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Abstract: Gene therapy techniques and genetic knowledge may sufficiently advance, within the
next few decades, to support prophylactic gene therapy for the prevention of polygenic late-onset
diseases. The risk of these diseases may, hypothetically, be lowered by correcting the effects of
a subset of common low effect gene variants. In this paper, simulations show that if such gene
therapy were to become technically possible; and if the incidences of the treated diseases follow
the proportional hazards model with a multiplicative genetic architecture composed of a sufficient
number of common small effect gene variants, then: (a) late-onset diseases with the highest familial
heritability will have the largest number of variants available for editing; (b) diseases that currently
have the highest lifetime risk, particularly those with the highest incidence rate continuing into
older ages, will prove the most challenging cases in lowering lifetime risk and delaying the age of
onset at a population-wide level; (c) diseases that are characterized by the lowest lifetime risk will
show the strongest and longest-lasting response to such therapies; and (d) longer life expectancy
is associated with a higher lifetime risk of these diseases, and this tendency, while delayed, will
continue after therapy.

Keywords: polygenic risk; heritability; late-onset disease; simulation; gene therapy; gene editing;
lifetime risk; life expectancy

1. Introduction

In the past two decades, the human genome has been successfully sequenced. Whole genome
sequencing (WGS) and genome-wide association studies (GWASs) of human genomes (as well as those
of other organisms) have become an everyday occurrence [1]. Our knowledge of genetic variants,
particularly the single nucleotide polymorphisms (SNPs) associated with susceptibility to diseases,
has become deeper and more extensive.

Experimental gene therapy techniques, aimed at diseases caused by a single defective gene or
a single SNP—the so-called Mendelian conditions—are being refined. Mendelian conditions cause high
mortality and morbidity, but each of these conditions affects only a minute fraction of the population.
As of June 2019, the OMIM Gene Map Statistics [2] compendium has listed 6436 phenotypic genetic
conditions caused by 4102 gene mutations. This list includes a variety of conditions, with onsets
ranging from very early to late. For example, type 1 diabetes mellitus is caused by single defects in
the HLA-DQA1, HLA-DQB1, or HLA-DRB1 genes [3]. Early-onset Alzheimer’s disease is caused
primarily by APP, PSEN1, or PSEN2 gene mutations and affects a relatively small proportion of
the population, starting in their thirties, with the majority of mutation carriers being affected by
the age of 65 [4]. In contrast, macular degeneration [5–7] is primarily caused by a small number
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of high-effect variants and manifests at a relatively old age. In some cases, individualized genetic
diagnoses, where an SNP that needs to be edited can be specified precisely, are possible. Over the
last two decades, 287 monogenic disease clinical trials have been conducted worldwide [8]. When the
medical technology becomes available, individuals who receive treatment will be effectively cured and
will have no need for concern about the single specific cause of their disease.

Polygenic or complex late-onset diseases (LODs) pose a more nuanced problem, and this study
will focus on them. There are thousands of estimated gene variants or SNPs of typically small effect
that, in combination, constitute the polygenic LOD risk of each individual [9,10]. These diseases include
the old-age diseases that eventually affect most individuals and are exemplified by cardiovascular
disease (particularly coronary artery disease (CAD)), cerebral stroke, type 2 diabetes (T2D), senile
dementia, Alzheimer’s disease (AD), cancer, and osteoarthritis.

What distinguishes polygenic LODs from infectious diseases or from Mendelian genetic conditions
is difficulty in terms of the concept of cure. The diseases of aging are primarily a consequence
of an organism’s decline over time, leading to increased susceptibility to many LODs [11–13].
The combination of genetic liability, environmental factors, and the physiological decline of multiple
organ systems leads to individual disease presentations [14]. Detrimental gene variants are
exacerbating factors [15], compared to the average distribution of common gene variants that define
human conditions, as they apply to polygenic LODs. The time of onset for each individual is modulated
by genotype and environment [16]. While some individuals will be diagnosed at a relatively young
age, others will not be diagnosed with a particular LOD during their lifetime [17]. According to
the current consensus, a large number of common low-effect variants offer the likeliest explanation
for the heritability of the majority of complex traits [18,19]. For example, in the cancers analyzed
in this study, the fraction of all diagnoses that were attributed to highly detrimental inherited
mutations was relatively low—it was estimated to explain heritability connected with 10%–14%
of breast cancers [20,21], 10%–12% of prostate cancers [22–25], 5%–10% of colorectal cancers [26,27],
and was assumed to be a relatively minor fraction for lung cancers [28–30]. For the majority of these
cancers, liability is attributed to the common low-effect gene variants and environmental factors. The
development of cancer is a multistage process, wherein individual variability in any tumorigenesis
stage duration or liability may be influenced by hereditary predisposition, as well as environmental
factors [31]. The level of susceptibility to the major polygenic LODs, and the difference between
high-risk and low-risk individuals, may lie in a slightly higher- or lower-than-average fraction of
detrimental gene variants. Certainly, the failure does not begin immediately prior to the age of
diagnosis. For example, AD deterioration begins decades before symptoms first become noticeable [32].
A similar situation holds for cardiovascular disease [33,34] and cancer [35].

