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Abstract: In this paper we study some properties of transitive neighbornets, and make use
of them to discuss the properties of ortho-refinable spaces. We prove that ortho-refinable
spaces are irreducible and iso-compact, that every closed subspace of an ortho-refinable
space is ortho-refinable, and other related results.
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1.4INTRODUCTION

A base B for a space X is an ortho-base if for each subcollection A of B , either (i) NA is open,
or (74) N A is a nonisolated singleton {z} and A is a base for the neighborhoods of z [6]. A proto-
metrizable space is a paracompact space with an ortho-base. In [2], Gartside and Moody show that
the spaces which admit a monotonic uniformity can be characterized as proto-metrizable spaces,
i,e., as the monotonically normal spaces having an ortho-base. Furthermore, in [3] they show that
proto-metrizable spaces can also be characterized by a certain monotonic covering property which
they call monotonic paracompactness: To each open cover C of a proto-metrizable space X there
is an open star-refinement m(C) of C so that m(C) refines m(Cc) whenever Co, and Cc are open
covers of X and C refines Cc. In [5], Junnila and Kunzi introduce another monotonic covering
property which they call monotonic orthocompactness. They show that each space with an ortho-
base is a monotonically orthocompact space, and that each monotonically normal monotonically
orthocompact space is proto-metrizable. An obvious problem has arisen, whether this result is
more general than the following characterization of proto-metrizability given by Nyikos in [8]: A
space is proto-metrizable iff it is a monotonically normal space having an ortho-base.

Obviously, if X is monotonically normal, the following are equivalent: (7) X is monotonically
orthocompact, (i7) X has an ortho-base. In [6] Lindgren and Nyikos prove that, if X is developable,
the following are equivalent: (i) X is orthocompact, (i7) X has an ortho-base. Since monotonically
orthocompact spaces are orthocompact, when X is developable, the following are also equivalent:
(¢) X is monotonically orthocompact, (i) X has an ortho-base. So, in [5] Junnila and Kunzi ask
the question whether each monotonically orthocompact space has an ortho-base. In this paper,
we study some properties of neighbornets and discuss the monotonically orthocompact spaces.
Furthermore, we prove that each space with a Noetherian base of sub-infinite rank is monotonically
orthocompact, and we give an example of a monotonically orthocompact space without an ortho-
base, so the above question is solved.

In this paper, all the spaces are Tj-spaces, the ordinal numbers are denoted by «, 8 etc., and
the cardinal numbers are denoted by «, A etc..
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2. SOME PROPERTIES OF NEIGHBORNETS

Let X be a set, a subset R of X x X is called a relation on X. We usually denote the set
{y : (z,y) € R} by R{z}. It follows that R = U{{z} x R{z} : z € X}, and thus R is determined
by {R{z} : = € X}. It is obvious that if R; and Ry are two relations on X, then R; C Ry
iff for each z € X we have Ri{z} C Ro{z}. For each A C X, we denote U{R{z} : z € X}
by R(A). The inverse of a relation R, denoted by R~ !, is defined by that for all z,y € X,
(z,y) € R iff (y,z) € R™!. Suppose R and S are two relations on X, we define the relation
RoS = {(z,z) : Jy € X such that (z,y) € Rand (y,z) € S}. In particular, for each natural number
n,let R' = R, R"*' = RoR™. It is easy to see that, for each z € X, we have (RoS){z} = R(S{z}),
(RN S){z} = R{z} n S{z}, (RUS){z} = R{z} U S{z}. About the inverse relation, we have
(RoS)'=8"1oR Y (RNS)™' = R'NnS™!, and S~! € R™! whenever S C R. A relation
R on X is transitive if R? C R, i.e., (z,2) € R whenever (z,y) € R and (y,2) € R, or z € R{x}
whenever y € R{z} and z € R{y}.

In [4], Junnila has studied the properties on neighbornets in detail. Here, we also give some
other properties of neighbornets. For convenience, if C is a family of open subsets of a space X, we
denote {C' € C : x € C'} by (C)s.

Definition 2.1 A relation R on a space X is called a neighbornet of X if R{z} is a neighborhood
of z for each z € X [8]. R is called a partial neighbornet if for each z € X, R{z} UR™ {2z} =0 or
R{z} is a neighborhood of z in X [2].

