On Monotonically Orthocompact Spaces *

Jiang Shouli† and Xu Yuming

(Department of Mathematics, Shandong University, Jinan, 250100, P. R. China)

Abstract: In this paper we study some properties of transitive neighborhoods, and make use of them to discuss the properties of ortho-refinable spaces. We prove that ortho-refinable spaces are irreducible and iso-compact, that every closed subspace of an ortho-refinable space is ortho-refinable, and other related results.

Key words: neighborhoods, ortho-refinable, irreducible, iso-compact, open mapping

1.4INTRODUCTION

A base B for a space X is an ortho-base if for each subcollection A of B, either $(i) \cap A$ is open, or $(ii) \cap A$ is a nonisolated singleton \{x\} and A is a base for the neighborhoods of x [6]. A proto-metrizable space is a paracompact space with an ortho-base. In [2], Gartside and Moody show that the spaces which admit a monotonic uniformity can be characterized as proto-metrizable spaces, i.e., as the monotonically normal spaces having an ortho-base. Furthermore, in [3] they show that proto-metrizable spaces can also be characterized by a certain monotonic covering property which they call monotonic paracompactness: To each open cover \mathcal{C} of a proto-metrizable space X there is an open star-refinement $m(\mathcal{C})$ of \mathcal{C} so that $m(\mathcal{C})$ refines $m(\mathcal{C}_x)$ whenever \mathcal{C}_x and \mathcal{C}_y are open covers of X and \mathcal{C}_y refines \mathcal{C}_x. In [5], Jumila and Kunzi introduce another monotonic covering property which they call monotonic orthocompactness. They show that each space with an ortho-base is a monotonically orthocompact space, and that each monotonically normal monotonically orthocompact space is proto-metrizable. An obvious problem has arisen, whether this result is more general than the following characterization of proto-metrizability given by Nyikos in [8]: A space is proto-metrizable iff it is a monotonically normal space having an ortho-base.

Obviously, if X is monotonically normal, the following are equivalent: $(i) X$ is monotonically orthocompact, $(ii) X$ has an ortho-base. In [6] Lindgren and Nyikos prove that, if X is developable, the following are equivalent: $(i) X$ is orthocompact, $(ii) X$ has an ortho-base. Since monotonically orthocompact spaces are orthocompact, when X is developable, the following are also equivalent: $(i) X$ is monotonically orthocompact, $(ii) X$ has an ortho-base. So, in [5] Jumila and Kunzi ask the question whether each monotonically orthocompact space has an ortho-base. In this paper, we study some properties of neighborhoods and discuss the monotonically orthocompact spaces. Furthermore, we prove that each space with a Noetherian base of sub-infinite rank is monotonically orthocompact, and we give an example of a monotonically orthocompact space without an ortho-base, so the above question is solved.

In this paper, all the spaces are T_1-spaces, the ordinal numbers are denoted by α, β etc., and the cardinal numbers are denoted by κ, λ etc..

*This work is supported by the NSF19971048

†The first author would like to thank Department of Mathematics, Auckland University for their hospitality during his visit as a visiting professor.
2. SOME PROPERTIES OF NEIGHBORNETS

