
  

 

Abstract—Early diagnosis and prognosis of babies with signs 

of hypoxic-ischemic encephalopathy (HIE) is currently limited 

and requires reliable prognostic biomarkers to identify at risk 

infants. Using our pre-clinical fetal sheep models, we have 

demonstrated that micro-scale patterns evolve over a 

profoundly suppressed EEG background within the first 6 

hours of recovery, post HI insult. In particular, we have shown 

that high-frequency micro-scale spike transients (in the gamma 

frequency band, 80-120Hz) emerge immediately after an HI 

event, with much higher numbers around 2-2.5 h of the insult, 

with numbers gradually declining thereafter. We have also 

shown that the automatically quantified sharp waves in this 

phase are predictive of neural outcome. Initiation of some 

neuroprotective treatments within this limited window of 

opportunity, such as therapeutic hypothermia, optimally 

reduces neural injury. In clinical practice, it is hard to 

determine the exact timing of the injury, therefore, reliable 

automatic identification of EEG transients could be beneficial 

to help specify the phases of injury. Our team has previously 

developed successful machine- and deep-learning strategies for 

the identification of post-HI EEG patterns in an HI preterm 

fetal sheep model. 

This paper introduces, for the first time, a novel online 

fusion approach to train an 11-layers deep convolutional neural 

network (CNN) classifier using Wavelet-Fourier (WF) spectral 

features of EEG segments for accurate identification of high-

frequency micro-scale spike transients in 1024Hz EEG 

recordings in our preterm fetal sheep. Sets of robust features 

were extracted using reverse biorthogonal wavelet (rbio2.8 at 

scale 7) and considering an 80-120Hz spectral frequency range. 

The WF-CNN classifier was able to accurately identify spike 

transients with a reliable high-performance of 99.03±0.86%.  

Clinical relevance—Results confirm the expertise of the 

method for the identification of similar patterns in the EEG of 

neonates in the early hours after birth. 

I. INTRODUCTION 

Perinatal brain injury after a hypoxia-ischemic insult 

occurs primarily after then end of the insult, evolving 

substantially over time and leads to significant grey and 

white matter injury causing life-long impaired 
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neurodevelopment [1, 2]. Our pre-clinical data from fetal 

sheep HI models show that evolving micro-scale 

epileptiform patterns in the form of high-frequency spike 

transients (Fig.1) and sharp waves (see Fig.2 of [3]), develop 

over a suppressed EEG background during a 6-8 hours 

cerebral oxidative metabolism recovery phase after a 

hypoxic insult (called the latent phase), before high-

amplitude EEG seizures [2, 4, 5]. Our studies have shown 

that the number and timing of these patterns are predictive of 

neural outcome [6]. Further, available therapeutic protocols 

such as hypothermia are shown to be optimally 

neuroprotective if initiated in early hours of the latent phase 

and before the start of the seizures [1, 7]. Unlike the pre-

clinical experiments, clinical HIE and the phases of injury 

are not necessarily aligned with the time of birth as the insult 

could have happened before birth [1, 7]. Prognostic and 

diagnostic biomarkers could help to reveal timing 

information of the injury and ultimately help to improve 

utilization of treatments. Our team has been actively focused 

on developing machine- and deep-learning approaches for 

the identification of spikes [3, 8-10] and sharp waves [6, 11-

13]. Our experimental preterm sheep data demonstrate that 

the number of automatically quantified high-frequency spike 

transients (in 80-120Hz gamma-band) peaks at around 2-2.5 

hours from insult [3], decreasing thereafter before high-

amplitude seizures appear at ~6-7 h post-insult [3]. Epileptsy 

studies have also shown that the bursts of clinical high-

frequency oscillations with >80Hz frequency are the early 

indicators of later epileptic seizures [14].  

We recently developed a novel, high-performance, two 

dimensional deep CNN classifier for EEG sharp wave 

identification using Gaussian wavelet scalogram images of 

EEG segments in post-HI data from preterm sheep models 

[15]. However, the previous WS-CNN sharp wave classifier 

[15] requires high-performance facilities (i.e. clusters) for 

the analysis of computationally-intensive scalogram images, 

in large scale. This paper proposes, for the first time, a 

complementary approach to our previous work [15] by 

introducing a robust 2D-CNN spike transient classifier 

trained over an alternatively much simpler set of features. 