Proposition 2.2 Let T be a transitive partial neighbornet of a space X, Y a subspace of X. Then
R=Tn (Y xY) is also a transitive partial neighbornet of Y.

Proof For each y € Y, we have that R{y} = (TN (Y x Y)){y} = T{y} n (Y x Y){y} =
T{y}nY, Ryl =T 'n(¥V xY) Yy} =T Yy} n(¥Y xY) {y} =T {y} nY, and thus
R{y} UR Hy} = (T{y}nY)U(T~H{y} NY) = (T{y} T~ {y}) NY. If R{y} UR™"{y} # 0, then
we have T{y} UT 'y} # 0. It follows that T{y} is a neighborhood of y in X, and thus R{y} is a
neighborhood of y in Y. Therefore R is a partial neighbornet of Y.

Let (z,y), (y,2) € R=TnN (Y xY), then we have (z,y), (y,2) € T and (z,y),(y,2) €Y x Y.
Since T is a transitive partial neighbornet, we have (z,z) € T. Note that (z,2) € Y x Y, then
(z,2z) €e TN (Y xY). Therefore, R is a transitive partial neighbornet of Y.

Corollary 2.3 Let T be a transitive neighbornet of a space X, Y a subspace of X. Then R =
TN(Y xY) is also a transitive neighbornet of Y.

Definition 2.4 A neighbornet R of a space X is said to be open if for each z € X, the set R{x}
is an open subset of X[4].

Proposition 2.5 A transitive neighbornet is open [4].

Definition 2.6 A collection U of open subsets of a space X is said to be interior-preserving if for
each U' C U, the intersection NU’ is open in X [1].

Proposition 2.7 Let T be a transitive partial neighbornet of a space X, then {T{z}:z € X} is
an interior-preserving open family of X.

Proof Since T is a transitive partial neighbornet of X, for each z € X, we have that T{x} is an
open subset of X.

Suppose B C X, and N{T{z}:x € B} # 0. Let y € Nn{T{z} : x € B}. Then, for each z € B,
we have y € T{x}, and thus T{y} C T(T{z}) = T?*{z} C T{z}. It follows that T{y} C N{T{z} :
x € B}. Clearly B # (). Choose = € B, then y € T{z}, we have (z,y) € T, and thus (y,z) € T !,
z € T~ Yy}. It is to say that T~ '{y} # (. By Definition 2.1, we know that T{y} is an open
neighborhood of y. Hence, the intersection N{T{x} : € B} is open in X.

We prove that {T'{z} : x € X} is an interior-preserving open family of X.

Corollary 2.8 Let T be a transitive neighbornet of a space X, then {T'{z} : € X} is an interior-
preserving open cover of X.
Proposition 2.9 Let C be an interior-preserving open family of a space X, R{z} = N(C) for each



xz € X. Then R is a transitive partial neighbornet of X, and { R{z} : z € UC} is an open refinement
of C.

Proof Since C is an interior-preserving open family of X, then for each z € X, R{z} = N(C)s is
an open subset of X. If 2z € UC, we have x € R{x}, and thus R{z} # (). It follows that R{z} is an
open neighborhood of z. If x ¢ UC, then R{z} = (. Suppose R~'{z} # (), then there exists some
y € X such that y € R~!{z}, and thus y € R{z}, a contradiction. So, we have that R~ '{z} = 0,
and thus R{z} U R~'{x} = 0. In light of Definition 2.1, R is a partial neighbornet of X.

Let (z,y),(y,2) € R, then y € R{z}, z € R{y}. Since y € R{z} = N(C)g, for each C € (C)5 we
have y € C. It follows that N(C); C N(C)s, and thus R{y} C R{z}. So, we have z € R{y} C R{z},
and thus (z,z) € R. Therefore, R is a transitive partial neighbornet of X.

By the definition of R{x}, it is easy to see that {R{z} : z € X} is an open refinement of C.
Corollary 2.10 Let C be an interior-preserving open cover of a space X, R{z} = N(C)g for each
z € X. Then R is a transitive neighbornet of X, and {R{z} : z € UC} is an open refinement of C.