The best cure is prevention, and the time may be nearing when prophylactic gene therapy will be
attempted for the prevention of complex polygenic diseases. Much scientific knowledge and technical
expertise is required and many ethics questions will need to be settled before this level of prophylactic
gene therapy can become possible. From an ethical perspective, as techniques have developed and
the medical possibilities offered by gene therapy for improving health and preventing diseases have
gradually materialized, its acceptance is becoming more widespread. This is exemplified by the
findings of the U.S. Committee of the National Academies of Sciences, Engineering, and Medicine [36]
in Human genome editing—Science, ethics, and governance, and the recommendations of the U.K. Nuffield
Council on Bioethics [37] in Genome editing and human reproduction: Social and ethical issues, which
considered germline editing as one possible application.

Computational techniques attempting to evaluate the effects of mutations or gene variants have
been developed, although their accuracy needs to improve dramatically before they can become
applicable to personalized human genetic evaluation or treatment [38]. Similarly, while extensive
libraries of human SNPs have been compiled, including dbSNP, HapMap, SNPedia, and aggregating
sites [39], the information is far from actionable as far as modifying multiple personalized SNPs is



Int. J. Mol. Sci. 2019, 20, 3352 3 of 16

concerned. The ability to locate or be able to computationally estimate a complete set of the low-effect
causal SNPs requires knowledge that may take decades to gain.

Gene editing technologies may also be a few decades away from the time when they can be used
routinely, with the same low risk as applying an influenza vaccination, to modify a large number of gene
variants distributed across the human genome. The latest gene editing technique, CRISPR-Cas9 [40],
has supplemented and mostly replaced older technologies, such as zinc-finger nuclease (ZFN) [41]
and transcription activator-like effector nuclease (TALEN) [42], although, for some applications, these
older techniques continue to be more appropriate. While its selectivity and on-target precision have
improved, CRISPR is still the most effective in gene knockdown operations. For modification and
repair, only a small fraction of CRISPR operations—using homologous repair with a template or
a sister chromatid sequence—succeed. A recent advance, reported by Smith et al. [43], proposed base
editing with reduced DNA nicking, allowing for the simultaneous editing of >10,000 loci in human
cells. CRISPR, which is only six years old, remains to be a rapidly developing technology that holds
great promise. Synthetic genomics [44,45] could be another promising future technology. Synthetic
genomics techniques could also help in developing the precise mapping of the effects of gene variants
on disease phenotypes. If none of these approaches ultimately succeed in becoming reliable enough for
the purposes of gene therapy, it is almost certain that a new, more suitable technique will be invented.

Changes in lifestyle and medical care, including the prevention and treatment of infectious
diseases, have extended longevity over the last century, and this trend is projected to continue.
This increased longevity is partly due to medical advances, helping people to live and function decades
after first being diagnosed with historically deadly or debilitating illnesses. Preventive gene therapies
may also become a future factor in prolonging health span. Actuarial science has tracked human
mortality trends for centuries. The Gompertz–Makeham law of mortality, which was established more
than 150 years ago, depicts an exponential increase in the rate of human mortality after the age of
30 [46,47]. While the parameters of the Gompertz–Makeham law continue to be adjusted, the principle
remains valid. The apparent squaring of the mortality curve—the so-called compression of morbidity
and mortality into older ages—implies that the maximum human lifespan is likely limited to about
120 years of age [48–50].

Within the next few decades, gene therapy techniques and genetic knowledge may sufficiently
advance to support prophylactic gene therapy to prevent late-onset diseases. It may be timely to
evaluate the extent of the effects that future gene therapies may have on delaying the onset of LODs or
preventing them entirely.

The goal of this study is to establish how the proportional hazards model and multiplicative
genetic architecture can be used to map the polygenic risk to hazard ratio of succumbing to common
late-onset diseases with advancing age and apply this mapping to quantify the effects of hypothetical
future prophylactic gene therapies. As its foundation, this study used earlier research [51], which
reviewed epidemiology, heritability, and polygenic risk models, and developed a simulational basis for
the analysis of eight of the most common diseases: AD; T2D; cerebral stroke; CA; and breast, prostate,
colorectal, and lung cancers. Computer simulations in this study quantified the correlation between
the aging process, the polygenic risk score (PRS), and the change in the hazard ratio with age—using as
inputs the clinical incidence rate and familial heritability—and estimated the outcomes of hypothetical
future prophylactic gene therapy on the lifetime risk and age of onset for these eight LODs, they also
estimated the lifetime risk increase associated with longevity gains.
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2. Results

2.1. Characteristics of the Aging Coefficient

The clinical incidence rate pattern was used to map the hazard ratio from the PRS of individuals
diagnosed with an LOD at each year of age for eight LODs: AD; T2D; cerebral stroke; CAD; and
breast, prostate, colorectal, and lung late-onset cancers. Knowledge of the hazard ratio for any given
PRS value at any given age (the aging coefficient) is what is needed for further calculations and
simulations modeling gene therapy and the effects of life expectancy increases. The aging coefficients
were discovered for these LODs, as described in the Methods section “Aging coefficient discovery
simulation steps”, and can be seen in Figure 1.

