RUSSIAN PEASANT MULTIPLICATION
AND EGYPTIAN DIVISION
IN ZECKENDORF ARITHMETIC

GARRY J. TEE

Department of Mathematics, University of Auckland
University of Auckland, New Zealand

1 INTRODUCTION

Edouard Zeckendorf (1901-1983) was a Belgian amateur mathematician ([10],
p.144). He invented [13] the representation of natural numbers as sums of distinct
and non—consecutive Fibonacci numbers, and he shewed that each natural number
has unique representation if F5 is used to represent 1, rather than F; (which also
equals 1). Each natural number can be represented as a Zeckendorf numeral which
can be encoded as a stream of bits with index starting at 2, e.g. 27 = F3+ F5+ F; can
be encoded (with index increasing to the right) as 0101001 . In data transmission
the most significant 1 can be followed by 1 (since 11 never occurs within a Zeckendorf
numeral) to indicate the end of a number, so that 27 would get transmitted as the
self-limiting bit-string 01010011 . This variable-length representation of natural
numbers has been investigated as a potential method for compression of data in
transmission [1][6].

In Zeckendorf arithmetic, addition by 1 is more complicated than in binary
arithmetic, as was explained by Graham, Knuth & Patashnik ([8], pp. 282-283).
Addition, subtraction and multiplication were discussed by Freitag & Phillips [7];
and Peter Fenwick has recently given the first treatment of all 4 basic arithmetic
operations in Zeckendorf arithmetic [5], which he has tested with computer pro-
grams. Fenwick comments that “this arithmetic is unlikely to remain more than a
curiosity” [5], since it is much more complex than standard binary arithmetic and
the Zeckendorf numerals are bulkier than standard binary numerals.

Another set of algorithms for Zeckendorf arithmetic has been implemented by
the author, as a set of procedures in THINK Pascal. These Pascal procedures, with
a set of programs for testing them, are available from the author by e-mail request
sent to tee@math.auckland.ac.nz .

2 ORDERING ZECKENDORF NUMERALS

To test x = y, just check whether all corresponding Zeckendorf coefficients in z
and y are equal. To test z > 0, just check whether the bit—stream contains any 1.
To add 1 to a Zeckendorf numeral ([8], pp. 282-283), if its bit—stream starts
with 0 then convert that to 1 (with F» = 1); but if it starts with 10 then convert
that to 01 (with F3 = 2). If the 1 which has been inserted is followed by 10, then

Typeset by ApS-TEX

2 GARRY J. TEE

that 110 must be standardized to 001 (by the 3—-term recurrence relation for Fi-
bonacci numbers); and that standardization must be repeated if necessary, i.e. any
bit-sequence 11010...10100 (starting at any positive index) must be converted to
00000 ...00010 . The representation of any standard Zeckendorf numeral is unique.
Thus, adding 1 to a k—digit Zeckendorf numeral can require O(k) elementary oper-
ations (of counting and Boolean operations). That is similar to adding 1 in k—bit
binary arithmetic, where the carry can propagate through up to £ — 1 consecutive
unit bits.

If a Zeckendorf numeral p has its most significant 1 at index ithen that is un-
changed by adding 1, unless 4 + 1 = Fj;1, in which case the index increases by 1.
Every natural number A > p can be produced from p by repeated additions by 1,
in each of which the highest index either remains constant or else increases by 1.
Hence, the highest index for \ is greater than or equal to the highest index for u.
Therefore p < A if and only if, in their Zeckendorf representations with coefficients
Oorl,

A=Y YiFi, p =) ZiF, (1)

i>2 i>2
Y, = Z; for all ¢ > h for some h > 2, but Y, = 1 and Z; = 0. Thus, a simple
program can be written for a Boolean function less (x,y) which yields true if
x < y but otherwise yields false, doing a single downward scan through the bit—
streams of Zeckendorf coefficients for and y. From that function, other simple
functions can be written to test z >y, = >y and z < y:
greater:= less(y,x), ge:= not less(x,y), le:= ge(y,x).