Let X be a set, a subset R of $X \times X$ is called a relation on X. We usually denote the set
\[\{ y : (x,y) \in R \} \] by $R(x)$. It follows that $R = \bigcup \{ \{ x \} \times R(x) : x \in X \}$, and thus R is determined by $\{ R(x) : x \in X \}$. It is obvious that if R_1 and R_2 are two relations on X, then $R_1 \subset R_2$ if for each $x \in X$ we have $R_1(x) \subset R_2(x)$. For each $A \subset X$, we denote $\bigcup \{ R(x) : x \in X \}$ by $R(A)$. The inverse of a relation R, denoted by R^{-1}, is defined by that for all $x,y \in X$, $(x,y) \in R$ iff $(y,x) \in R^{-1}$. Suppose R and S are two relations on X, we define the relation $R \circ S = \{(x,z) : \exists y \in X \text{ such that } (x,y) \in R \text{ and } (y,z) \in S \}$. In particular, for each natural number n, let $R^n = R \circ R^{n-1} = R \circ R \circ \cdots \circ R$. It is easy to see that, for each $x \in X$, we have $(R \circ S)(x) = R(S(x))$, $(R \cap S)(x) = R(x) \cap S(x)$, $(R \cup S)(x) = R(x) \cup S(x)$. About the inverse relation, we have $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$, $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$, and $S^{-1} \subset R^{-1}$ whenever $S \subset R$. A relation R on X is transitive if $R^2 \subset R$, i.e., $(x,z) \in R$ whenever $(x,y) \in R$ and $(y,z) \in R$, or $z \in R[x]$ whenever $y \in R[x]$ and $z \in R[y]$.

In [4], Jumila has studied the properties on neighbornets in detail. Here, we also give some other properties of neighbornets. For convenience, if C is a family of open subsets of a space X, we denote $\{ C \subset X : c \in C \}$ by (C).

Definition 2.1 A relation R on a space X is called a neighbor of X if $R(x)$ is a neighborhood of x for each $x \in X$ [8]. R is called a partial neighbor if for each $x \in X$, $R(x) \cup R^{-1}(x) = \emptyset$ or $R(x)$ is a neighborhood of x in X [2].

Proposition 2.2 Let T be a transitive partial neighbor of a space X, Y a subspace of X. Then $R = T \cap (Y \times Y)$ is also a transitive partial neighbor of Y.

Proof For each $y \in Y$, we have that $R \{ y \} = (T \cap (Y \times Y)) \{ y \} = T \{ y \} \cap (Y \times Y) \{ y \} = T \{ y \} \cap Y$, $R^{-1} \{ y \} = (T \cap (Y \times Y))^{-1} \{ y \} = T^{-1} \{ y \} \cap (Y \times Y)^{-1} \{ y \} = T^{-1} \{ y \} \cap Y$, and thus $R \{ y \} \cup R^{-1} \{ y \} = (T \{ y \} \cap Y) \cup (T^{-1} \{ y \} \cap Y) = (T \{ y \} \cup T^{-1} \{ y \}) \cap Y$. If $R \{ y \} \cup R^{-1} \{ y \} \neq \emptyset$, then we have $T \{ y \} \cup T^{-1} \{ y \} \neq \emptyset$. It follows that $T \{ y \}$ is a neighborhood of y in X, and thus $R \{ y \}$ is a neighborhood of y in Y. Therefore R is a partial neighbor of Y.

Let $(x,y), (y,z) \in R = T \cap (Y \times Y)$, then we have $(x,y), (y,z) \in T$ and $(x,y), (y,z) \in Y \times Y$. Since T is a transitive partial neighbor, we have $(x,z) \in T$. Note that $(x,z) \in Y \times Y$, then $(x,z) \in T \cap (Y \times Y)$. Therefore, R is a transitive partial neighbor of Y.

Corollary 2.3 Let T be a transitive neighbor of a space X, Y a subspace of X. Then $R = T \cap (Y \times Y)$ is also a transitive neighbor of Y.

Definition 2.4 A neighbor R of a space X is said to be open if for each $x \in X$, the set $R \{ x \}$ is an open subset of X [4].

Proposition 2.5 A transitive neighbor is open [4].

Definition 2.6 A collection \mathcal{U} of open subsets of a space X is said to be interior-preserving if for each $U \in \mathcal{U}$, the intersection $\cap \{ U \}$ is open in X [1].

Proposition 2.7 Let T be a transitive partial neighbor of a space X, then $\{ T \{ x \} : x \in X \}$ is an interior-preserving open family of X.