The paper examines how only the major spectral envelopes 

of an arbitrary EEG epoch, through reverse biorthogonal 

wavelet transform along with the corresponding gamma-

range frequency filtered spectrums, can be extracted to 

create computationally-efficient feature maps for a 11-layers 

deep 2D-CNN classifier to accurately identify spike 

transients from noise and background activity. The proposed 

strategy is generic and has the potential to be used for the 

identification of EEG patterns in clinical data. 
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Figure 1.  Examples of post HI-insult 1024Hz EEG intervals containing 

high-freq micro-scale spike transients, during the first 2 hours of HI from 
A: asphyxicated preterm fetal sheep (#1) and B: sheep (#2). 

II. METHODS 

A. Data collection  

The dataset used in this research was approved by the 

Animal Ethics Committee of the University of Auckland. 

Raw HI data was recorded at 104 days of gestational age 

(human brain maturation equivalent to 28-30 weeks) at 

1024Hz using one pair of EEG electrodes on the left and 

right sides of the preterm fetal brain (n=2). Probes (made of 

Cooner wire, Chatsworth, CA, USA) were symmetrically 

situated over dura matter over the parasagittal parietal lobe 

while a reference electrode was sewn on the occiput. Data 

from the dural placement of electrodes is referred to as the 

electrocorticogram (ECoG), and therefore from here we 

refer to data as ECoG. An inflatable silicone occluder was 

placed around the cord during surgery for post-surgical 

occlusion of the umbilical cord for 25 min [16]. Complete 

asphyxia was assured by analysis of blood gas analysis and 

cardiovascular changes [16]. Data was initially annotated by 

an expert (HA), manually. For consistency with clinical and 

experimental definitions, pointed peak EEG/ECoG events 

with less than 70ms duration (namely less than 12.5ms, 

equal to >80Hz frequency range) and amplitudes >20μV 

were labeled as HI gamma spikes. 

B. Feature extraction  

 Machine and deep-learning approaches are often perform 

much better when accompanied by a robust feature 

extraction strategy that optimally provides the appropriate 

features from the data. Non-complex reverse biorthogonal 

wavelets offer desirable properties (i.e. symmetry) that 

match well with inherent features of an ideal high-frequency 

spike transient [3, 8, 17]. We previously detailed the 

superior compatibility of rbio2.8 reverse biorthogonal 

wavelet of scale 7 for the optimal time-localization of high-

frequency spike transients in HI ECoG [3]. Unlike the full-

range spectrums (scalogram images) in our previous work 

[15], here, only two spectrally-dominant set of features are 

directly extracted from an arbitrary raw ECoG segment to 

create an input set. Data was initially zero-meaned, and the 

continuous wavelet transform (CWT) coefficients of ECoG 

segments were calculated using Rbio2.8 at scale 7. The 

Fourier transform (FFT/IFFT) time-series of the data were 

also evaluated, and the spectral components within 80-

120Hz were preserved. The CWT and IFFT time series as 

well as the original raw ECoG segments (length: 72×1), 

were combined to shape the input-matrices (size 72×1×3) to 

be fed into the deep 2D-CNN classifier. Examples of the 

actual post HI spike transients from the original ECoG 

recordings are shown in Fig 2A-B. The rbio2.8 CWT of the 

spike transients (at scale 7) along with the spectrally band-

pass-filtered patterns from IFFT of the spike transients are 

shown in Fig 2C-D and Fig 2E-F, respectively. Similarly, 

examples of the non-spike events, as well as their 

corresponding CWTs and IFFTs, are shown in Fig 3. The 

data in Fig 2 and 3 suggest that the strategy of obtaining 

only the main spectrally-dominant features of an arbitrary 

segment can provide rich-enough inputs for the 2D-CNN to 

create feature maps for acute classification between a spike 

and a non-spike event. The classifier was trained and tested 

using the original noisy data to generalize the outcomes. 

