N(0, Σ).

Proposition 2 (Convergence of expectation). We also have

E [δ(Xn)]

σv

√
n

→ E [δ(Y )] . (3)
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Proof. For random variables X ′
n, Y ′ with the same distributions as Xn, Y

(but perhaps defined on a different probability space) the convergence in (2)
takes place in the almost-sure sense. We will also have δ(X ′

n)/σv

√
n → δ(Y ′)

in the L1 sense (from which the desired result will follow) provided we can
show that the family {δ(Xn)/

√
n}∞n=1 is uniformly integrable. For this, it is

enough to show that {‖Xn − nv̄1‖2 /
√

n}∞n=1 is uniformly integrable, since
δ(x) = δ(x− b1) ≤ 2 ‖x − b1‖∞ ≤ 2 ‖x − b1‖2 for all x ∈ R

m and b ∈ R. But
this holds since

E

[
‖Xn − nv̄1‖2

2

n

]

=
1

n

m∑

j=1

E





(
n∑

i=1

(Piv)j − nv̄

)2


 = mσ2
v ,

i.e. the family {‖Xn − nv̄1‖2 /
√

n} is bounded in mean square.

Proposition 3 (The distribution of δ(Y )). The random vector Y has the
same multivariate normal distribution as

√
m

m−1

(
Z − Z̄1

)
, where Z ∼ N(0, Im)

and Z̄ = 1
m

∑m
j=1 Zj. In particular,

E [δ(Y )] =

√
m

m − 1
E [δ(Z)] .

Proof. The distribution of Y is N(0, Σ). To see that
√

m
m−1

(
Z − Z̄1

)
also

has this distribution, one only has to verify that Cov
(
Zj − Z̄, Zk − Z̄

)
=

δjk − 1/m and E
[
Zj − Z̄

]
= 0.

The values of Em = E [δ(Y )] for various m can be found from several
published tables of the expected order statistics of normal variables; e.g.
those in [10]. This allows the construction of the following table:

m 3 4 5 6 7 8 9 10 16
Em 1.036 0.845 0.747 0.685 0.643 0.611 0.586 0.567 0.4971

Theorem 1. The average winning margin WM(n, m, v) = E [δ(Xn)] is asymp-
totic to Emσv

√
n as n → ∞.

Proof. Follows from Propositions 1–3.

4 Threshold Coalition Size

Given a profile, in order to determine the minimum manipulating coalition
size for this profile we have to know the winning margin and how the scores
may change during the manipulation attempt. Suppose we are given the
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scoring rule with a score vector v = (v1, . . . , vm). Suppose also that at a
certain profile the alternative a wins, while b has the second-best score. A
voter wants to manipulate in favour of b. Then b must have a higher rank on
the ballot of this voter. The best that the voter can do is to move b to the
first position on her ballot and move a to the last position. This will reduce
the winning margin by (v1 − vi) + (vj − vm), where i and j are the original
positions of b and a respectively; note i ≤ j. The greatest amount by which
any single voter will be able (and willing) to reduce the winning margin is
thus

dv = max
i

[(v1 − vi) + (vi+1 − vm)] .

For the Borda rule, dv = (m − 2)/(m − 1). For plurality and k-approval
voting, dv = 1.

Let the threshold coalition size Mv be (the random variable) given by

Mv =
δ(Xn)

dv

,

where, as in the last section, δ(Xn) is the winning margin. Any coalition
capable of manipulating the outcome of the election must have at least Mv�
members.