3 ADDITION AND SUBTRACTION

3.1 Addition. In the Pascal procedure for addition, for each digit 1 at index ¢ in
y add F; into . When a digit 0 (at index i in x) gets 1 added into it, if that new 1
is followed by 10 then standardization must be applied from index i upwards; but
otherwise, if the new bit—stream from index ¢ — 1 is 110, then standardization must
be applied from index ¢ — 1 upwards. If 1 gets added to 1 at index ¢, then 2F; must
be replaced by Fji1 + F;—». To add in Fj1 — 2F;, the bit—stream 010 from index
i — 1 must be converted to 001, and if that is followed by 1 then standardization
must be applied from index i + 1, costing O(k) elementary operations. And to add
in F;_», then this process must be applied recursively, with O(k) stages. Thus, even
increasing a single Zeckendorf coefficient by 1 costs O(k?) elementary operations;
and hence adding a pair of k—digit Zeckendorf numerals by the Pascal procedure
costs O(k?) elementary operations!

3.2 Subtraction. Zeckendorf subtraction by 1 is very simple. Consider u = Fj, +
Fy + --- + F,, where the subscripts are in strictly increasing order. If a = 2 then
just delete F5. With a > 2 then pu—1 = (F, — 1)+ Fy +-- -+ F.. From the 3—term
recurrence formula,

F, = F,2+F, 1 = F, 4+F, 3+F, 1 = F, ¢+F, 5+F, 3+F,

F» + F3 (for even a)

= ... = {F1+F2 (forodda)}+"'+Fa—7+Fa—5+Fa—3+Fa—1; (2)

and hence

RUSSIAN PEASANT MULTIPLICATION AND EGYPTIAN DIVISION 3

F,—1 = { };?;i};i ((ff(z;eo‘ﬁs)) } -+ F g+ F, 5+F, 3+F, 1. (3
This produces ¢ — 1 in standard Zeckendorf form, with no consecutive Fibonacci
numbers.

Consider the subtraction of Zeckendorf numerals x — y, where x > y, with &
digits in z. For each digit 1 at index ¢ in y, we need to subtract F; from z. When
a digit 1 (at index ¢ in the current value of z) gets 1 subtracted from it then that
digit in z is replaced by 0 . But if the digit at index ¢ of is 0 and 1 is to be
subtracted from it, then scan the bit-stream from index ¢ + 1 upwards, to find the
1 with least index h > i. As in (2),

Fp = Fyoj+Fhojp1 +Fhojys+ -+ Fhs+ F_1. (4)
Hence, when h — 7 is even then
Fp—-F = Fiyn+Fys+-+Fy 5+ Fp3+ Fh_1, (5)
but if h — ¢ is odd then
Fp—F, = F, 1+ Fyo+ -+ Fr 5+ Fr 3+ Fp. (6)

Thus, in subtracting F; from z, if h — i is even then it can be done by (5) at the
cost of O(k) elementary operations. But if h — i is odd then it can be done by (6),
which also adds in F;_1, at a cost O(k?).

Hence, subtracting a pair of k—digit Zeckendorf numerals by the Pascal procedure
costs O(k?) elementary operations.

4 RUSSIAN PEASANT MULTIPLICATION

Before the Russian Revolution in 1917, some visitors to Russia were surprised to
find that many illiterate Russian peasants were able to multiply quite large numbers
mentally. The following algorithm (in Pascal) computes z = zn, where n is any
non-negative integer and z is any number.

if odd(n) then s:= x else s:= 0; n:=n div 2;

while n>0 do

begin x:= x+x; if odd(n) then s:=s + x; n:=n div 2

end; z:=sum .
This algorithm can be interpreted as generating successively the digits in the base—2
representation of n. After k executions of either if-statement (k = 0,1,2,...) the
current value of z is 2* times its initial value, and the current value of n is the
quotient when the initial value has been divided by 2*. That current value of n is
odd, if and only if 2* has coefficient 1 in the binary expansion of the initial value
of n; and hence the sum is to be increased by the current value of z if and only if
the Boolean function odd(n) yields true. The number of additions into s is less
than or equal to the number of doublings of x, which is |log, n].

This Russian Peasant Multiplication algorithm is independent of any written
numerals, and it is independent of the base (if any) which might be used in the

4 GARRY J. TEE

spoken numerals. The user needs only to be able to decide whether n is odd (and
whether n = 0), to halve n (discarding remainder 1 when n is odd), and to add x
into a number.