It is interesting to note how the magnitude of the aging coefficient changes with age for the
analyzed diseases. The range of values spanned by the aging coefficient and its maximum value, seen
in Figure 1A, is larger for AD than for all other analyzed LODs. This can be ascribed to two factors
that distinguish AD: (1) The steepest rise of incidence rate and cumulative incidence; and (2) the
highest heritability of the reviewed LODs, resulting in the highest variance according to our genetic
architecture model. This larger variance results in more extreme values of high and low PRSs in the
population and, therefore, the age coefficient multiplier is necessarily the smallest at young onset ages;
with the opposite being true at older ages. T2D, CAD, and stroke show a comparatively moderate
progression and maximum projected aging coefficient values, while cancers still show a smaller
maximum magnitude. Lung cancer possesses both the lowest heritability and the lowest cumulative
incidence and, consequently, the values discovered by simulation for the lung cancer aging coefficient
(seen in Figure 1H) almost precisely match its incidence rate. In a limit case of an LOD characterized
by a PRS that remains constant with age and a very low incidence rate, the aging coefficient should be
identical to the incidence rate.
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Figure 1. Aging coefficients reflect increases in late-onset disease (LOD) liability with age, based on
the clinical incidence rate and model genetic architecture polygenic risk score (PRS). (A) Alzheimer’s
disease (AD), (B) type 2 diabetes (T2D), (C) cerebral stroke, (D) coronary artery disease (CAD), (E) breast
cancer, (F) prostate cancer, (G) colorectal cancer, and (H) lung cancer.

2.2. Longer Life Expectancy Corresponds to Increasing Lifetime Risk

The modeled increased life expectancy in the baseline scenario, without prophylactic gene therapy,
is displayed in Figure 2. This analysis corresponds to the baseline incidence rate, represented by the
blue line in Figure 3. All analyzed LODs show a significant lifetime risk increase with every five years
of life expectancy extension. This is most prominent with AD, the incidence of which nearly triples
with an extension of life expectancy of 15 years, while the incidence rate less than doubles for the rest
of the LODs. The incidence rate density (as seen in Figure S1) shows the relative incidence increasing
while the peak of incidence shifts toward older ages.
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Figure 2. Projected LOD cumulative incidence and lifetime risk increase for life expectancy increases
of 5, 10, and 15 years (baseline without gene therapy). (A) Alzheimer’s disease, (B) type 2 diabetes,
(C) cerebral stroke, (D) coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) colorectal
cancer, and (H) lung cancer. This is the baseline scenario, without gene therapy or other health
improvements for the plotted LOD. It represents the case where life expectancy increases due to causes
other than the plotted LOD. Lifetime risk (lifetime cumulative incidence) corresponds to the lifetime
(rightmost) values of the plots.
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Figure 3. LOD incidence rate patterns, baseline and after emulated gene therapy. (A) Alzheimer’s
disease, (B) type 2 diabetes, (C) cerebral stroke, (D) coronary artery disease, (E) breast cancer,
(F) prostate cancer, (G) colorectal cancer, and (H) lung cancer. All individuals in the population
had emulated corrective gene therapy editing of, on average, 15 single nucleotide polymorphisms
(SNPs) (corresponding to an odds ratio (OR) multiplier of 0.25).

2.3. Lifetime Risk Estimates for Discrete Hazard Ratio Multiples

Having the aging coefficient, it is easy to recalculate lifetime incidence risk for a range of hazard
ratios (HRs). Population mortality is one of the principal limiting factors on the lifetime risk of an LOD,
and shifting the mortality curve (and, thus, emulating longer life expectancy) reveals how incidence
rate and lifetime risk would change if life expectancy were to increase.