A note of caution must be given here. It is not true that any coalition of
more than Mv� members can manipulate at the given profile. This coalition
is capable of reversing the gap between the best and the second best alterna-
tive but it is possible that the third (and highly undesirable) alternative will
overtake both and ruin the manipulation attempt. This can be illustrated
on the following example:

Example 5. Let us consider the Borda rule B and the following profile:

R1 R2 R3 R4 R5 R6

a a b b c c
b b a c a b
c c c a b a

As ScB(
−→
R , a) = 6, ScB(

−→
R , b) = 7 and ScB(

−→
R , c) = 5, the winner is b. The

coalition {1, 2} may attempt to manipulate to get a chosen submitting linear
orders R′

1 and R′
2, where they swap the order of b and c. By doing so, they

will reverse the winning margin between b and a but their attempt will fail
since c will be chosen, which is their worst alternative.
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Nevertheless Mv is a very important parameter of the rule. We will show
that for classical scoring rules this number asymptotically coincides with the
minimum size of the coalition that is capable of manipulation.

Theorem 2. The average threshold coalition size, ATC(n, m, v) = E [Mv],
is asymptotic to C(m, v)

√
n as n → ∞, where C(m, v) = Emσv/dv.

Proof. Follows from Theorem 1 and the arguments given at the beginning of
this section.

5 Minimum Manipulating Coalition Size

Our next goal is to prove that in a large electorate it is almost certain that a
coalition will exist that can reverse the margin between the best and second-
best alternatives. Moreover, for the classical voting rules it will be of size
Mv� or Mv� + 1 (depending on the tie-breaking procedure). First, we will
show that, for any constant t and for any linear order R ∈ L(A), it is almost
certain that, for n large enough, at least tMv� voters will submit this linear
order. To see this, note that the number of voters who submit R will be of
order n, but Mv� is of order only

√
n. The following result states this fact

more formally.

Theorem 3. Let R ∈ L(A) be a linear order and
−→
R = (R1, . . . , Rn) be a

random profile. Let t > 0 be a positive number. Then, for any scoring rule
with score vector v, there is a number β > 0 such that

P (# {i | Ri = R} ≤ tMv�) ≥ 1 − 2e−βn

for all large enough n. That is, the probability that a coalition of like-minded
voters, who submit linear order R, of size tMv� exists converges to 1 with
exponential rate as n → ∞.

Proof. Let Di be the random variable which is 1 if voter i submits R and
0 otherwise. Let M ′ =

∑n
i=1 Di be the number of voters who submit R;

the claim is that M ′ ≥ tMv with high probability. Let p = E [Di]. The IC
conjecture states that p = 1/m! > 0. Choose α ∈ (0, p); then

{M ′ < αn} ⊆
{

1

n

n∑

i=1

(Di − p) ≤ α − p

}

Also,

{Mv > αn/t} =

{

δ

(
Xn

n
− v̄1

)

> αdv/t

}

⊆
{

Xn

n
− v̄1 ∈ δ−1([αdv/t,∞))

}

.
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Since (−∞, α − p] and K = δ−1([αdv/t,∞)) are closed sets which do not
include the origin, Cramér’s large-deviation theorem ([7], p.36) gives that for
some β > 0,

P

(
1

n

n∑

i=1

(Di − p) ≤ α − p

)

< e−βn and P

(
Xn

n
− v̄1 ∈ K

)

< e−βn

for all large enough n. It follows that

P (M ′ ≥ tMv) ≥ P (M ′ ≥ αn and Mv ≤ αn/t) ≥ 1 − 2e−βn

for all large enough n.

The following theorem was effectively proved in [12]. Here we prove a
slightly stronger statement.

Theorem 4 (Kim-Roush, 1996). Any scoring voting rule F , with the ex-
ception of antiplurality, is coalitionally manipulable with limiting probability
1, i.e. the probability that a random profile is coalitionally manipulable for
F converges to 1 with exponential rate as n → ∞. If F is one of the clas-
sical scoring rules with the score vector v, then the probability of existence
of manipulating coalition of size Mv + 1 also converges to 1 with exponential
rate.

Proof. Let
−→
R = (R1, . . . , Rn) be a random profile. Let F (

−→
R ) = w and s is

the alternative with the second-best score. Let v be the score vector of F
and let d = v1 − vn−1 = 1− vn−1. Since F is different from the antiplurality,
vn−1 �= 1 and d > 0.

