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Abstract Danilov, Karzanov and Koshevoy (2012) geometrically introduced
an interesting operation of composition on tiling Condorcet domains and using
it they disproved a long-standing problem of Fishburn about the maximal
size of connected Condorcet domains. We give an algebraic definition of this
operation and investigate its properties. We give a precise formula for the
cardinality of composition of two Condorcet domains and improve the Danilov,
Karzanov and Koshevoy result showing that Fishburn’s alternating scheme
does not always define a largest peak-pit Condorcet domain.
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1 Introduction

The famous Condorcet Paradox shows that if voters’ preferences are unre-
stricted, the majority voting can lead to intransitive collective preference in
which case the Condorcet Majority Rule (Condorcet, 1785), despite all its
numerous advantages, is unable to determine the best alternative, i.e., it is
not always decisive. Domain restrictions is, therefore, an important topic in
economics and computer science alike (Elkind, 2018). In particular, for artifi-
cial societies of autonomous software agents there is no problem of individual
freedom and, hence, for the sake of having transitive collective decisions the
designers can restrict choices of those artificial agents in order to make the
majority rule work every time.

Condorcet domains represent a solution to this problem, they are sets of
linear orders with the property that, whenever the preferences of all voters
belong to this set, the majority relation of any profile with an odd number of
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voters is transitive. Maximal Condorcet domains historically have attracted
a special attention since they represent a compromise which allows a society
to always have transitive collective preferences and, under this constraint,
provide voters with as much individual freedom as possible. The question:
“How large a Condorcet domain can be?” has attracted even more attention
(see the survey of Monjardet (2009) for a fascinating account of historical
developments). Kim et al. (1992) identified this problem as a major unsolved
problem in the mathematical social sciences. Fishburn (1996) introduced the
function

f(n) = max{|D| : D is a Condorcet domain on the set of n alternatives.}

and put this problem in the mathematical perspective asking for maximal
values of this function.

Abello (1991) and Fishburn (1996, 2002) managed to construct some
“large” Condorcet domains based on different ideas. Fishburn, in particular,
taking a clue from Monjardet example (sent to him in private communication),
came up with the so-called alternating scheme domains (that will be defined
later in the text), later called Fishburn’s domains (Danilov et al., 2012). This
scheme produced Condorcet domains with some nice properties, which, in par-
ticular, are connected and have maximal width (see the definitions of these
concepts later in this paper). Fishburn (1996) conjectured (Conjecture 2) that
among Condorcet domains that do not satisfy the so-called never-middle con-
dition (these in Danilov et al. (2012) were later called peak-pit domains),
the alternating scheme provides domains of maximum cardinality. Galambos
& Reiner (2008) formulated another similar hypothesis (Conjecture 1) which
later appeared to be equivalent to Fishburn’s one (Danilov et al., 2012). Mon-
jardet (2006) introduced the function

g(n) = max{|D| : D is a peak-pit domain on the set of n alternatives}

in terms of which Fishburn’s hypothesis becomes g(n) = |Fn|, where Fn is the
nth Fishburn domain. Monjardet (2009) also emphasised Fishburn’s hypoth-
esis.

It is known that g(n) = f(n) for n ≤ 7 (Fishburn, 1996; Galambos &
Reiner, 2008) and it is believed that g(16) < f(16) (Monjardet, 2009). This
is because Fishburn (1996) showed that f(16) > |F16|. Thus, if Fishburn’s
hypothesis were true we would get f(n) > g(n) for large n. However, this
hypothesis is not true.

Danilov et al. (2012) introduced the class of tiling domains which are peak-
pit domains of maximal width and defined an operation on tiling domains
that allowed them to show that g(42) > |F42|. This operation was somewhat
informally defined which made investigation of it and application of it in other
situations difficult. In the present article we give an algebraic definition and a
generalisation of the Danilov-Karzanov-Koshevoy construction and investigate
its properties. In our interpretation it involves two peak-pit Condorcet domains
D1 and D2 on sets of n and m alternatives, respectively, and two linear orders
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u ∈ D1 and v ∈ D2; the result is denoted as (D1 ⊗ D2)(u, v). It is again a
peak-pit Condorcet domain on n+m alternatives whose exact cardinality we
can calculate. Using this formula we can slightly refine the argument from
Danilov et al. (2012) to show that g(40) > |F40|.