Figure S2 shows a grid display with HR ranging from 16.0 to 0.0625 and average life expectancy
varying from baseline to extended up to 15 years. The results of these calculations show that the lifetime
risk is proportionate to the HR, as long as lifetime risk is relatively low (below 50%) for all reviewed
LODs, even though they display quite varied incidence patterns. Lowering the HR, through gene
therapy or other means, implies proportionately lowering the lifetime risk, assuming life expectancy
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remains constant, as summarized in Table 1. For instance, lowering the HR four-fold is accompanied
by a four-fold (or 400%) drop in lifetime risk. The only exception is AD, for which the lifetime risk
decreases at a slower-than-proportionate rate—a possible explanation could be the near-exponential
incidence rate increase to very advanced ages for AD, while all other LODs analyzed here can be
approximated by a flattened or linear progression at a more moderate old age [51]. Figure S2 shows
a dramatic increase in the lifetime risk of LODs with every five extra years of life expectancy. Evidently,
with increased life expectancy, the projection approaches certainty for higher HRs and increasing life
expectancies. This is most prominent for AD and T2D, which can be explained by the high heritability
and high later-age prevalence of these LODs, leading to a significantly higher risk that individuals will
become ill earlier. Furthermore, at an advanced age, the remaining lower-risk individuals are those
who constitute the majority of incidence cases [51]. As a result, the modeled high-PRS individuals
show improvement in delaying the statistical disease onset, while the lifetime risk may remain almost
as high.

The application of the aging coefficient and life expectancy increases makes it simple to estimate
the onset delay if the PRS were changed, as in the case of prophylactic gene therapy. Tables 2 and 3
show the values of shifts in the onset delay on the cumulative incidence slope, at 30% of the lifetime
risk and for the full lifetime risk, respectively. Emulating longer life expectancy raises lifetime risk,
and we see a more complex picture than a mere proportionate decline in risk, depending on the
incidence and heritability patterns for each LOD. The AD lifetime risk exceeded the baseline within
approximately 1–4 years of longer life expectancy. It would take approximately 10–15 years of longer
life for T2D, stroke, and CAD to approach or slightly exceed their respective baseline lifetime risks.
In nearly all calculated scenarios, it took significantly longer than 15 years for cancers to exceed their
baseline lifetime risks.

Table 1. Lifetime risk corresponding to select discrete LOD PRSs (%).

Highly Prevalent LODs Cancers

AD T2D Stroke CAD Breast Prostate Colorectal Lung

1.0 43.3 78.7 26.8 21.1 8.27 3.94 3.33 7.12
0.5 31.9 39.9 13.5 10.6 4.14 1.97 1.66 3.56
0.25 22.0 20.0 6.75 5.30 2.07 0.984 0.832 1.78

Table 2. Estimate of LOD onset delay of incidence slope at 30% of lifetime risk (values in years).

Highly Prevalent LODs Cancers

AD T2D Stroke CAD Breast Prostate Colorectal Lung

16.0→ 4.0 4 7 10 10 21 17 13 10
4.0→ 1.0 3 12 13 14 31 16 16 20
1.0→ 0.25 4 13 11 16 37 21 19 16

Table 3. Estimate of LOD onset delay for lifetime risk (values in years).

Highly Prevalent LODs Cancers

AD T2D Stroke CAD Breast Prostate Colorectal Lung

16.0→ 4.0 1 0 2 3 >40 19 24 21
4.0→ 1.0 2 9 14 12 >40 28 34 >40
1.0→ 0.25 3 20 17 14 >40 29 35 >40

Reviewing the first four LODs in the first row and, to a lesser extent, AD and T2D in the second
row of Table 3, it is noticeable that for high PRS values (i.e., 16.0 and 4.0) the response was lower than
for the final row and also lower than for the slope onset delay in Table 2. Figure S2 shows that the
likelihood of becoming ill is modeled as a near certainty for these values. The simulation results of
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aggregating outcomes for the population in the following section provide additional generalization
and confirmation of these patterns.

2.4. Results of Simulated Gene Therapy Lowering Population PRS

The results of this simulation show an improved (lower) incidence rate after treatment, as is
shown in Figure 3; and a corresponding decrease in lifetime risk, as presented in Figure 4. Figure 4 also
serves as a good qualitative illustration of the results of the previous section. Comparing the baseline
(blue line) to therapy, with life expectancy (green line) held constant, shows a significant improvement
in both the lifetime risk and age of onset for all LODs. The lifetime risk is lower for all LODs and
shows a delay of approximately a decade in the incidence rate curve for T2D, stroke, and CAD. AD
benefited the least, and cancers showed the most significant improvement. Table 4 illuminates the
results detailed earlier from a slightly different perspective. With life expectancy unchanged, the
lifetime risk decreased by 30% or more for AD and T2D, by more than 66% for colorectal and lung
cancer, and by 50% or more for the remaining four LODs.

Emulating longer life expectancy resulted in increased lifetime risk. The AD lifetime risk exceeded
the baseline within approximately 3 years of longer life expectancy. It took 15 years of longer life
for T2D, stroke, and CAD to approach or slightly exceed their respective baseline lifetime risks.
Nevertheless, even with longer life expectancies, the onset remained delayed, compared to the baseline.
All cancers remained far below their baseline lifetime risks, even with a 15-year longer life expectancy.
The risk remained lower than the baseline for all analyzed cancers after an increase of 15 years in life
expectancy, any LOD with a relatively high heritability and low prevalence should similarly benefit.
The results are summarized in Table 4, along with relevant LOD statistics.