Proof Since T is a transitive partial neighbor of X, for each $x \in X$, we have that $T \{ x \}$ is an open subset of X.

Suppose $B \subset X$, and $\cap \{ T \{ x \} : x \in B \} \neq \emptyset$. Let $y \in \cap \{ T \{ x \} : x \in B \}$. Then, for each $x \in B$, we have $y \in T \{ x \}$, and thus $T \{ y \} \subset T \{ x \}. T \{ x \} = T \{ x \} \subset T \{ x \}$. It follows that $T \{ y \} \subset \cap \{ T \{ x \} : x \in B \}$. Clearly $B \neq \emptyset$. Choose $x \in B$, then $y \in T \{ x \}$, and thus $(y,x) \in T^{-1}$, $x \in T^{-1} \{ y \}$. It is to say that $T^{-1} \{ y \} \neq \emptyset$. By Definition 2.1, we know that $T \{ y \}$ is an open neighborhood of y. Hence, the intersection $\cap \{ T \{ x \} : x \in B \}$ is open in X.

We prove that $\{ T \{ x \} : x \in X \}$ is an interior-preserving open family of X.

Corollary 2.8 Let T be a transitive neighbor of a space X, then $\{ T \{ x \} : x \in X \}$ is an interior-preserving open cover of X.

Proposition 2.9 Let C be an interior-preserving open family of a space X, $R \{ x \} = \cap \{ C \}_x$ for each
$x \in X$. Then R is a transitive partial neighborhood of X, and \(\{ R[x] : x \in \mathcal{U} \} \) is an open refinement of \mathcal{C}.

Proof Since \mathcal{C} is an interior-preserving open family of X, then for each $x \in X$, $R[x] = \cap(C)\subseteq X$ is an open subset of X. If $x \in \mathcal{U}$, we have $x \in R[x]$, and thus $R[x] \neq \emptyset$. It follows that $R[x]$ is an open neighborhood of x. If $x \not\in \mathcal{U}$, then $R[x] = \emptyset$. Suppose $R^{-1}[x] \neq \emptyset$, then there exists some $y \in X$ such that $y \in R^{-1}[x]$, and thus $y \in R[x]$, a contradiction. So, we have that $R^{-1}[x] = \emptyset$, and thus $R[x] \cup R^{-1}[x] = \emptyset$. In light of Definition 2.1, R is a partial neighborhood of X.

Let $\{(x,y), (y,z) \in R\}$, then $y \in R[x]$, $z \in R[y]$. Since $y \in R[x] = \cap(C)$, for each $C \in \mathcal{C}$ we have $y \in C$. It follows that $\cap(C) \subseteq \cap(C)$, and thus $R[y] \subset R[x]$. So, we have $z \in R[y] \subset R[x]$, and thus $(x,z) \in R$. Therefore, R is a transitive partial neighborhood of X.

By the definition of $R[x]$, it is easy to see that \(\{ R[x] : x \in X \} \) is an open refinement of \mathcal{C}.

Corollary 2.10 Let \mathcal{C} be an interior-preserving open cover of a space X, $R[x] = \cap(C)\subseteq X$ for each $x \in X$. Then R is a transitive neighborhood of X, and \(\{ R[x] : x \in \mathcal{U} \} \) is an open refinement of \mathcal{C}.

3.4 ON MONOTONICALLY ORTHOCOMPACT SPACES

In [6], Lindgren and Nyikos firstly introduce the concept of ortho-base, study the spaces which have an ortho-base, and give some basic results for them. In [5], Jumilla and Kunzi make use of neighborhoods to give another new characterization of the spaces having an ortho-base, as a generalization they also introduce the concept of monotonically orthocompact spaces.

Definition 3.1 A base B for a space X is called an ortho-base if whenever $B' \subset B$, $x \in \cap(B')$, and $x \not\in \text{int}(\cap(B'))$, then B' is a local base at x [6, 5].