3. 4 ON MONOTONICALLY ORTHOCOMPACT SPACES

In [6], Lindgren and Nyikos firstly introduce the concept of ortho-base, study the spaces which
have an ortho-base, and give some basic results for them. In [5], Junnila and Kunzi make use
of neighbornets to give another new characterization of the spaces having an ortho-base, as a
generalization they also introduce the concept of monotonically orthocompact spaces.

Definition 3.1 A base B for a space X is called an ortho-base if whenever B’ is a subset of B ,
z € NB', and x ¢ int(NB'), then B’ is a local base at z [6, 5].

Theorem 3.2 Let B be an ortho-base of a space X, then every point z in X has a local base which
is linearly ordered by reverse inclusion [6].

Theorem 3.3 Let B be an ortho-base for a space X, then

(1) {nB': B' C B,NB' is open } is an ortho-base of the space X, i.e., the collection of all open
intersections of subsets of B is an ortho-base.

(2) Let Y be a subspace of X, then the collection {Y N B : B C B} is an ortho-base of Y[6].
Theorem 3.4 Let X be a topological space with an ortho-base B, assume that B is closed under
open intersections. Then there is an operator T : I' — £ from the set I' of all collections of open
subsets of X to the set & of all transitive partial neighbornets of X, such that

(1) T(Coo) C T(Ce) whenever Coo,Cec € — and Co is a partial refinement of Cc.

(2) For each C € —, the collection {T'(C){§} : § € T(C){§}} is a subcollection of B and a
refinement of C[v/].

Definition 3.5 A topological space X is called monotonically orthocompact provided that there
is an operator T' : = — ¢ from the set = of all open covers of X to the set ¢ of all transitive
neighbornets of X, such that

(1) T(Coo) C T(Ce) whenever Coo,Ce € + and Co is a refinement of Cc.

(2) {T'(C){8} : § € X} refines C whenever C € +.

Here T is called a monotonically orthocompact operator on X|[5].
Definition 3.6 A space X is said to be orthocompact if for each open cover C of X, there is an
interior-preserving open refinement R of C.

By Theorem 3.4 and Definition 3.5, we know that the spaces having an ortho-base are mono-
tonically orthocompact. From Proposition 2.5 and Definition 3.5, it is also easy to see that the
monotonically orthocompact spaces are orthocompact. Next, we shall discuss some properties of
monotonically orthocompact spaces.

Theorem 3.7 A closed subspace Y of a monotonically orthocompact space X is also a monotoni-
cally orthocompact space.



Proof Suppose T : = — ¢ is a monotonically orthocompact operator on X. Let U/ be an open
cover of Y, then each element U of U has the form U = V NY, where V is an open subset of X.
For each U C U, let Viy = V U (X \Y), then Vi is an open subset of X and U = ViyNY. Set
Vi ={Vu : U € U}, then V), is an open cover of X.

Since T'(Vy) is a transitive neighbornet of X, by Corollary 2.3 we conclude that (Vi) N (Y x V)
is a transitive neighbornet of Y. Set P(U) = T (Vy) N (Y x V), it suffices to prove that P is a
monotonically orthocompact operator on Y.

Let Uso,Uc be two open covers of Y, such that Uy refines Uc. As in the above assignment, we
have Vi, = (V. : Uso = Vu, NV, Uso € Uso}, and Vi = (Ve : Ue = V. N Y, Ue € Uc}. For
each Vi, € V., there is Uy € Uc such that Uy C Us, so we have Vi, NY C Vy, NY. It follows
that Vi, = (Vy, NnY)U(X\Y) C Vi, NY)U (X \Y) = Vi, € V.. Consequently Vy refines
Ve, so we have T(Vy,.) C T (Vi ), and thus P(Ux) C P(Ue).

Let U be an arbitrary open cover of Y, then V; is an open cover of X. By Definition 3.5,
we have that {T(Vy){8} : § € X'} refines V. For each y € Y, by the fact that T is a transitive
neighbornet of X, we know 7'(Vy/){t} is an open neighborhood of y in X. Hence T'(Vy){1} ¢ X'\ ),
and it follows that there is Viy € Vi such that T(Vy){1} C Vi, where U = Vy NY € U. Since
PU)=TWVyu)N (Y x V) is a transitive neighbornet of Y and P(U){t} = (T Vu) N (Y x Y)){i} =
TVuw){t}NY C VunY, we have that P(U){T} is an open subset of Y and P(U){f} € U, so
{P(U){T} : 1 € YV} is a refinement of U.