Table 4. LOD characteristics and lifetime risk in a range of life expectancy scenarios and with
prophylactic gene therapy lowering population PRS fourfold.

Highly Prevalent LODs Cancers

AD T2D Stroke CAD Breast Prostate Colorectal Lung

Literature and clinical data:
Heritability 0.795 0.69 0.55 0.41 0.57 0.40 0.31 0.10
Max yearly incidence rate >20% 2.5% 4.4% 3.6% <0.5% <0.8% <0.6% <0.6%
Genetic model SNP count 3575 2125 1175 625 1250 600 400 100

Lifetime risk, baseline + longer life:
+5 years life expectancy 160% 112% 128% 127% 115% 123% 127% 128%
+10 years life expectancy 228% 123% 156% 155% 130% 147% 156% 156%
+15 years life expectancy 293% 134% 184% 184% 146% 172% 187% 186%

Lifetime risk, odds ratio (OR) 0.25
therapy versus baseline:
Therapy, unchanged life expectancy 70% 67% 44% 50% 30% 41% 31% 27%
Therapy, +5 years life expectancy 124% 77% 61% 69% 36% 52% 40% 34%
Therapy, +10 years life expectancy 191% 88% 81% 89% 41% 65% 51% 43%
Therapy, +15 years life expectancy 260% 98% 101% 112% 47% 77% 62% 52%

LODs’ heritability and clinical incidence are discussed in the Methods section. The baseline is considered 100%
for lifetime risk comparisons; 160% after a 5-year life expectancy extension, because AD indicates an increase
in lifetime risk (LR) by 1.6 times; and 50% after gene therapy which means half the LR, compared to the
baseline value. Genetic model single nucleotide polymorphism (SNP) count is the number needed for the
common low-effect genetic architecture to achieve each LOD heritability.
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Figure 4. Cumulative incidence and lifetime risk following therapy reducing the population risk
fourfold. (A) Alzheimer’s disease, (B) type 2 diabetes, (C) cerebral stroke, (D) coronary artery disease,
(E) breast cancer, (F) prostate cancer, (G) colorectal cancer, and (H) lung cancer. All individuals in the
population had emulated corrective gene therapy editing of, on average, 15 SNPs (corresponding to
an OR multiplier of 0.25). Result of gene therapy and results in increases in life expectancy of 5, 10, and
15 years. Lifetime risk (lifetime cumulative incidence) corresponds to the lifetime (rightmost) values of
the plots.

3. Discussion

For the purposes of this hypothetical treatise, it was assumed that it is possible to precisely identify
individual gene variants and their detrimental or beneficial effects, then, use gene therapy to modify
a large number of detrimental variants. Rather than analyzing arbitrary synthetic choices of heritability
and disease incidence progressions, eight LODs were chosen as a case study. Using this approach
allowed us to relate the findings to some of the highly prevalent LODs that cover the broad spectrum
of heritability and disease incidence patterns and—while keeping in mind that the results are a model
view, with each of the reviewed LODs certainly possessing deeper specific causal mechanisms—it
allowed us to make generalizations about lifetime risk changes if the LOD risks were lowered by
some intervention, in this case, by gene therapy. This hypothetical gene therapy model was applied
to estimate what would happen to LOD progression as the population ages. Conceptually, gene
therapy here does not consider additions of artificially designed genomic sequences, but rather, only
corrections made to typically low-effect heterozygous in-population gene variants, that is, a correction
of a detrimental variant to a naturally occurring neutral state. For the sake of simplicity, the model
used SNP distributions, though the same would apply (albeit with a higher degree of complexity) to
gene therapy using other gene variant types.

This study does not evaluate potential obstacles due to pleiotropy, defined for the purposes of
gene therapy as the possible negative effect on other phenotypic features of any attempt to prevent
an LOD by modifying a subset of SNPs [52,53]. The high-risk individual PRS is caused by numerous
variants. In this model, these are normally distributed in the population. There is a relatively small
difference in the absolute number of detrimental alleles between the population average and higher-risk
individuals. Arguably, for the purpose of personalized prophylactic treatment, it will be possible to
select a small fraction of variants from a large set of available choices (as seen in Table 4) that do not
possess antagonistic pleiotropy, or perhaps even select SNPs that are agonistically pleiotropic with
regard to some of the other LODs.