Less systematic versions of Russian Peasant Multiplication (without halving)
were used in Ancient Egypt for multiplication and division ([4], pp. 14-20). In
Ancient India, powers ™ were computed by an algorithm very similar to Russian
Peasant Multiplication ([3], p.76), with addition being replaced by multiplication
and the initial value 0 being replaced by 1. The RSA cryptographic algorithm
requires efficient computation of ™ mod m for very large integers x, n, m. That
has been done [11] by a version of the Ancient Indian method, using the operation
of multiplication (mod m). More generally, the number = and the operator + can
be replaced by elements of any monoid with associative operator ®, with 0 being
replaced by the neutral element for ®, to apply ® (n — 1 times) to z ([9], p.399).
For example, could be a polynomial whose coefficients are scalars or are square
matrices (integer, real, complex or quaternion), and ® could be the operation of
multiplication of polynomials, to compute the nth power of the polynomial z.

If z and n are represented in binary notation, then Russian Peasant Multi-
plication is closely similar to the standard algorithm for multiplication in binary
arithmetic. In binary arithmetic the doublings of = are done by shifting all binary
digits up one place, and the binary digits of n are operated on directly.

4.1 Multiplication in Zeckendorf Arithmetic.

The existing algorithms for Zeckendorf multiplication [7] involve intricate opera-
tions upon the Zeckendorf coefficients. But Zeckendorf numerals can be multiplied
more simply by Russian Peasant Multiplication, using the existing Zeckendorf al-
gorithms (in [5], or the Pascal procedure) for addition of z. If the factor n is
represented as a standard integer in Pascal (or in any similar programming lan-
guage), then all operations on n can be done by standard integer operations.

4.1.1 Parity of Zeckendorf Numerals. In order to determine whether n is odd,
consider the expansion

k
no= Y ZiF, (Zi=0,1), (7)
i=1

for a suitable upper limit k, where Z; = 0 in a standard Zeckendorf numeral.

Since Fy = 0 which is even, and both F; and F, equal 1 which is odd, then it
follows by induction on the defining 3—-term recurrence relation that F; is even if
and only if ¢ = 3h for some integer h. Therefore, replacing each coefficient Zsj,
in (1) by 0 would not alter the parity of the sum of Fibonacci numbers. Thus
the parity of n equals the parity of), <, (Z3h4+1F3n+1 + Z3h+2F3h42), where both
F3p,1 and F3p, 0 are odd. Operating mod 2, this becomes

n = > (Zswi1 + Zsni2) mod 2. (8)
h>0

For each h, the term in parentheses will equal 1 if Z3p11 # Z3p42, but otherwise
that sum is even. Thus, the Boolean value of odd(n) can be computed as follows,
with the Zeckendorf coefficients represented by a Boolean array z. If n is zero then
odd:= false, but for positive n apply the algorithm:

RUSSIAN PEASANT MULTIPLICATION AND EGYPTIAN DIVISION 5

odd:= false; i:= 0;

repeat if z[i+1]<>7z[i+2] then odd:= not odd; i:=i+3

until i>=k .
Determining the parity of a k—digit Zeckendorf numeral by this algorithm costs
O(k) elementary operations.

4.1.2 Halving nonstandard Zeckendorf Numerals.

In order to halve n, it is convenient to work with nonstandard Zeckendorf nu-
merals in which consecutive Fibonacci numbers can appear, so that the bit—stream
can be any pattern of 0 and 1; and also Fj is accepted, so that the index in
the bit—stream starts with 1 rather than 2. The algorithm for evaluating odd(n)
works for such nonstandard Zeckendorf numerals, since if Z3,+1 = Z3p42 = 1 then
Z3h+1+ Z3p+2 =2 = 0 mod 2. During the operation of the algorithm for halving
n, the coefficients Z; can take the values 0, 1, 2 or 3; but at the end of the algorithm
the coefficients of the new n are all 0 or 1, so that the new n can be represented
by the Boolean array z. The index for nonstandard Zeckendorf starts at 1, since
otherwise we could get Z> = 2 during the halving.

In order to halve n set j as the index of the highest 1 in n, and construct an
array c of integer coefficients of Fibonacci numbers:

c[0]:= 0; for i:= 1 to j do if z[i] then c[i]:= 1 else c[i]:= 0 .
Transform the coefficients c[i] so that each becomes 0 or 2, except that c[1] becomes
lif nis odd. To do that transformation, for i from j down to 2, if c[i] is odd then F;
or 3F; occurs in the sum represented by the current array c. In that case, replace
F; (once) by F;_1 + F;_», so that c[i] gets reduced to 0 or 2 and both c[i-1] and c[i-2]
get increased by 1. Construct the coefficients for the new value of n by halving each
coefficient c[i] (for i>1). Do not actually subtract 1 from c[i] and do not perform
any arithmetic division. Rather, in terms of the Boolean array z:
for i:= k downto 2 do z[i]:= c[i]>1 .