Let t > dv/d. By Theorem 3, among Ri’s there will be at least tMv�
of linear orders R for which w occupies the last place and s occupies second
to last. Moving s to the top place without changing the order of other
alternatives will add dtMv� points to the score of s while the score of w will
remain the same and the scores of other alternatives will not increase. As
dtMv� > δ(Xn), the new winner will be s and this manipulation attempt
will be successful.

If F is classical and different from antiplurality, then d = dv and as
we seen above

−→
R will be almost surely manipulable by a coalition of size

Mv� + 1.

The antiplurality A is the exception indeed. In the three-alternative
case the limiting probability of coalitional manipulability will be 1/2. If
alternatives are denoted a, b, c, then a profile with ScA(a) > ScA(b) >
ScA(c) is manipulable if ScA(a) + ScA(c) < 2ScA(b) and not manipulable
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if ScA(a) + ScA(c) > 2ScA(b). Due to the symmetry these two events have
equal probabilities. Kim and Roush [12] gave the formula for calculating the
limiting probability for m > 3.

Let F be a scoring rule with a score vector v. Let the minimum manip-
ulating coalition size MCv be (the random variable) equal to the minimum
size of a coalition capable of manipulation, if the random profile is manipu-
lable, and ∞ if it is not. Let average minimum manipulating coalition size
AMMC(n, m, v) be the expectancy of MCv conditional on the event that
the random profile is manipulable.

We recap the results of this section in the following

Theorem 5. For any scoring rule different from the antiplurality,

AMMC(n, m, v) ≥ ATC(n, m, v).

The average minimum manipulating coalition size AMMC(n, m, v) and av-
erage threshold coalition size ATC(n, m, v), are asymptotically equal and, as
n → ∞, both are is asymptotic to C(m, v)

√
n, where C(m, v) = Emσv/dv.

Proof. By Theorem 4 we may discard nonmanipulable profiles. Hence, the
first part is clear since MCv ≥ Mv. For all rules but antiplurality the re-
mainder of the theorem follows from Theorems 2 and 4.

6 A Drawback of the Average Minimum Ma-

nipulating Coalition Size

We will illustrate this drawback in the case of m = 3 alternatives, but ap-
parently it appears for all m ≥ 3.

Consider the scoring rule v = (1, 1 − p, 0), where 0 ≤ p ≤ 1. For a
given profile, denote the winning candidate a, the second-placegetter b, and
the third-placegetter c. Let d1 = δ(Xn) be the winning margin of a over b,
and d2 = δ(−Xn) be the “second margin” between b and c. Two types of
manipulation in favour of b are possible:

• A voter who prefers c to b to a may mis-represent his preference as
b, c, a. The effect of this will be to reduce the winning margin by p,
while increasing the second margin by 2p.

• A voter who prefers b to a to c may mis-represent his preference as
b, c, a. The effect of this will be to reduce both the winning and second
margins by 1 − p.
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Suppose a coalition of voters contains x1 voters of the first type and x2 voters
of the second type. Successful manipulation by this coalition requires

d1 − px1 − (1 − p)x2 ≤ 0,

d2 + 2px1 − (1 − p)x2 ≥ 0.

If 0 < p ≤ 1/2, then the smallest coalition that can succesfully manipulate
has

x1 = 0, x2 =
d1

1 − p

when d1 ≤ d2, and

x1 =
d1 − d2

3p
, x2 =

2d1 + d2

3(1 − p)

when d1 ≥ d2. If, on the other hand, 1/2 ≤ p ≤ 1, then the minimal coalition
has

x1 =
d1

p
, x2 = 0.