Theorem 3.8 Let X be a monotonically orthocompact space, and f : X — Y be a finite to one
open mapping. Then f(X) is a monotonically orthocompact space.

Proof Let T be a monotonically orthocompact operator on X, C an arbitrary open cover of
f(X), then f1(C) = {{>°(C) : C € C} is an open cover of X. Thus, T(f '(C)) is a transitive
neighbornet of X. By Corollary 2.8, we know that {T'(f~1(C)){§} : § € X'} is an interior-preserving
open refinement of f~1(C).

Let D = {(T({ *(C)){8}) : § € &, then D is a family of open subsets of f(X). For each z € X,
there exists C' € C such that T(f~1(C )){§} C {7*°(C), and thus f(T ( Len{sh c {({=>=(«)) =c.
So, D is an open refinement of C. Let A C X, and y € N{f(T(f 1(C)){§}) : § € A}. By the fact
that f is a finite to one mapping , we can assume f~'(y) = {z1,22,...,7,}. Let A, = {z € A:
z; € T(fHC){8}} (oo <) < \), then A = U{4; : 1 < i < n}. Without loss of generality, for
1 < i < m, we can assume that A; is not empty. Since {T(f~(C)){§} : § € X} is an interior-
preserving family of open subsets of X, we know that N{T(f (C)){§} : § € Ay} is an open subset
of X, and thus f(N{T(f~*(C)){§} : § € A)}) is an open subset of f(X). Clearly, for 1 <i <n
we have y = £(5;) € FO{T(fHC)(E} : § € A}) © NHLTE=ONED < § € A} Tt follows
that y € VLT C) {8 < § € A} 00 <) < \} € AT C){E))  § € A} 00 <
) <\ = NLTE®E@)ED < § € AL But ({7 (T )5} : § € A}) 00 < ) < \} is the
intersection of finitely many open subsets of X, so is open. Hence we have that y is an interior
point of the set N{f(T(f~(C))(§)) : § € A}. Therefore, the set N{f(T(f~1(C)){§}) : § € A} is an
open subset of f(X). This indicates that D is an interior-preserving open refinement of C.

For each y € f(X), let R{y} = N(D);. By Corollary 2.10 we know that R is a transitive
neighbornet of f(X), and {R{y} : y € f(X)} is an open refinement of D.

Define an operator P : & — ¢ from the set of all open covers of f(X) to the set of all
transitive neighbornets of f(X) such that, for each open cover C of f(X), set P(C) = R, which
is the transitive neighbornet defined in the above. It remains to prove that P is a monotonically
orthocompact operator on f(X).

In fact, let Coo, Ce be two open covers of f(X) such that Cy refines Cc. Then f~1(Cs), f~1(Ce)
are open covers of X, and f !(C) refines f 1(Cc). So, we have T(f 1(Cx)) C T({ *°(Ce)),
and thus {T(f 1(Cx)){§} : § € X} is an open refinement of T(f *(Cc)){§} : § € X). Hence,
Do = L{(T(=®(Cao)){8}) : § € X} is an open refinement of De = {{(T({~*(Co){5}) : § € }
in f(X). It follows that we have R;{y} C Ro{y} for each y € f(X), and thus R; C Ry. Therefore,



P(Cs) C P(Ce). Let C be an open cover of f(X), then D = {{(T({ *°(C)){§}) : § € A} is an
interior-preserving open refinement of C . Since {R{y} : y € f(X)} is an open refinement of D ,
and P(C) = R, we have that {P(C){f} : T € {(X)} is an open refinement of C. By Definition 3.5,
we know that P is a monotonically orthocompact operator on f(X).

4. 4 AN EXAMPLE OF MONOTONICALLY ORTHOCOMPACT SPACE
WITHOUT ORTHO-BASE

For the concept of rank of a collection of sets defined by Nagata [7], Lindgren and Nyikos give
further general studies in [6]. They introduce the concept of Noetherian collection of subsets of a
set X, and discuss the properties of Noetherian bases.

Definition 4.1 A collection A of subsets of a set X is incomparable if, given any two members A;
and As of A neither Ay C Ay nor A, C A; obtains [6].