Halving a k—digit Zeckendorf numeral by this algorithm costs O(k) elementary
operations.

This halving algorithm operates on nonstandard Zeckendorf numerals, and so
the cycle of halvings in Russian Peasant Multiplication can be performed in this
manner, without needing to standardize the output.

In this manner, all of the operations in Russian Peasant Multiplication on the
Zeckendorf numerals for z and n have been implemented in Pascal, in terms of
addition of small integers and Boolean operations.

4.2 Standardizing nonstandard Zeckendorf Numerals. If the nonstandard
output of the procedure for halving is to be operated on by other procedures, then
it must be converted to standard Zeckendorf form. That standardization can be
done by a Pascal procedure, which scans the bit—stream with index ¢ decreasing
to 1. Each time that 11 is encountered at indices ¢ and ¢ + 1 then it must be
standardized from index ¢ upward, costing O(k) elementary operations, as in §3.1.
After standardizing down to ¢ = 1, if the bit-stream starts with 10 then that must
be replaced by 01 (since F; = F» = 1), and if the next bit is 1 then one more
standardization must be applied, from index 2 upwards. Thus, standardization
costs O(k?) elementary operations.

5 ANCIENT EGYPTIAN DIVISION

For non—negative integer numerator n and positive integer denominator d, the

6 GARRY J. TEE

operation of integer division produces the unique quotient ¢ and remainder r such
that n = gd + r, with ¢ > 0 and 0 < r < d. The existing division algorithm [5]
requires intricate operations upon the Zeckendorf coefficients. But it is simpler to
use a systematic version of an ancient Egyptian method for division, as in Problem
25 of the Rhind Mathematical Papyrus ([4], p.16).

Construct (once only) an array p with p; = 2% set i=0 and p; = 1, and then
repeat i:=i+1; p;:= p;—1 + p;—1 until p; is large enough for your purposes. That
array can then be used in any division of n by d by the following algorithm, which
constructs (by repeated addition) an array t with ¢; = 2id. The quotient ¢ (initially
set at 0) effectively gets each 1 in its binary representation inserted in decreasing
place—value, from the array p.

rr=n; q=0; i:=0; t[i]:=4d;

while t[i]<r do begin i:= i+1; t[i]:= t[i-1] + t[i-1]; { t[i] =2 }
end; { t[i]>r>t[i-1] }
repeat while r<t[i] do i:= i-1; {Now, t[i+1]>r>t[i] }
q:= q+pli]; = r-t[i] {Puts q;=1, in its binary expansion }
until r<d .

Then ¢ is the quotient and r is the remainder.

If n < d then ¢ =0 and r = d. But, for n > d, the number of subtractions from
r equals the number of additions into ¢, which is less than or equal to the number
of doublings of d; and that equals [log, q].

If the numbers are represented in binary notation, then the Egyptian algorithm
is closely equivalent to the standard binary arithmetic algorithm for division. In
binary arithmetic the doublings of ¢ are done by shifting all digits up one place,
and each digit 1 in ¢ gets inserted directly, without needing any table of powers of
2.

5.1 Division in Zeckendorf Arithmetic. In Zeckendorf arithmetic, the addi-
tions and subtractions involving p, ¢, r and ¢ can be done by the existing algorithms
(in [5], or the Pascal procedures), and a simple program (3) can test for r < d. In
this manner, the Ancient Egyptian method for division has been implemented in
Pascal.

6 SIGNED ZECKENDORF ARITHMETIC

For negative numbers in Zeckendorf form, Fenwick proposed a form of comple-
menting, generalized from binary arithmetic with 2s-complement. But that repre-
sentation of negative numbers proves to be rather cumbersome [5].