Applying the modeled aging coefficient to evaluate the impact of longer life expectancy on lifetime
risk confirms the long-standing observation that aging itself is the predominant risk factor for many
late-onset diseases and conditions. The calculations applying the discovered aging coefficient to the
discrete hazard ratio values showed a delay in onset incidence for all analyzed LODs. The lifetime
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risk decreased in proportion with a decrease in hazard ratio, as long as the absolute value of lifetime
risk remained low. With the introduction of an emulated life expectancy increase, the lifetime risk
increased. The lifetime risk increase with age was most prominent for AD. In those countries with
longer life expectancy, the lifetime risk of AD is usually higher, as was demonstrated by Wu et al. [54],
using the example of Japan. These results confirm, once more, that if mortality from all causes is
lower (resulting in a longer life expectancy), AD is an LOD that exhibits a rapid rise in advanced-age
prevalence. It would be difficult to limit the prevalence of AD, which is delayed only by approximately
3 years with the modeled level of therapy. AD may require a higher number of gene edits, likely
postponing the possibility of more effective treatment to a point even further in the future; yet, any
improvement would be welcome. It is possible that a pharmaceutical intervention targeting a causal
metabolic pathway or immune or inflammatory response may be more effective for AD, although past
announcements that generated false hope regarding breakthroughs through these kinds of approaches
are too numerous to cite.

The Framingham General Cardiovascular Risk Score included age as one of the major risk factors
for stroke and CAD [55]. Boehme et al. [56] showed a similar pattern for T2D, which the results of the
current study were in agreement with. For T2D, stroke, and CAD, lifetime risk will regain pretreatment
baselines within 10 to 15 years of longer life, which is equivalent to delaying the average onset age of
these LODs by as many years. Based on heritability and incidence rate combinations, prophylactic
gene therapy holds the potential to bring significant and longer-lasting benefits for cancer prevention,
even with a similar or smaller number of edited gene variants than for the more prevalent diseases. The
potential limitation of this study is the possibility that GWAS (and other future techniques) will have
difficulties in finding a sufficient number of common low-effect SNPs to decrease the disease liability to
the level simulated in this research, or that gene-environment effects will not follow Cox’s proportional
hazards model [57,58] for some of the late-onset polygenic diseases. The likeliest candidate is lung
cancer, which has the lowest heritability and is the most environmentally affected of all cancers
reviewed here. For lung cancer, addressing the polygenic risk of smoking [59], as well as genetically
influenced carcinogenicity of smoking on an individual level [60] and environmental improvements
may allow for similar amelioration of disease liability. Additionally, when such advanced gene therapy
technologies become available, preventing monogenic, highly detrimental variants will be simple, and
the combination of therapies can bring about even more substantial improvements in both individual
and population-wide health outcomes.

Gene therapy simulation scenarios analyzing population statistics showed decreases in LOD
incidence and delays in LOD onset. These simulations also showed the increase in lifetime risk with
emulated longer life expectancy. Such estimates may be important for evaluating population health
and well-being and the potential financial impact on healthcare systems. The estimates in this study,
based on the proportional hazards model and multiplicative genetic architecture using the aging
coefficient, allowed for an estimation of these effects accounting for a model genetic architecture of
the LODs, rather than a more simplistic calculation based primarily on the statistical shape of the
incidence rate progression. In a study, aptly titled “Projections of Alzheimer’s disease in the United
States and the public health impact of delaying disease onset," Brookmeyer et al. [61], it was estimated
that an intervention that achieved a two-fold AD hazard ratio decrease would shift the exponential rise
curve of AD by five years, leading, in the long term, to a twofold decline in the cumulative incidence
and prevalence of AD when accounting for mortality. The simulation reflecting age-related change in
PRS distribution demonstrated that the positive effect on the lifetime risk of AD would be significantly
lower than projected by the above study, in the case of preventative gene therapy. While AD has
emerged as one of the most difficult diseases to prevent, LODs with low cumulative incidence, such as
cancer, exhibit enduring improvement under this model.

Even though each LOD was analyzed independently in this study, prioritizing certain LODs for
preventative therapy, in practice, could have a significant effect on other conditions not specifically
targeted for treatment. For example, T2D is one of the diseases that causes the most comorbidities,
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accelerating the onset of cardiovascular and other diseases, sometimes by decades [56]. For this reason,
preventative treatment of T2D could mean improvements in health or delays in the presentation of
a range of LODs, either independently of or in addition to treating their specific gene variants.

4. Methods

4.1. Conceptual Summary

This section briefly summarizes the concepts of the earlier research [51] used as a foundation for
this study. The subsequent sections will describe this study’s simulation flow and implementation.

4.1.1. Cox’s Proportional Hazards Model

According to Chatterjee et al. [58], the conditional age-specific incidence rate of the disease, I(t|G),
defined as the probability of developing the disease at a particular age t given that a subject has been
disease-free until that age, can be modeled using Cox’s proportional hazards model [57]:

I(t|G) = I0(t)· exp(∑
k

bkGk), (1)

where G = (G1, . . . , Gk) is the multiplicative effect of a set of risk factors on the baseline hazard of the
disease I0(t). The set of age-independent variables in G could include genetic and environmental risk
factors, as well as their interaction terms.