2 Preliminaries

Let A be a finite set and L(A) be the set of all (strict) linear orders on A.
Any subset D ⊆ L(A) will be called a domain. Any sequence P = (v1, . . . , vn)
of linear orders from D will be called a profile over D1. It usually represents
a collective set of opinions of a society about merits of alternatives from A. A
linear order a1 > a2 > · · · > an on A, will be denoted by a string a1a2 . . . an.
Let us also introduce notation for reversing orders: if x = a1a2 . . . an, then
x̄ = anan−1 . . . a1. If linear order vi ranks a higher than b, we denote this as
a �i b.

Definition 1 The majority relation �P of a profile P is defined as

a �P b⇐⇒ |{i | a �i b}| ≥ |{i | b �i a}|.

Verbally, a �P b means that at lest as many voters from a society with profile
P prefer a to b as voters who prefer b to a. For an odd number of linear orders
in the profile P this relation is a tournament, i.e., complete and asymmetric
binary relation. In this case we denote it �P .

Now we can define the main object of this investigation.

Definition 2 A domain D ⊆ L(A) over a set of alternatives A is a Condorcet
domain if the majority relation �P of any profile P over D with odd number
of voters is transitive. A Condorcet domain D is maximal if for any Condorcet
domain D′ ⊆ L(A) the inclusion D ⊆ D′ implies D = D′.

There is a number of alternative definitions of Condorcet domains, see e.g.,
Monjardet (2009); Puppe & Slinko (2019).

Up to an isomorphism, there is only one maximal Condorcet domain on the
set {a, b}, namely CD2 = {ab, ba} and there are only three maximal Condorcet
domains on the set of alternatives {a, b, c}, namely,

CD3,t = {abc, acb, cab, cba}, CD3,m = {abc, bca, acb, cba},
CD3,b = {abc, bac, bca, cba}.

The first domain contains all the linear orders on a, b, c where b is never ranked
first, second contains all the linear orders on a, b, c where a is never ranked
second and the third contains all the linear orders on a, b, c where b is never
ranked last. Following Monjardet, we denote these conditions as bN{a,b,c}1,

1 A profile, unlike the domain, can have several identical linear orders.
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aN{a,b,c}2 and bN{a,b,c}3, respectively. We note that these are the only condi-
tions of type xN{a,b,c}i with x ∈ {a, b, c} and i ∈ {1, 2, 3} that these domains
satisfy.

A domain that for any triple a, b, c ∈ A satisfies a condition xN{a,b,c}1 with
x ∈ {a, b, c} is called never-top domain, a domain that for any triple a, b, c ∈ A
satisfies a condition xN{a,b,c}2 with x ∈ {a, b, c} is called never-middle domain,
and a domain that for any triple a, b, c ∈ A satisfies a condition xN{a,b,c}3 with
x ∈ {a, b, c} is called never-bottom domain.

Definition 3 (Danilov et al. (2012)) A domain that for any triple satisfies
either never-top or never-bottom condition is called a peak-pit domain. Both
never-top and never-bottom conditions will be called peak-pit conditions.

We note that Danilov et al. (2012), who consider linear orders over A =
{1, 2, . . . , n}, restrict in their investigation the class of peak-pit domains to
domains that contain two completely reversed orders (up to an isomorphism
they can be taken as 12 . . . n and 12 . . . n = nn− 1 . . . 1) and prove that under
this restriction all of them can be embedded into tiling domains (Theorem 2
of Danilov et al. (2012)). We also note that never-bottom domains are also
known as Arrow’s single-peaked domains and maximal domains among them
have all cardinality 2n−1 (Slinko, 2019).