Let us denote x+ = x, if x ≥ 0 and x+ = 0, otherwise. Then the minimum
manipulating coalition size can be written as

MCv =
1

max(p, 1 − p)
d1 +

1

3

(
1

p
− 1

1 − p

)

+

(d1 − d2)+

in all cases where 0 < p ≤ 1. (There is a small probability that insufficiently
many like-minded voters will exist to form such a minimal coalition. But by
Theorem 3, this possibility can be neglected for our purposes.)

If we define ρ : R
3 → [0,∞) by ρ(x) = (δ(x) − δ(−x))+, the excess of

the winning margin over the second margin, and note that for these rules
dv = max(p, 1 − p), then we can write

MCv =
δ(Xn)

dv

+
1

3

(
1

p
− 1

1 − p

)

+

ρ(Xn).

Note that the first term of this expression is the threshhold coalition size Mv.
The average minimum manipulating coalition size can be taken to be

the expectation of this quantity. (Strictly speaking, this expectation should
be conditional on manipulability of the profile. But since the probability
of this event converges rapidly to 1 – by Theorem 3 again – the conditional
expectation can be replaced by an unconditional one for our purposes.) Also,
by the same arguments as used in section 3, we have

E [δ(Xn)]

σv

√
n

→
√

m

m − 1
E [δ(Z)] and

E [ρ(Xn)]

σv

√
n

→
√

m

m − 1
E [ρ(Z)] ,
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where Z ∼ N(0, Im). The average minimum manipulating coalition size thus
satisfies

AMMC(n, 3, v)

σv

√
n

≈ E [MCv]

σv

√
n

→ E3

dv

+
1√
6

(
1

p
− 1

1 − p

)

+

E [ρ(Z)] .

When 1/2 ≤ p ≤ 1 the second term vanishes. For such rules, the average
threshhold coalition size and the average minimum manipulating coalition
size have the same asymptotics. But when 0 < p < 1/2, the value of γ(v) =
limn→∞ AMMC(n, 3, v)/

√
n is greater than that of limn→∞ ATC(n, 3, v)/

√
n.

For small p, it is much greater, and indeed limp→0 γ(v) = ∞.
Now let us consider the case p = 0: the anti-plurality rule. For this rule,

only the voters of the first type have power to manipulate. If d1 < d2, no
manipulation is possible; otherwise the smallest manipulating coalition has

x1 = 0, x2 = d1.

Hence

AMMC(n, 3, v) = E [MCv || d1 ≥ d2]

= E [d1 || d1 ≥ d2]

= E [d11d1≥d2 ] /P (d1 ≥ d2)

= 2E
[
δ(Xn)1δ(Xn)≥δ(−Xn)

]
,

and so

γ(v) = lim
n

AMMC(n, 3, v)√
n

= 2σv

√
3/2E

[
δ(Z)1δ(Z)≥δ(−Z)

]
,

which is a finite number.
If we adopt the average minimum manipulating coalition size as a measure

of goodness of the rule, then we will have to accept that, the closer the
rule to antiplurality the better it becomes, and that there are no optimal
rules. This would be clearly an absurd conclusion. Hence, no matter how
attractive it may seem, the average minimum manipulating coalition size is
not an appropriate measure for comparing rules. We suggest that the average
threshold coalition size should be used instead.

7 Optimal Scoring Rules

In this section we will determine the rules optimal in relation to asymptotic
average threshold coalition size. For m = 3, 4 the optimal rule is Borda
Count and for m ≥ 5 the optimal rule is �m/2�-approval voting.
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By Theorem 5, we may assume that the quality of the rule is determined
by the ratio σv/dv, or on the number C(m, v) = Emσv/dv which we will
analyse in this section.

Theorem 6. The asymptotic average minimum manipulating coalition size
is maximised among all scoring rules by the Borda rule when the number m
of alternatives is 3 or 4, and by �m/2�-approval voting when m ≥ 5.

Proof. We must show that the claimed rules maximise the ratio σv/dv (or
equivalently, σ2

v/d
2
v) among all score vectors v.