Accordingly, it is convenient to generalize the unsigned Zeckendorf numerals by
using sign and magnitude representation. Extend the bit—stream for z to start at
index 0, with z[0] = false for z > 0 but true for z < 0, so that signed Zeckendorf
zero has all elements false, from index 0 up. Nonstandard Zeckendorf numerals
use z[1] for Fy, but z[1] is not used in unsigned standard Zeckendorf numerals. If z
does have a sign at index 0, the bit—stream from index 2 up gives |z| in unsigned
Zeckendorf form.

To add signed Zeckendorf numerals a + b = ¢, if a and b have the same signs
set ¢ = |a| + |b|, then give ¢ the sign of a. If a and b have different signs; then if
la| > |b| set ¢ = |a| — |b| and then give c the sign of a, but otherwise set ¢ = |b| — |a]

RUSSIAN PEASANT MULTIPLICATION AND EGYPTIAN DIVISION 7

and then give ¢ the sign of b. To subtract signed Zeckendorf numerals ¢ = a — b, if
b = 0 then ¢ = a, but otherwise reverse the sign of b and then add a + (-b).

To multiply signed Zeckendorf numerals ab = ¢, set ¢ = |a| x |b], and then fix the
sign by c[0]:= a[0]<>b[0]. Then, if unsigned ¢ = 0, set the sign as non—negative:
c[0]:= false. Signed division could be handled in a similar manner.

7 COMPLEXITY OF ZECKENDORF ARITHMETIC

For numbers written in any integer base 8 > 1, addition or subtraction of a pair
of m—digit numbers costs O(m) elementary operations on digits 0,1,...,5—1, and
the standard algorithms for multiplication and for division cost O(m?) elementary
operations.

7.1 Daniel Bernoulli’s formula for Fibonacci numbers. Daniel Bernoulli
the 1st (1700-1782) published in 1732 an important paper in which (amongst much
else) he published ([2], p.52) the explicit formula for F,, as:

(%) - (=9)

Daniel Bernoulli’s formula for the Fibonacci numbers has often been mis—named
(e.g. [7] and [8], p.285) after Binet, who published it 111 years after Daniel Bernoulli
did [12].

In terms of the golden ratio ¥ = (1 +v/5)/2 = 1-6180340, Daniel Bernoulli’s
formula can be rewritten as

F, = (v=(1-7)7)/V5. (10)

7.1.1 Golden Numbers. Denote the Zeckendorf numeral for z as

V5 (9)

m

Then
= =BG - 1-0)) = =Yzt - 2>z = Top),
=2 1=2 =2 (12)

Here, I'(z) is the base—~y number whose coefficients equal the corresponding Zeck-
endorf coefficients of z, and

1 & .
p(z) = %gzi(l—v)’- (13)

The real number I'(2) /+/5 could be called the Golden Number for the positive integer
z.

For all m—digit Zeckendorf numerals, the maximum modulus of p(z) is given by
2z = Fph+1 — 1, whose Zeckendorf coefficients are given by (3). If m is even then

p(Fmpr—1) = [A=7)*+@=-N"+ -+ @=-N"]/V5
(1-7)? R ks e e Y

VE(l—(1-7)2) VB(2y—9?)

8 GARRY J. TEE

Since 2 = v + 1, this inequality reduces to
2-v _ 2y=%¥* _ q-1
Valy—=1) VB(y*—-v) V5
V5(V5-1) _ 5-+5

p(z) <

= 10 = 9 < 0-3. (15)
Similarly, if m is odd then
pFpir =1) = [1=7)°+ 1 =7)° +-+ (L =7)"] V5, (16)
so that
(e < QD= 6D 6=V5) s (17)

Va(l—(1-7)%) 10
Hence, every natural number z equals the Golden Number T'(z)/+/5, rounded to
the nearest integer.

7.2 Comparison of Zeckendorf Arithmetic with binary arithmetic. For
numbers written in any integer base 5 > 1, the largest m—digit number is 5™ — 1.
For numbers written in some other base §, 67 = ™, where p = m(log 3/ log 9).
Hence, conversion of an m—digit integer in base 8 to base 0 requires O(m) digits
in base . Hence, the Zeckendorf representation of an m-—digit number in base
B requires approximately m(log 3/ log v) digits in Zeckendorf representation. For
example, an m-bit binary number requires approximately [1:46m] + 2 digits in
Zeckendorf representation.