Given a set of alternatives A, we say that

N = {xN{a,b,c}i | {a, b, c} ⊆ A, x ∈ {a, b, c} and i ∈ {1, 2, 3}} (1)

is a complete set of never conditions if it contains at least one never condition
for every triple a, b, c of distinct elements of A. If the set of linear orders that
satisfy N is non-empty, we say that N is consistent.

Proposition 1 A domain of linear orders D ⊆ L(A) is a Condorcet domain
if and only if it is non-empty and satisfies a complete set of never conditions.

Proof This is well-known characterisation noticed by many researchers. See,
for example, Theorem 1(d) in Puppe & Slinko (2019) and references there.

This proposition, in particular, means that the collection D(N ) of all linear
orders that satisfy a certain complete set of never conditionsN , if non-empty, is
a Condorcet domain. Let us also denote by N (D) the set of all never conditions
that are satisfied by all linear orders from a domain D.

Let ψ : A → A′ be a bijection between two sets of alternatives. It can
then be extended to a mapping ψ : L(A)→ L(A′) in two ways: by mapping a
linear order u = a1a2 . . . am onto ψ(u) = ψ(a1)ψ(a2) . . . ψ(am)2 or to ψ(u) =
ψ(am)ψ(am−1) . . . ψ(a1).

Definition 4 Let A and A′ be two sets of alternatives (not necessarily
distinct) of equal cardinality. We say that two domains, D ⊆ L(A) and
D′ ⊆ L(A′) are isomorphic if there is a bijection ψ : A → A′ such that
D′ = {ψ(d) | d ∈ D} and flip-isomorphic if D′ = {ψ(d) | d ∈ D}.

2 We use the same notation for both mappings since there can be no confusion.
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Example 1 The single-peaked and single-dipped maximal Condorcet domains
on {a, b, c} are CD3,b = {abc, bac, bca, cba} and CD3,t = {abc, acb, cab, cba},
respectively. They are not isomorphic but flip-isomorphic under the identity
mapping of {a, b, c} onto itself.

Definition 5 (Puppe (2018)) A Condorcet domain D is said to have max-
imal width if it contains two completely reversed orders, i.e., together with
some linear order u it also contains its flip ū.

Up to an isomorphism, for any Condorcet domain D of maximal width we
may assume that A = {1, 2, . . . , n} and it contains linear orders e = 12 . . . n
and ē = n . . . 21.

The universal domain L(A) is naturally endowed with the following be-
tweenness structure (as defined by Kemeny (1959)). An order v is between
orders u and w if v ⊇ u∩w, i.e., v agrees with all binary comparisons in which
u and w agree (see also Kemeny & Snell (1960)). The set of all orders that are
between u and w is called the interval spanned by u and w and is denoted by
[u,w]. The domain L(A) endowed with this betweenness relation is referred to
as the permutahedron (Monjardet, 2009).

Given a domain of preferences D, for any u,w ∈ D we define the induced
interval as [u,w]D = [u,w] ∩ D. Puppe & Slinko (2019) defined a graph GD
associated with this domain. The set of linear orders from D are the set of
vertices VD of GD, and for two orders u,w ∈ D we draw an edge between
them if there is no other vertex between them, i.e., [u,w]D = {u,w}. The
set of edges is denoted ED so the graph is GD = (VD, ED). As established
in Puppe & Slinko (2019), for any Condorcet domain D the graph GD is a
median graph (Mulder, 1978) and any median graph can be obtained in this
way.

A domain D is called connected if its graph GD is a subgraph of the permu-
tahedron (Puppe & Slinko, 2019); we note that domains CD3,t and CD3,b are
connected but CD3,m is not. Danilov et al. (2012) called a domain of maximal
width semi-connected if the two completely reversed orders can be connected
by a path of vertices that is also a path in the permutahedron correspond-
ing to a maximal chain in the Bruhat order. They proved that a maximal
Condorcet domain of maximal width is semi-connected if and only if it is
a peak-pit domain. Puppe (2017) showed that for a maximal Condorcet do-
main semi-connectedness implies direct connectedness (Proposition A2) which
means that any two linear orders in the domain are connected by a shortest
possible (geodesic) path.