Note that

σ2
v =

1

m

m∑

i=1

(vi − v̄)2 =
1

2
E

[
(U − V )2

]
=

1

m2

∑

i<j

(vi − vj)
2,

where U and V are independent copies of (P1v)1. We recall that, v1 = 1 and
vm = 0. If we parametrize the score vectors by setting vi =

∑m−1
j=i tj, where

t1, . . . , tm−1 ≥ 0 and
∑m−1

j=1 tj = 1, then

σ2
v = S(t) =

1

m2

∑

i≤j

(
j∑

k=i

tk

)2

.

Let us first consider all the score vectors v with a fixed value of dv. Among
these, we only have to maximise σv. The set

Vα =

{

(t1, . . . , tm−1) : all ti ≥ α and
m−1∑

i=1

ti = 1

}

includes a representation of all the score vectors with dv = 1−α. Since S is a
convex function and Vα is a convex set, the maximum value of S on Vα must
be attained at an extremal point of Vα, i.e. at one of the points t(i)(α) with
every component except the ith equal to α (and the ith component equal
to 1 − (m − 2)α). In particular, the maximum value of σv among all score
vectors with dv = 1−α is attained by a v corresponding to one of the t(i)(α).

Now let us see that the maximum is achieved at t∗(α) = t(�m/2�)(α), and
also at t(	m/2
)(α). Observe that S(t(i)(α)) = S(t(m−i)(α)) by symmetry, so
it is enough to note that when i < �m/2�,

S(t(i)(α)) − S(t(i+1)(α)) < 0. (4)

Since α ≤ 1
m−1

, we have 1 − (m − 2)α ≥ α. Now a direct calculation shows
that

S(t(i)(α)) − S(t(i+1)(α)) =
1

m2

{
i∑

r=1

(
(1 − (m − 2)α + (r − 1)α)2 − (rα)2

)
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+
m−i−1∑

r=1

(
(rα)2 − (1 − (m − 2)α + (r − 1)α)2)

}

=
m−i−1∑

r=i+1

(
(rα)2 − (1 − (m − 2)α + (r − 1)α)2) < 0.

It now remains to find

max

{
S(t∗(α))

(1 − α)2
: 0 ≤ α ≤ 1

m − 1

}

. (5)

For m = 3, we have

S(t∗(α))

(1 − α)2
=

S(1 − α, α)

(1 − α)2
=

2(1 − α + α2)

9(1 − α)2
=

2

9

(

1 +
α

(1 − α)2

)

.

Since this is an increasing function of α, its maximum is achieved when α
takes its greatest possible value of 1/2. This corresponds to the Borda rule.

For m = 4, we have

S(t∗(α))

(1 − α)2
=

S(α, 1 − 2α, α)

(1 − α)2
=

1 − 2α + 2α2

4(1 − α)2
=

1

4

(

1 +
α2

(1 − α)2

)

.

Since this is again an increasing function of α, its maximum is achieved when
α takes its greatest possible value of 1/3. This also corresponds to the Borda
rule.

Now we turn our attention to the case m ≥ 5. Note that in general

S(t∗(α)) =
1

m2

{
∑

i≤j<�m/2�
((j − i + 1)α)2 +

∑

�m/2�<i≤j

((j − i + 1)α)2

+
∑

i≤�m/2�≤j

(1 − (m − 2 − j + i)α)2

}

= cm

(

1 − (m − 2)α +

(
2 + em − 3m + m2

3

)

α2

)

,

where cm = (1−em/m2)/4 and em is 1 if m is odd, 0 if m is even. To complete
our proof, we must show that the maximum in (5) is attained when α = 0,
i.e. that S(t∗(α))/(1 − α)2 ≤ S(t∗(0)) = cm for 0 ≤ α ≤ 1/(m − 1). To this
end, note that

S(t∗(α)) − cm(1 − α)2 = cmα

(

−(m − 4) +

(−1 + em − 3m + m2

3

)

α

)

.