Conversion of a k—digit Zeckendorf numeral to standard binary form (or con-
versely) costs O(k) additions or subtractions of binary numbers with O(k) bits, or
O(k?) elementary operations. Hence, if a pair of Zeckendorf numerals were con-
verted to binary form, then addition or subtraction performed in binary arithmetic
would cost O(k) elementary operations, and multiplication or division would cost
O(k?). If the result of the binary arithmetic were converted to Zeckendorf form,
then the cost for each basic arithmetic operation on Zeckendorf numerals (via binary
arithmetic) would be O(k?) elementary operations. But the Pascal procedures for
addition and subtraction each cost O(k?) elementary operations. In Russian Peas-
ant Multiplication the number of additions is O(k), and in Egyptian division the
number of additions or subtractions is O(k); and hence multiplication or division
of k—digit Zeckendorf numerals costs O(k?) elementary operations.

However, arithmetic operations on large binary integers (beyond the domain of
arithmetic hardware) usually are done by software, which multiplies by a large
factor the time required for elementary operations on the digits. Consequently, the
actual ratio of cost of Zeckendorf addition or subtraction to cost of binary operations
might be much smaller than this simple counting of elementary operations on digits
might suggest.

If algorithms for addition or subtraction of Zeckendorf numerals could be devised
with cost of lower order (e.g. O(k log k) elementary operations) then there would
be no need to consider conversion to and from binary numerals for doing arithmetic
on Zeckendorf numerals.

I wish to thank Peter Fenwick, for introducing me to the concept of Zeckendorf
arithmetic.

10.

11.

12.

13.

RUSSIAN PEASANT MULTIPLICATION AND EGYPTIAN DIVISION 9

REFERENCES

. A. Apostolico A. & A. S. Fraenkel, Robust transmission of unbounded strings using Fibonacci
representations, IEEE Trans. on Inf. Th. IT—33 (1987)), 238-245, (cited from [5]).

. Daniel Bernoulli, Observationes de seriebus quae formantur ex additione vel subtraction qua-
cunque terminorum se mutuo consequentium, ubi praesertim earundem insignis usus pro in-
veniendis radicum omnium aequationum algebraicarum ostenditur, Commentarii Academiae
Scientiarum Imperialis Petropolitanae t.3 (1732 for 1728), 85-100, Reprinted in: Die Werke
von Daniel Bernoulli Band 2 (edited by David Spieser), Birkhduser Verlag, Basel-Boston—
Stuttgart (1982), pp. 49-64.

. Bibhutibhusan Datta & A. N. Singh, History of Hindu Mathematics, vol. 1, Motilal Banarsi-
dass, Lahore, 1935.

. John Fauvel & Jeremy Gray, The History of Mathematics - a Reader, Macmillan Press,
London, 1987.

. Peter Fenwick, Zeckendorf integer arithmetic, The Fibonacci Quarterly (to appear).

. A. S. Fraenkel & S. T. Klein, Robust universal complete codes for transmission and compres-
sion, Discrete Applied Mathematics 64 (1996), 31-55, (cited from [5]).

. H. T. Freitag & G. M. Phillips, On the Zeckendorf form of Fy,, /Fn, The Fibonacci Quarterly
34, No.5 (1996), 444-446.

. Ronald L. Graham, Donald E. Knuth & Oren Patashnik, Concrete Mathematics, Addison—
Wesley, Reading MA, 1989.

. Donald E. Knuth, The Art of Computer Programming, vol. 2, Addison—Wesley Publishing,

Reading, 1969.

George M. Phillips, Two Millenia of Mathematics, from Archimedes to Gauss, Springer—

Verlag, New York, 2000.

Garry J. Tee, The perfect cryptographic method?, in: Directions For the Future: Communica-

tion. Papers given during the 49th ANZAAS Congress, University of Auckland January 1979

(ed. by Mari Davis), Trans Knowledge Associates, Melbourne, 1979, pp. 24-28.

Garry J. Tee, Integer sums of recurring series, New Zealand Journal of Mathematics 22

(1993), 85-100.

E. Zeckendorf, Represéntation des nombres naturels par une somme de nombres de Fibonacci

ou les nombres de Lucas, Bull. Soc. Roy. Sci. Liege 41 (1972), 179-182.

2000 Mathematics Subject Classification 11B39, 03H15.
2002-4-24

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND,

PRIVATE BAG 92019, AUCKLAND, NEW ZEALAND

E-

MAIL ADDRESS: tee@math.auckland.ac.nz