Finally, we give two more definitions that express two properties of Con-
dorcet domains. But, firstly, we will introduce the following notation. Suppose
D ⊆ L(A) be a domain on the set A and let B ⊆ A. Suppose also u ∈ D. Then
by DB and uB we denote the restrictions of D and u onto B, respectively.

Definition 6 We call a Condorcet domain D ample if for any pair of alterna-
tives a, b ∈ A the restriction D{a,b} of this domain to {a, b} has two distinct
orders, that is, D{a,b} = {ab, ba}.
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A rhombus tiling (or simply a tiling) is a subdivision T into rhombic tiles of
the zonogon Z(n; 2) obtained as the Minkowski sum of n segments si = [0, ψi],
i = 1, . . . , n. This centre-symmetric 2n-gon has the bottom vertex b = (0, 0)
and the top vertex t = s1+. . .+sn. A snake is a path from b to t which, for each
i = 1, . . . , n contains a unique segments parallel to si. Each snake corresponds
to a linear order on {1, . . . , n} in the following way. If a point traveling from b
to t passes segments parallel to si1 , si2 . . . , sin , then the corresponding linear
order will be i1i2 . . . in. The set of snakes of a rhombus tiling, thus, defines a
domain which is called tiling domain. Danilov et al. (2012) showed that peak-
pit domains of maximal width are exactly the tiling domains (see an example
on Figure 1).

Definition 7 (Slinko (2019)) A Condorcet domain D is called copious if
for any triple of alternatives a, b, c ∈ A the restriction D{a,b,c} of this domain
to this triple has four distinct orders, that is, |D{a,b,c}| = 4.

Of course, any copious Condorcet domain is ample. We note that, if a
domain D is copious, then it satisfies a unique set of never conditions (1).

Definition 8 A complete set of peak-pit conditions (1) is said to satisfy the
alternating scheme (Fishburn, 1996), if for all 1 ≤ i < j < k ≤ n it includes

jN{i,j,k}3, if j is even, and jN{i,j,k}1, if j is odd

or
jN{i,j,k}1, if j is even, and jN{i,j,k}3, if j is odd.

The domains that are determined by these complete sets we define Fn
and Fn, respectively, and call Fishburn’s domains (Danilov et al., 2012). The
second domain is flip-isomorphic to the first so we consider only the first one.

In particular, F2 = {12, 21}, F3 = {123, 213, 231, 321} and

F4 = {1234, 1243, 2134, 2143, 2413, 2431, 4213, 4231, 4321}.

Figure 1 shows the median graph of F4 and its representation as a tiling
domain.

Galambos & Reiner (2008) give the exact formula for the cardinality of Fn:

|Fn| = (n+ 3)2n−3 −

{
(n− 3

2 )
(
n−2
n
2−1
)

for even n

(n−12 )
(n−1

n−1
2

)
for odd n

(2)

Given a path in the permutahedron from e = 12 . . . n to ē = nn−1 . . . 1
where each pair (i, j) with 1 ≤ i < j ≤ n is switched exactly once (which
can be associated with a maximal chain in the Bruhat order B(n, 1)) we say
that it satisfies the inversion triple [i, j, k] with i < j < k if The pairs in this
triple are switched in the order (j, k), (i, k), (i, j). Galambos & Reiner (2008)
showed that if a maximal Condorcet domain D of maximal width contains one
maximal chain in the Bruhat order B(n, 1) (i.e., is semi-connected), then it is a
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Fig. 1 Median graph and the tiling of the hexagon for Fishburn’s domain F4

union of all equivalent maximal chains, i.e., those chains that satisfy the same
set of inversion triples. Thus any maximal semi-connected Condorcet domain
D can be defined by the set of inversion triples. In particular, the domain F4

can be defined by the set of inversion triples

{[1, 3, 4], [2, 3, 4]}.