Theorem 3.2 Let B be an ortho-base of a space X, then every point x in X has a local base which is linearly ordered by reverse inclusion [6].

Theorem 3.3 Let B be an ortho-base for a space X, then

1. $\{ \cap(B') : B' \subset B, \cap(B') \text{ is open } \}$ is an ortho-base of the space X, i.e., the collection of all open intersections of subsets of B is an ortho-base.

2. Let Y be a subspace of X, then the collection $\{ Y \cap B : B \subset B \}$ is an ortho-base of Y [6].

Theorem 3.4 Let X be a topological space with an ortho-base B, assume that B is closed under open intersections. Then there is an operator $T : \Gamma \rightarrow \mathcal{E}$ from the set Γ of all collections of open subsets of X to the set \mathcal{E} of all transitive partial neighborhoods of X, such that

1. $T(C_\infty) \subseteq T(C_{\mathcal{E}})$ whenever $C_\infty, C_{\mathcal{E}} \in \mathcal{E}$ and C_∞ is a partial refinement of $C_{\mathcal{E}}$.

2. For each $C \in \mathcal{E}$, the collection $\{ T(C) \{ S \} : S \in T(C) \{ S \} \}$ is a subcollection of B and a refinement of C.\[\n\]

Definition 3.5 A topological space X is called monotonically orthocompact provided that there is an operator $T : \Xi \rightarrow \varphi$ from the set Ξ of all open covers of X to the set φ of all transitive neighborhoods of X, such that

1. $T(C_\infty) \subseteq T(C_{\mathcal{E}})$ whenever $C_\infty, C_{\mathcal{E}} \in \mathcal{E}$ and C_∞ is a refinement of $C_{\mathcal{E}}$.

2. $T(C) \{ S \} \subseteq X$ refines C whenever C refines $C_{\mathcal{E}}$.

Here T is called a monotonically orthocompact operator on X [5].

Definition 3.6 A space X is said to be orthocompact if for each open cover C of X, there is an interior-preserving open refinement \mathcal{R} of C.

By Theorem 3.4 and Definition 3.5, we know that the spaces having an ortho-base are monotonically orthocompact. From Proposition 2.5 and Definition 3.5, it is also easy to see that the monotonically orthocompact spaces are orthocompact. Next, we shall discuss some properties of monotonically orthocompact spaces.

Theorem 3.7 A closed subspace Y of a monotonically orthocompact space X is also a monotonically orthocompact space.
Proof Suppose $T : \Xi \to \varphi$ is a monotonically orthocompact operator on X. Let \mathcal{U} be an open cover of Y, then each element U of \mathcal{U} has the form $U = V \cap Y$, where V is an open subset of X. For each $U \subset \mathcal{U}$, let $V_U = V \cap (X \setminus Y)$, then V_U is an open subset of X and $U = V_U \cap Y$. Set $\mathcal{V}_U = \{ V_U : U \in \mathcal{U} \}$, then \mathcal{V}_U is an open cover of Y.

Since $T(\mathcal{V}_U)$ is a transitive neighborhood of X, by Corollary 2.3 we conclude that $T(\mathcal{V}_U) \cap (Y \times Y)$ is a transitive neighborhood of Y. Set $P(\mathcal{U}) = T(\mathcal{V}_U) \cap (Y \times Y)$, it suffices to prove that P is a monotonically orthocompact operator on Y.