According to Chatterjee et al. [58], if it can be assumed that environmental risk factors
are independent of the SNPs, the “post-GWAS epidemiological studies of gene-environment
interactions have generally reported multiplicative joint associations between low-penetrant SNPs
and environmental risk factors, with only a few exceptions”. This means that the polygenic score
G = ∑k bkGk, as the lifelong characteristic of each individual, is used multiplicatively with I0(t), which
encompasses environmental and aging effects.

The simulations in this study operate on model genetic architectures of the analyzed LODs,
not a complete GWAS map of their experimentally discovered SNPs, because GWAS-discovered
sets can explain only a fraction of the heritability of these LODs. These model genetic architecture
SNPs are treated as “true” causal for disease liability and heritability variants, as discussed in
Chatterjee et al. [58], contrary to GWAS-linked SNPs—and it is assumed that they can be accurately
identified for the purposes of personalized gene therapy.

4.1.2. Allele Distribution Models

The allele distribution models were based on [62,63]. The allele scenarios were implemented in
the simulations identically to those in the earlier research, see [51] for a comprehensive description.

The common allele low effect size genetic architecture model (Scenario A, Table 5) was expected
to be most suitable for explaining the heritability of the analyzed LODs, and all results were reported
using this scenario. For verification, all simulations were also performed using a more extreme rare
allele medium effect size model (Scenario B, Table 5), and the results for lifetime risk were essentially
identical to those in Scenario A. Any material difference in the results would have warranted additional
investigation. As the results did not differ materially, separate figures are not presented for Scenario
B—the corresponding simulation data are available in Supplementary Data. The number of variants
needed for the Scenario A LODs is summarized in the Results section.
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Table 5. Genetic architecture scenarios with modeled allele frequencies and effect sizes.

Scenario MAF Range OR Range MAF Values Allele OR Values

A. Common low 0.073–0.499 1.05–1.15 0.073, 0.18, 0.286, 0.393, 0.5 1.05, 1.075, 1.1, 1.125, 1.15
B. Rare medium 0.0146–0.0998 1.28–2.01 0.0146, 0.036, 0.0572, 0.0785, 0.0998 1.28, 1.463, 1.645, 1.828, 2.01

To build the genetic architecture, minor allele frequencies (MAFs) and odds ratios (ORs) were chosen using
25 possible combinations of the values in the table. Following Pawitan et al. [63], the variants were assigned
to individuals with frequencies proportionate to MAF pk for SNP k, producing, in accordance with the
Hardy–Weinberg principle, three genotypes (AA, AB, or BB) for each SNP, with frequencies p2

k , 2pk(1− pk),
and (1− pk)

2, respectively, resulting in the normal distribution of the individual risk ORs.

4.1.3. LOD Incidence Rate Functional Approximation

The incidence rate functional approximations and source data are detailed in Oliynyk [51].
The yearly incidence rate logistic and exponential regressions for the functional approximation of the
LODs, based on the available clinical incidence statistics, are illustrated in Figure S3. The logistic
approximations were used for all LODs except breast cancer, for which the exponential followed by
linear regression more accurately approximated the incidence rate pattern.

4.2. The Aging Coefficient: Mapping PRS to Age-Dependent Probability of LODs

Earlier research [51] showed that the incidence rates for these LODs increase as individuals age
and, statistically, the PRSs of individuals diagnosed at older ages decline. Following the multiplicative
model of PRS and environmental effects, from a statistical perspective, two processes are balancing
disease incidence—the aging or environmental effect increases the average susceptibility of the
population, and this makes it more likely that older individuals will become ill. Individuals with
higher PRSs are more likely to become ill and, with higher incidence rates, a larger fraction of these
individuals have already become ill with every additional year of age and are therefore excluded
from the high-risk pool for the following years of age. The aging process continues, as reflected in the
incidence rate rising or remaining high in subsequent years.

Statistically, individual PRSs and environmental effects including aging affect the probability
of a person becoming ill [58]. According to Cox’s proportional hazards model [57], in every year of
age, each individual can be assigned a hazard ratio which describes that individual’s risk of being
diagnosed with an LOD. The goal is to uncover the mapping between PRSs and individual hazard
ratios on a yearly basis:

Ru(t) ∝ A(t) · Gu, (2)

where Ru(age) is the hazard ratio of uth unaffected individual, and t is the individual’s age in years.
The PRS Gu remains constant for each individual for life, and the multiplier A(t) drives the age-related
increase in LOD incidence—A(t) will also be called the “aging coefficient”.