3 Main Results

Let us start with an observation.

Proposition 2 Let D be a semi-connected Condorcet domain of maximal
width on the set of alternatives A. Then:

(i) For any a ∈ A its restriction D′ on A′ = A− {a} is also a semi-connected
domain of maximal width.

(ii) D is copious peak-pit domain.

Proof (i) If w and w̄ are two completely reversed linear orders in D, then after
removal of a, their images will still be completely reversed. Let u, v be two
vertices in GD which are neighbouring vertices in the permutahedron on the
path connecting w and w̄. Then v differs from u by a swap of neighbouring
alternatives. Let u′, v′ be their images under the natural mapping of D onto
D′. If one of these swapped alternatives was a, then u′ = v′. If not, u′, v′ will
still differ by a swap of neighbouring alternatives. Hence D′ is semi-connected.

(ii) Let a, b, c ∈ A and let D′′ be the restriction of D onto {a, b, c}. Since
D is of maximal width, the same can be said about D′′ and without loss of
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Fig. 2 Concatenation of tilings T and T ′

generality we may assume that D′′ contains abc and cba. By (i) D′′ is semi-
connected and hence there will be two intermediate orders in D′′ connecting
abc and cba. These would be either acb and cab or bac and bca. Thus, D′′ has
four linear orders, and, hence, D is copious domain satisfying bN{a,b,c}1 or
bN{a,b,c}3, respectively. Hence it is a peak-pit domain.

3.1 Danilov-Karzanov-Koshevoy construction and its generalisation

Danilov-Karzanov-Koshevoy (Danilov et al., 2012) define the ‘concatenation’
of two tiling domains by the picture shown in Figure 2 (where one arrow is
obviously missing).

Let us now start describing this construction algebraically. In fact, this will
be a generalisation of their construction since in our construction two arbitrary
linear orders are involved. Firstly, we describe ‘pure’ concatenation.

Let D1 and D2 be two Condorcet domains on disjoint sets of alternatives A
and B, respectively. We define a concatenation of these domains as the domain

D1 �D2 = {xy | x ∈ D1 and y ∈ D2}

on A ∪ B. It is immediately clear that D1 � D2 is also a Condorcet domain
of cardinality |D1 � D2| = |D1||D2|. We have only to check that one of the
never-conditions is satisfied for triples {a1, a2, b} where a1, a2 ∈ A and b ∈ B
(for triples {a, b1, b2} the argument will be similar). The restriction (D1 �
D2)|{a1,a2,b} will contain at most two linear orders a1a2b and a2a1b, which
is consistent with both never-top and never-bottom conditions. This domain
corresponds to T and T ′ on Figure 2.

Definition 9 Let A and B be two disjoint sets of alternatives, u ∈ L(A) and
v ∈ L(B). An order w ∈ L(A ∪B) is said to be a shuffle of u and v if wA = u
and wB = v, i.e., the restriction of w onto A is equal to u and the restriction
of w onto B is equal to v.

For example, 516723849 is a shuffle of 1234 and 56789.
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Given two linear orders u and v, we define domain u ⊕ v as the set of all
shuffles of u and v. It is clear from definition that u⊕v = v⊕u. The cardinality
of this domain is |u⊕v| =

(
n+m
m

)
. We believe this domain corresponds to what

is depicted in Figure 2 outside of T and T ′.
Now we combine the two domains together.

Theorem 1 Let D1 and D2 be two Condorcet domains on disjoint sets of
alternatives A and B. Let u ∈ D1 and v ∈ D2 be arbitrary linear orders. Then

(D1 ⊗D2)(u, v) := (D1 �D2) ∪ (u⊕ v)

is a Condorcet domain. Moreover, if D1 and D2 are peak-pit domains, so is
(D1 ⊗D2)(u, v).