Let $\mathcal{U}_\infty, \mathcal{U}_\xi$ be two open covers of Y, such that \mathcal{U}_∞ refines \mathcal{U}_ξ. As in the above assignment, we have $\mathcal{V}_{\mathcal{U}_\infty} = \{ \mathcal{V}_{U_\infty} : U_\infty = \mathcal{V}_{U_\infty} \cap Y, U_\infty \in \mathcal{U}_\infty \}$, and $\mathcal{V}_{\mathcal{U}_\xi} = \{ \mathcal{V}_{U_\xi} : U_\xi = \mathcal{V}_{U_\xi} \cap Y, U_\xi \in \mathcal{U}_\xi \}$. For each $V_{U_1} \in \mathcal{V}_{\mathcal{U}_\infty}$, there is $V_{U_2} \in \mathcal{V}_{\mathcal{U}_\xi}$ such that $U_1 \subset U_2$, so we have $V_{U_1} \cap Y \subset V_{U_2} \cap Y$. It follows that $V_{U_1} = (V_{U_1} \cap Y) \cup (X \setminus Y) \subset (V_{U_2} \cap Y) \cup (X \setminus Y) = V_{U_2} \in \mathcal{V}_{\mathcal{U}_\xi}$. Consequently $\mathcal{V}_{\mathcal{U}_\infty}$ refines $\mathcal{V}_{\mathcal{U}_\xi}$, so we have $T(\mathcal{V}_{\mathcal{U}_\infty}) \subset T(\mathcal{V}_{\mathcal{U}_\xi})$, and thus $P(\mathcal{U}_\infty) \subset P(\mathcal{U}_\xi)$.

Let \mathcal{U} be an arbitrary open cover of Y, then \mathcal{V}_U is an open cover of Y. By Definition 3.5, we have that $\{ T(\mathcal{V}_U) \{ \xi \} : \xi \in X \}$ refines \mathcal{V}_U. For each $y \in Y$, by the fact that T is a transitive neighborhood of X, we know $T(\mathcal{V}_U) \{ y \}$ is an open neighborhood of y in X. Hence $T(\mathcal{V}_U) \{ y \} \not\subset Y \setminus Y$, and it follows that there is $V_U \in \mathcal{V}_U$ such that $T(\mathcal{V}_U) \{ y \} \subset V_U$, where $U = V_U \cap Y \in \mathcal{U}$. Since $P(\mathcal{U}) = T(\mathcal{V}_U) \cap (Y \times Y)$ is a transitive neighborhood of Y and $P(\mathcal{U}) \{ y \} = (T(\mathcal{V}_U) \cap (Y \times Y)) \{ y \} = T(\mathcal{V}_U) \{ y \} \subset \mathcal{V}_U \cap Y$, we have that $P(\mathcal{U}) \{ y \}$ is an open subset of Y and $P(\mathcal{U}) \{ y \} \subset \mathcal{U}$, so $\{ P(\mathcal{U}) \{ y \} : y \in Y \}$ is a refinement of \mathcal{U}.

Theorem 3.8 Let X be a monotonically orthocompact space, and $f : X \to Y$ be a finite to one open mapping. Then $f(X)$ is a monotonically orthocompact space.

Proof Let T be a monotonically orthocompact operator on X, C an arbitrary open cover of $f(X)$, then $f^{-1}(C) = \{ (-\infty, C) : C \in C \}$ is an open cover of X. Thus, $T(f^{-1}(C))$ is a transitive neighborhood of X. By Corollary 2.8, we know that $\{ T(f^{-1}(C)) \{ \xi \} : \xi \in X \}$ is an interior-preserving open refinement of $f^{-1}(C)$.