It may be possible to map or “discover” A(t) by applying the yearly incidence rate in a population
to the PRS distribution, based on an LOD genetic allele architecture, through the population simulation
flow described in the next section. The discovered A(t), then applied to the population simulation
on a yearly basis, should precisely reproduce the initial LOD incidence rate pattern. Later, building
a population with a modified PRS to emulate the effect of gene therapy and simulating aging of this
population by applying A(t), it will be possible to find the corresponding incidence rate and other
resulting statistics.

In addition to the age-related change in the PRS distribution described above, the aging
coefficient automatically incorporates other miscellaneous environmental effects that accumulate
with age, as these are all reflected in the yearly incidence rate. The term “aging coefficient” is used
throughout this publication, rather than “environmental effect”, to emphasize that it is an aggregate
age-dependent parameter.



Int. J. Mol. Sci. 2019, 20, 3352 12 of 16

A useful parameter in the simulation and analysis is the incidence rate density D(t), which depicts
LOD incidence contributions relative to the initial population count at yearly increments, adjusted
for mortality:

D(t) = I(t) · S(t), (3)

where I(t) is the yearly incidence at age t, and S(t) is the survivor rate from the US Social Security
Actuarial Life Table [64]. Integrating the area under the curve, or summing up discrete yearly values,
corresponds to an LOD cumulative incidence C(t)—the limit or lifetime value C(T) equals the
lifetime risk:

C(t) =
T

∑
t

D(t). (4)

The comprehensive description of the simulation steps, procedures, validation, and statistical
analysis is available in Supplementary Materials Chapter S1.

4.3. Data Sources, Programming, and Equipment

The population mortality estimates from the US Social Security Actuarial Life Table [64] provide
annual death probability and survivor numbers, up to 119 years of age, for both men and women.

Disease incidence data were obtained from the following sources: Alzheimer’s disease [61,65–67],
type 2 diabetes [56], coronary artery disease and cerebral stroke [68], and cancers [69,70].

The simulations were performed on an Intel Xeon Gold 6154 CPU-based 36-core computer
system with 288GB of RAM. The simulation was written in C++, and the source code can be found in
Supplementary Data.

The final simulation data, additional plots, R scripts, and executables are also available in
Supplementary Data. Intel Parallel Studio XE was used for multithreading support and the Boost
C++ library for faster statistical functions—the executable can be built and function without these two
libraries, with a corresponding slowdown in execution.

5. Conclusions

In this study, computer simulations mapped polygenic risk to the hazard ratio of being
diagnosed with eight common LODs, based on their known heritability and incidence rates, under the
proportional hazards model and multiplicative genetic architecture. The resulting mapping—the aging
coefficient—enabled the researcher to quantify the population effects of the emulated prophylactic gene
therapy, alongside longevity increases. Computer modeling and simulations deal with simplifications
and generalizations of biological processes, and aim to make predictions about the behavior of the
modeled systems when modifying parameters of a model, the conclusions of this study are made in
such context. The conclusions of this study are contingent on progress in molecular genetics identifying
a sufficient number of true causal SNPs for a particular LOD on an individual basis, gene editing
technologies becoming capable to safely provide such a level of therapy, and prophylactic gene
therapies successfully passing clinical trials and obtaining the approval of governmental agencies.

The intensive gene therapy simulated here could dramatically delay the average onset of the
analyzed LODs and reduce the lifetime risk of the population. The simulations highlighted that the
magnitude of familial heritability and cumulative incidence patterns distinguish the outcomes for the
analyzed LODs when subjected to the same PRS decrease. This outcome can be characterized by the
delay in LOD onset, that is, the estimate of the number of years it would take for each LOD to regain
the pretreatment baseline level.

In summary, if gene therapy, as hypothesized here, were to become possible, and if the incidence of
the treated diseases followed the proportional hazards model with multiplicative genetic architecture
composed of a sufficient number of common low effect gene variants, then (a) late-onset diseases
with the highest familial heritability will have the highest number of variants available for editing;
(b) diseases with the highest current lifetime risk, particularly those with the highest incidence rate
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continuing into advanced age, will be the most resistant to attempts to lower the lifetime risk and delay
the age of onset at a population level; (c) diseases that are characterized by the lowest lifetime risk will
show the strongest and longest-lasting response to such therapies; and (d) longer life expectancy is
associated with a higher lifetime risk of these diseases, and this tendency, while delayed, will continue
after the therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/13/3352/s1,
Supplementary Document: A document Supplementary.PDF containing a supplementary methods chapter and
figures. Supplementary Data: A zip file SupplementaryData.ZIP containing the simulation executable, the source
code, R scripts, batch files, and simulation results.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
CAD coronary artery disease
GWAS genome-wide association study
HR hazard ratio
LOD late-onset disease
MAF minor allele frequency; customarily implying the ’effect allele frequency’
OR odds ratio
PRS polygenic risk score
SNP single nucleotide polymorphism; in context of this study used synonymously with the term ’allele’
T2D type 2 diabetes
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