Proof Let us fix u and v in this construction and denote (D1 ⊗ D2)(u, v) as
simply D1 ⊗ D2. If a, b, c ∈ A, then (D1 ⊗ D2){a,b,c} = (D1){a,b,c}, i.e., the
restriction of D1 ⊗ D2 onto {a, b, c} is the same as the restriction of D1 onto
{a, b, c}. Hence D1 ⊗D2 satisfies the same never condition for {a, b, c} as D1.
For x, y, z ∈ B the same thing happens.

Suppose now a, b ∈ A and x ∈ B. Then (D1 �D2){a,b,x} ⊆ {abx, bax}. Let
also u{a,b} = {ab}. Then (u⊕ v){a,b,x} = {abx, axb, xab}, hence

(D1 ⊗D2){a,b,x} ⊆ {abx, bax, axb, xab}, (3)

thus D1 ⊗ D2 satisfies aN{a,b,x}3. For a ∈ A and x, y ∈ B we have
(D1 � D2){a,x,y} ⊆ {axy, ayx}. Let also v{x,y} = {xy}. Then (u ⊕ v){a,x,y} =
{axy, xay, xya}, hence

(D1 ⊗D2){a,x,y} ⊆ {axy, ayx, xay, xya}, (4)

thus D1 ⊗D2 satisfies yN{a,x,y}1.

Note: The inequalities (3) and (4) become equalities if for any i ∈ {1, 2}
and any a, b ∈ Di we have (Di){a,b} = {ab, ba}, i.e., if D1 and D2 are ample.

Proposition 3 If |A| = m and |B| = n, then for any u ∈ D1 and v ∈ D2

|(D1 ⊗D2)(u, v)| = |D1||D2|+
(
n+m

m

)
− 1. (5)

Proof We have |D1⊗D2| = |D1||D2| and |u⊕v| =
(
n+m
m

)
. These two sets have

only one linear order in common which is uv. This proves (5).

Proposition 4 Let D1 and D2 be of maximal width with u, ū ∈ D1 and v, v̄ ∈
D2. Then (D1 ⊗ D2)(u, v) is also of maximal width. If D1 and D2 are semi-
connected, then so is (D1 ⊗D2)(u, v).

Proof Since D1 and D2 are of maximal width, we have ū ∈ D1 and v̄ ∈
D2. Hence ūv̄ ∈ D1 � D2. We also have vu ∈ u ⊕ v, and vu = ūv̄, hence
(D1 ⊗D2)(u, v) has maximal width. To prove the last statement we note that
ūv̄ can be connected to uv (which belongs both to D1 ⊗D2 and to u⊕ v) by
a geodesic path and uv in turn can be connected to vu by a geodesic path
within u⊕ v.
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If both D1 and D2 have maximal width, it is not true, however, that (D1⊗
D2)(u, v) will have maximal width for any u ∈ D1 and v ∈ D2. Let us take,
for example, D1 = {x = ab, x̄ = ba} and D2 = {u = cde, v = dec, w = dce, ū =
edc}. Then (D1⊗D2)(x, u) has maximal width while (D1⊗D2)(x, v) does not
since v̄ /∈ D2. In particular,

(D1 ⊗D2)(x, u) 6∼= (D1 ⊗D2)(x, v).

This indicates that the construction of the tensor product may be useful in
description of Condorcet domains which do not satisfy the requirement of
maximal width.

Proposition 5 Let D1 and D2 be two Condorcet domains on disjoint sets of
alternatives A and B. Let u ∈ D1 and v ∈ D2 be arbitrary linear orders. Then

(i) (D1 ⊗D2)(u, v) is connected, whenever D1 and D2 are;
(ii) (D1 ⊗D2)(u, v) is copious, whenever D1 and D2 are.

Proof (i) If D = (D1 ⊗D2)(u, v) is connected, then D1 and D2 are connected
too. Suppose now that D1 and D2 are connected, suppose w,w′ ∈ D which
are neighbours in ΓD. Since all neighbours in D1 ⊗ D2 are neighbours in the
permutahedron and so are neighbours in D1 ⊕ D2, it is enough to consider
the case when w ∈ D1 � D2 and w′ ∈ D1 ⊕ D2. But uv is on the shortest
path from w to w′ and it is in D. Hence either w = uv or w′ = uv and either
{w,w′} ⊆ D1 ⊗D2 or {w,w′} ⊆ D1 ⊕D2. This proves (i).