Let $D = \{ (T(f^{-1}(C)) \{ \xi \}) : \xi \in X \}$, then D is a family of open subsets of $f(X)$. For each $x \in X$, there exists $C_x \in C$ such that $T(f^{-1}(C_x)) \{ \xi \} \subset (-\infty, C_x)$, and thus $f(T(f^{-1}(C_x)) \{ \xi \}) \subset \{ (-\infty, C_x) \} = C_x$. So, D is an open refinement of X. Let $A \subset X$, and let $y \in \bigcap f(T(f^{-1}(C)) \{ \xi \}) : \xi \in A \}$. By the fact that f is a finite to one mapping, we can assume $f^{-1}(y) = \{ x_1, x_2, \ldots, x_n \}$. Let $A_i = \{ x \in A : x_i \in T(f^{-1}(C)) \{ \xi \} \}$, then $A = \bigcup A_i : 1 \leq i \leq n$. Without loss of generality, for $1 \leq i \leq n$, we can assume that A_i is not empty. Since $T(f^{-1}(C)) \{ \xi \} : \xi \in X \}$ is an interior-preserving family of open subsets of X, we know that $\bigcap \{ T(f^{-1}(C)) \{ \xi \} : \xi \in A_i \}$ is an open subset of X, and thus $f(\bigcap \{ T(f^{-1}(C)) \{ \xi \} : \xi \in A_i \})$ is an open subset of $f(X)$. Clearly, for $1 \leq i \leq n$ we have $y = f(x_i) \in f(\bigcap \{ T(f^{-1}(C)) \{ \xi \} : \xi \in A_i \}) \subset \bigcap \{ T(\Xi \{ -\infty \}) \{ \xi \} : \xi \in A_i \}$. It follows that $y \in \bigcap \{ T(f^{-1}(C)) \{ \xi \} : \xi \in A_i \} : \infty \leq \xi \leq \infty \} \subset \bigcap \{ T(\Xi \{ -\infty \}) \{ \xi \} : \xi \in A_i \} : \infty \leq \xi \leq \infty \} = \bigcap \{ T(\Xi \{ -\infty \}) \{ \xi \} : \xi \in A \}$. But $\bigcap \{ f(\bigcap \{ T(f^{-1}(C)) \{ \xi \} : \xi \in A_i \}) \subset \bigcap \{ T(\Xi \{ -\infty \}) \{ \xi \} : \xi \in A \} : \infty \leq \xi \leq \infty \}$ is the intersection of finitely many open subsets of X, so is open. Hence we have that y is an interior point of the set $\bigcap \{ f(T(f^{-1}(C)) \{ \xi \}) : \xi \in A \}$. Therefore, the set $\bigcap \{ f(T(f^{-1}(C)) \{ \xi \}) : \xi \in A \}$ is an open subset of $f(X)$. This indicates that T is an interior-preserving open refinement of C.

For each $y \in f(X)$, let $R(y) = \bigcap D$. By Corollary 2.10 we know that R is a transitive neighborhood of $f(X)$, and $\{ R(y) : y \in f(X) \}$ is an open refinement of D.

Define an operator $P : \Xi \to \varphi$ from the set of all open covers of $f(X)$ to the set of all transitive neighborhoods of $f(X)$ such that, for each open cover C of $f(X)$, set $P(C) = \mathcal{R}$, which is the transitive neighborhood defined in the above. It remains to prove that P is a monotonically orthocompact operator on $f(X)$.

In fact, let C_∞, C_ξ be two open covers of $f(X)$ such that C_∞ refines C_ξ. Then $f^{-1}(C_\infty), f^{-1}(C_\xi)$ are open covers of X, and $f^{-1}(C_\infty)$ refines $f^{-1}(C_\xi)$. So, we have $T(f^{-1}(C_\infty)) \subset T(f^{-1}(C_\xi))$, and thus $\{ T(f^{-1}(C_\infty)) \{ \xi \} : \xi \in X \}$ is an open refinement of $T(f^{-1}(C_\xi)) \{ \xi \} : \xi \in X \}$. Hence, $D_\infty = \{ \{ T(f^{-1}(C_\infty)) \{ \xi \} : \xi \in X \} \}$ is an open refinement of $D_\xi = \{ \{ T(f^{-1}(C_\xi)) \{ \xi \} : \xi \in X \} \}$ in $f(X)$. It follows that we have $R_1(y) \subset R_2(y)$ for each $y \in f(X)$, and thus $R_1 \subset R_2$. Therefore,
Let \mathcal{C} be an open cover of $f(X)$, then $\mathcal{D} = \{((T(\{\{\mathcal{C}_{\infty}\}\})\infty) : \infty \in X\}$ is an interior-preserving open refinement of \mathcal{C}. Since $\{R\{y\} : y \in f(X)\}$ is an open refinement of \mathcal{D}, and $P(\mathcal{C}) = \mathcal{R}$, we have that $\{P(\mathcal{C})\infty) : \infty \in \{f(X)\}$ is an open refinement of \mathcal{C}. By Definition 3.5, we know that P is a monotonically orthocompact operator on $f(X)$.