14



Since 1
3
(−1 + em − 3m + m2) ≥ 0 for m ≥ 5, for these values of m we obtain

S(t∗(α))− cm(1− α)2 ≤ cmα

(

−(m − 4) +

(−1 + em − 3m + m2

3

)
1

m − 1

)

=
cmα

3(m − 1)

(
em − 13 + 12m − 2m2

)
≤ 0.

This ends the proof.

The following graph and table display the numbers C(m, v) for small m
for the two most popular scoring rules plurality and Borda, and also for
�m/2�-approval and 3-approval voting.
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The following table gives some numerical values of the numbers C(m, v)
for small m:
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3 4 5 6 7 8 9 10
Borda 0.846 0.472 0.352 0.292 0.257 0.233 0.216 0.203

Plurality 0.488 0.366 0.299 0.255 0.225 0.202 0.184 0.170
3-Appr. 0.366 0.366 0.343 0.318 0.296 0.276 0.260

�m/2�-Appr. 0.488 0.423 0.366 0.343 0.318 0.306 0.291 0.284

We included 3-Approval voting in this table for the following reason. In
the recent presidential elections in France, in which there were 16 candidates,
the following experiment was conducted [13]. The experiment was run in six
places: in a village, called Gy-les-Nonnains and in five voting posts in Orsay,
a suburb of Paris. In these places voters had a possibility, after casting their
official ballot, to vote unofficially according to the approval voting rule. In
both places the average number of approvals on a ballot was three. So 3-
Approval voting may be the best approximation to Approval voting among
the scoring rules. Comparing it with Borda, we see that Borda eventually
gets better than 3-Approval but it happens only for m ≥ 28.

8 Conclusion

We see that there are no optimal rules relative to the asymptotic average min-
imum manipulating coalition size. This characteristic is biased towards the
antiplurality and should be used with great caution. The average threshold
coalition size is maximised among all scoring rules by the Borda rule not only
for the three-alternative case but also for the case of four alternatives. At the
same time, when the number of alternatives is larger than four the �m/2�-
approval voting is preferable. It is interesting that in the Saari’s geometric
model for m = 4 the 2-approval voting is better than Borda in respect to
micro manipulation [18] and Saari expected Borda to fare poorly relative to
coordinated macro manipulation. Although the difference in models should
be taken into account, our results do not seem to confirm these expectations.

It is hard to imagine �m/2�-approval voting implemented in practice. The
best approximation to this rule would be Majoritarian Compromise which
for large societies behaves itself as �m/2�-approval voting [20].

Some experimental evidence [13] suggests that 3-Approval voting might
be the best approximation among scoring rules to the classical Approval
voting. If so, the characteristics of Approval voting seem to be quite good
since Borda surpasses 3-Approval only for m ≥ 28.

It is interesting to compare these results with the results obtained by
Chamberlin in [5] using computer simulation. The four rules plurality, Borda,
Hare and Coombs were tested using the IC conjecture in three-alternative
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elections and for those profiles for which all four rules were manipulable
(which is about 30% of all profiles), the average minimum manipulating
coalition size was recorded in the following table.

Voting system 21 voters 1000 voters
Plurality 2.4 12.4
Borda 2.3 15.4
Hare 1.5 5.9

Coombs 2.5 11.6

We see that for 21 voters the result of comparison is inconclusive while
for 1000 voters Borda is clearly the best.

Since for classical rules the asymptotic average minimum coalition size is
the same as the asymptotic average threshold coalition size, we can compare
Chamberlin’s results with ours. For 1000 voters our results give us 15.4
for the plurality and 26.8 for the Borda rule. The difference is especially
significant for the Borda rule. One possible explanation to this discrepancy
is that in Chamberlin’s simulations only profiles manipulable for all four rules,
including Hare’s rule, were considered. Since Hare’s rule is manipulable only
in 30% of all cases, this can be a rather restricted set of profiles which are
more prone to manipulation than the majority of profiles.
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