Definition 4.2 Let x be a cardinal number, X be a set, A be a collection of subsets of X,
and £ € X. The collection A is of rank < k at z in X if for every incomparable subcollection
A'={A € A:§ e A}, its cardinality is < k. It is of rank k at z if it is of rank < k at z and if
there exists an incomparable subcollection A, = {4 € A: § € A} of A, and the cardinality of Ay
is k. The collection A is of rank < k if A is of rank < k at every point of X. It is of rank « if A
is of rank < k and A is of rank k at some point of X.

If £ is a limit cardinal, the collection A is of rank (k—) at z if it is of rank < x at x, is not of
rank X at x for each A < k, and there exists an incomparable subcollection A’ ={A € A:§ € A},
with cardinality > A. It is of rank (k—) if A is of rank < k, is not of rank x, and is of rank (k—)

at some point of X. It is of rank (k — —) if A is of rank < k, is not of rank s, nor of rank (k—),
and for every A < k there is a point of X at which A is of rank > A.
A collection of some finite rank n or of rank (Xg—) or of rank (Rg — —) is said to be of sub-

infinite rank [6].
Definition 4.3 A collection A of subsets of a set X is Notherian, if every ascending sequence
Ay C Ay C ... of members of A is finite [6].

In [6], Lindgren and Nyikos prove that each space with a Notherian base of sub-infinite rank is
(hereditarily) metacompact. Here, we also have the next result.

Theorem 4.4 Every space with a Notherian base of sub-infinite rank is monotonically orthocom-
pact.

Proof Suppose B is a Notherian base of sub-infinite rank for the space X, and U/ is an open cover
of X. For each z € X, let By(§) be the collection of maximal members of B that contain z and
are contained in some member of U, then By (§) is finite. Set V = U{By(§) : § € X'}, then V is
a point-finite (certainly an interior-preserving) open refinement of . In fact, for each z € X, if
x €V €V, then V € By(§). Otherwise, there exists y € X such that V' € By(1), ¢ # y. By the
definition of By(§), there exists B € By(§) such that 2z € V' C B with V' # B, this is a contradiction
with V' € By(t).

By Corollary 2.10, we conclude that there exists a transitive neighbornet Ry, = {{z} x N(V)5 :
§ € X} of X such that {Ry{z} : z € X} is an open refinement of V . Clearly {Ry{z}:z € X} is
also an open refinement of I.

Define an operator T' : = — ¢ from the set = of all open covers of X to the set ¢ of all
transitive neighbornets of X such that, for each U/ € <+ we assign the transitive neighbornet Ry
defined as the above. Then T is a monotonically orthocompact operator. In fact, let Uy, Us € =
such that Uy refines Up. Then By (§) is a partial refinement of By (§), and thus Vy refines Ve.
It follows that Ry, C Ry, and T(Us) C T (Uc). On the other hand, for each &Y C + we have
that {T(U){§} : § € X} = {Ru{8} : § € X'} refines Y. Therefore, the space X is monotonically
orthocompact.



Theorem 4.5 The finite product of spaces, each of which has a Noetherian base of sub-infinite
rank, has a Noetherian base of sub-infinite rank [6].

Definition 4.6 Let (X,7) be a topological space and let M be a subset of X. Set 7' = {U/ U B :
UeT,BcC M}, then (X,T) is called the discretization of X by M [1].

In [6], Lindgren and Nyikos give an example of hereditarily metacompact space which has no

base of finite rank. Now, we also indicate that it is a monotonically orthocompact space having no
ortho-base. Therefore the question asked by Junnila and Kunzi in [5] is solved.
Example. Let D* be the discretization of the ordinal space wi + 1 by wi, then D* has a Noethe-
rian rank 1 base {{z} 1z < wi}U{{z : 2 > a} : @ < w}. Its product with wy + 1 denoted by
D = D* x (wp + 1) is known as Dieudonné plank. Since wy + 1 has a Noetherian rank 1 base
{{z} 'z <wotU{{zx : 2 > n} :n € wy}, by Theorem 4.5 we know that D has a Noetherian base
of sub-infinite rank. Thus, in light of Theorem 4.4, D is a monotonically orthocompact space. On
the other hand, the point (w; + 1,wp + 1) obviously has no local base which is linearly ordered by
inverse inclusion. From the Theorem 3.2 we know that D has no ortho-base.
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