4. AN EXAMPLE OF MONOTONICALLY ORTHOCOMPACT SPACE WITHOUT ORTHO-BASE

For the concept of rank of a collection of sets defined by Nagata [7], Lindgren and Nyikos give further general studies in [6]. They introduce the concept of Noetherian collection of subsets of a set X, and discuss the properties of Noetherian bases.

Definition 4.1 A collection \mathcal{A} of subsets of a set X is incomparable if, given any two members A_1 and A_2 of \mathcal{A} neither $A_1 \subset A_2$ nor $A_2 \subset A_1$ obtains [6].

Definition 4.2 Let κ be a cardinal number, X be a set, \mathcal{A} be a collection of subsets of X, and $x \in X$. The collection \mathcal{A} is of rank $\leq \kappa$ at x in X if for every incomparable subcollection $\mathcal{A}' = \{A \in \mathcal{A} : A \in \mathcal{A}\}$, its cardinality is $\leq \kappa$. It is of rank κ at x if it is of κ at x and if there exists an incomparable subcollection $\mathcal{A}_0 = \{A \in \mathcal{A} : A \in \mathcal{A}\}$ of \mathcal{A}, and the cardinality of \mathcal{A}_0 is κ. The collection \mathcal{A} is of rank $\leq \kappa$ if \mathcal{A} is of rank $\leq \kappa$ at every point of X. It is of rank κ if \mathcal{A} is of rank $\leq \kappa$ and \mathcal{A} is of rank κ at some point of X.

If κ is a limit cardinal, the collection \mathcal{A} is of rank $(\kappa-)$ at x if it is of rank $\leq \kappa$ at x, is not of rank λ at x for each $\lambda < \kappa$, and there exists an incomparable subcollection $\mathcal{A}' = \{A \in \mathcal{A} : A \in \mathcal{A}\}$, with cardinality $\geq \lambda$. It is of rank $(\kappa-)$ if \mathcal{A} is of rank $\leq \kappa$, is not of rank κ, and is of rank $(\kappa-)$ at some point of X. It is of rank $(\kappa-)$ if \mathcal{A} is of rank $\leq \kappa$, is not of rank κ, nor of rank $(\kappa-)$, and for every $\lambda < \kappa$ there is a point of X at which \mathcal{A} is of rank $\geq \lambda$.

A collection of some finite rank n or of rank (\aleph_0-) or of rank (\aleph_0-) is said to be of sub-infinite rank [6].

Definition 4.3 A collection \mathcal{A} of subsets of a set X is Noetherian, if every ascending sequence $A_1 \subset A_2 \subset \ldots$ of members of \mathcal{A} is finite [6].

In [6], Lindgren and Nyikos prove that each space with a Noetherian base of sub-infinite rank is (hereditarily) metacompact. Here, we also have the next result.

Theorem 4.4 Every space with a Noetherian base of sub-infinite rank is monotonically orthocompact.