(ii) This part follows from (3) and (4) since, as was noted before, when D1

and D2 are copious these inequalities become equalities.

Proposition 6 The following isomorphism holds

(F2(a, b)⊗ F2(c, d))(ab, cd) ∼= F4(b, a, d, c). (6)

Proof We list orders of this domain as columns of the following matrix

[F2(a, b)� F2(c, d) | ab⊕ cd] =


a a b b a a c c c
b b a a c c a a d
c d c d b d b d a
d c d c d b d b b

 .
We see that the following never conditions are satisfied: aN{a,b,c}3, aN{a,b,d}3,
dN{a,c,d}1, dN{b,c,d}1. Hence the mapping 1 → b, 2 → a, 3 → d and 4 → c is
an isomorphism of F4 onto the tensor product (F2(a, b)⊗ F2(c, d))(ab, cd).

The isomorphism (6) is very nice but unfortunately for larger m,n we
have Fm⊗Fn 6∼= Fm+n. Moreover, it appears that for two maximal Condorcet
domains D1 and D2 on sets A and B, respectively, D1⊗D2 may not be maximal
on A ∪B. Here is an example.
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Example 2 Let us calculate E := F3(1, 2, 3)⊗ F2(4, 5)(321, 54):
1 2 2 3 1 2 2 3 3 3 5 3 3 3 5 5 5
2 1 3 2 2 1 3 2 2 5 3 2 5 5 3 3 4
3 3 1 1 3 3 1 1 5 2 2 5 2 4 2 4 3
4 4 4 4 5 5 5 5 1 1 1 4 4 2 4 2 2
5 5 5 5 4 4 4 4 4 4 4 1 1 1 1 1 1

 .

There are 17 linear orders in this domain. It is known, however, that F5 has
20 (Fishburn, 1996) but this fact alone does not mean non-maximality of E .
By Proposition 5 this domain is copious. By its construction it satisfies just
three inversion triples:

[1, 2, 4], [1, 3, 4], [2, 3, 4].

Now we see that there are two more linear orders 23514 and 23541 that satisfy
these conditions. Hence E is not maximal.

3.2 On Fishburn’s hypothesis

We will further write (Fk ⊗ Fm)(u, v) simply as Fk ⊗ Fm, when u ∈ Fk and
v ∈ Fm are chosen so that (Fk ⊗ Fm)(u, v) has maximal width. We note that
equation (6) is just a one of a kind since F2 ⊗ F3 6∼= F5 already.

Our calculations, using formulas (2) and (5) show that

|Fn ⊗ Fn| < |F2n|

for 2 < n ≤ 19 but 4611858343415 = |F20 ⊗ F20| > |F40| = 4549082342996.
Earlier, Danilov et al. (2012) showed that |F21 ⊗ F21| > |F42| disproving an
old Fishburn’s hypothesis that Fn is the largest peak-pit Condorcet domain
on n alternatives (Fishburn, 1996; Galambos & Reiner, 2008).

4 Conclusion and further research

Operations over Condorcet domains are useful in many respects. The Danilov-
Karzanov-Koshevoy construction is especially useful since it converts smaller
peak-pit Condorcet domains into larger peak-pit domains. Fishburn’s replace-
ment scheme (Fishburn, 1996) also produces larger Condorcet domains from
smaller ones but without preserving peak-pittedness. Using it Fishburn proved
that f(16) > |F16| and since he believed that g(n) = |Fn| this would imply
that f(n) > g(n) for large n. Now that we know that g(n) > |Fn|, the question
whether or not f(n) = g(n) comes to the fore. Another interesting question is
to find the smallest positive integer n for which g(n) > |Fn|.
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