Proof Suppose \mathcal{B} is a Noetherian base of sub-infinite rank for the space X, and \mathcal{U} is an open cover of X. For each $x \in X$, let $\mathcal{B}_x(x)$ be the collection of maximal members of \mathcal{B} that contain x and are contained in some member of \mathcal{U}, then $\mathcal{B}_x(x)$ is finite. Set $\mathcal{V} = \cup\{\mathcal{B}_x(x) : x \in X\}$, then \mathcal{V} is a point-finite (certainly an interior-preserving) open refinement of \mathcal{U}. In fact, for each $x \in X$, if $x \in V \in \mathcal{V}$, then $V \in \mathcal{B}_x(x)$. Otherwise, there exists $y \in X$ such that $V \in \mathcal{B}_y(y), x \neq y$. By the definition of $\mathcal{B}_x(x)$, there exists $B \in \mathcal{B}_y(y)$ such that $x \in V \subset B$ with $V \neq B$, this is a contradiction with $V \in \mathcal{B}_x(x)$.

By Corollary 2.10, we conclude that there exists a transitive neighborhood $R_x = \{x \times \cap(\mathcal{V}) : x \in X\}$ of x such that $\{R_x(x) : x \in X\}$ is an open refinement of \mathcal{V}. Clearly $\{R_x(x) : x \in X\}$ is also an open refinement of \mathcal{U}.

Define an operator $\mathcal{T} : \Xi \to \varphi$ from the set Ξ of all open covers of X to the set φ of all transitive neighborhoods of X such that, for each $\mathcal{U} \in \Xi$, we assign the transitive neighborhood t_x defined as the above. Then \mathcal{T} is a monotonically orthocompact operator. In fact, let $U_1, U_2 \in \Xi$ such that U_1 refines U_2. Then $\mathcal{B}(\Xi) = \mathcal{B}(\Xi)\mathcal{B}(\Xi)$ is a partial refinement of $\mathcal{B}(\Xi)\mathcal{B}(\Xi)$, and thus $\mathcal{V}(\Xi) \mathcal{V}(\Xi)$ refines $\mathcal{V}(\Xi)$. It follows that $R_{\mathcal{T}(\Xi)} \subset R_{\mathcal{T}(\Xi)}$, and $\mathcal{T}(\Xi) \subset \mathcal{T}(\Xi)$. On the other hand, for each $\mathcal{U} \in \Xi$ we have that $\{\mathcal{T}(\mathcal{U})\{x\} : x \in X\} = \{\mathcal{R}_x\{x\} : x \in X\}$ refines \mathcal{U}. Therefore, the space X is monotonically orthocompact.
Theorem 4.5 The finite product of spaces, each of which has a Noetherian base of sub-infinite rank, has a Noetherian base of sub-infinite rank [6].

Definition 4.6 Let (X, \mathcal{T}) be a topological space and let M be a subset of X. Set $\mathcal{T}' = \{ \mathcal{U} \cup \mathcal{B} : \mathcal{U} \in \mathcal{T}, \mathcal{B} \subseteq M \}$, then (X, \mathcal{T}) is called the discretization of X by M [1].

In [6], Lindgren and Nyikos give an example of hereditarily metacompact space which has no base of finite rank. Now, we also indicate that it is a monotonically orthocompact space having no ortho-base. Therefore the question asked by Junnila and Kunzi in [5] is solved.

Example. Let D^* be the discretization of the ordinal space $\omega_1 + 1$ by ω_1, then D^* has a Noetherian rank 1 base $\{ \{ x \} : x < \omega_1 \} \cup \{ \{ x : x > \alpha \} : \alpha < \omega_1 \}$. Its product with $\omega_0 + 1$ denoted by $D = D^* \times (\omega_0 + 1)$ is known as Dieudonné plank. Since $\omega_0 + 1$ has a Noetherian rank 1 base $\{ \{ x \} : x < \omega_0 \} \cup \{ \{ x : x > n \} : n \in \omega_0 \}$, by Theorem 4.5 we know that D has a Noetherian base of sub-infinite rank. Thus, in light of Theorem 4.4, D is a monotonically orthocompact space. On the other hand, the point $(\omega_1 + 1, \omega_0 + 1)$ obviously has no local base which is linearly ordered by inverse inclusion. From the Theorem 3.2 we know that D has no ortho-base.

REFERENCES