C. The proposed deep 2D-CNN classifier 

 Enhanced deep CNN structures hold strong classification 

capability and have been recently used for neonatal seizure 

detection in HI recordings [5, 18-20]. We have also recently 

developed a robust 11-layer deep CNN sharp wave 

classifier, trained using high-resolution scalogram images of 

the ECoG segments, with 95.34% accuracy [15]. This work 

introduces an updated version of the robust WS-CNN 

classifier from the previous work, while here the classifier 

was trained using a much simpler, but computationally much 

more efficient, input feature-matrices, instead of the 

computationally-intensive scalogram input-images. The 

proposed WF-CNN classifier is detailed in Table I and Fig. 

4. Initially, input features-matrices (72×1×3, each) were fed 

into the WF-CNN classifier to generate feature maps 

through four convolutional (with rectified linear activation 

units (ReLU) after each convolutional layer), four max-pool 

and three fully connected layers (total of 11 layers). The 

output was finally passed through a softmax and a 

classification layer for final decision making on an ECoG 

epoch. The training parameters of the WF-CNN (weights 

and bias) were updated using a stochastic gradient descent 

with momentum (SGDM) strategy. To minimize the loss 

function, 𝛼 (learning rate) and 𝛾 (momentum) were initially 

set to 0.01 and 0.9, respectively. 𝛼 and 𝛾 were not further 

tuned due to the satisfactory performance of the classifier. 

Initially, a random 90 min (75% of the first 2 hrs of the 

latent phase recordings) and the remaining 30 min (25% of 

the 2 h) from the post-HI data of the 1st fetal sheep (#1) were 

respectively used to train and validate the classifier. This 

was chosen due to the much higher number of spike 

transients in the dataset from sheep #1. The entire first 2 h of 

data of the 2nd fetal sheep (#2) were allocated to test the net. 

The data sets from sheep #1 and #2 were then swapped 

around to briefly cross validate the classifier’s performance 

across two sets of subjects. The classifier was trained over a 

total of 120 epochs. A total of 4314 ECoG segments, 

including 1266 gamma spikes and 3048 non-spikes, were 

manually labeled to evaluate the performance of the net. 



  

 
Figure 2.  (A-B): Examples of post-HI micro-scale ECoG spike transients.      
(C-D): The corresponding Rbio2.8 wavelet transforms of the spikes in A 

and B at scale 7. (E-F): The corresponding inverse Fourier transforms of the 
spikes in A and B using band-pass filter 80-120Hz. 

III. RESULTS 

The algorithm was developed, trained, and tested in 

Matlab® software on a single workstation computer: Intel® 

Core™ i7-7700 CPU 3.60GHz, 4 cores processor with 16GB 

RAM memory. Table II demonstrates the confusion matrix 

results of the WF-CNN classifier. Initially, the trained WF-

CNN classifier (using 2h of data from the 1st sheep) was able 

to accurately identify spike transients in the test-set from the 

2nd sheep (unseen data) with an overall high-accuracy of 

99.89% (AUC: 0.999). An overall high-performance of 

98.17% (AUC: 0.985) was achieved when the classifier was 

trained on data from the 2nd sheep and tested on the entire 

2hrs data of the 1st sheep. Fig. 5 illustrates the ROC plots of 

the results. Data distribution for training, validation and test 

of the classifier as well as the cross validated performance of 

the proposed classifier are represented in Table II. The high- 

performance of the classifier were obtained through its very  

TABLE I.  THE ARCITUCHURE OF THE PROPOSED 2D-CNN 

Layers Type 
No. of  

Neurons 

Kernel 

size 
Stride 

No. of 

Filters 

0-1 Conv. 72×3 3 1 
32 

1-2 Max_pool 36×2 [2 1] 2 

2-3 Conv. 36×2 3 1 
64 

3-4 Max_pool 18×1 2 2 

4-5 Conv. 18×1 3 1 
128 

5-6 Max_pool 9×1 [2 1] 2 

6-7 Conv. 9×1 3 1 
256 

7-8 Max_pool 4×1 [3 1] 2 

9-11 Fully_connected 1280    

 Fully_connected 20    

 Fully_connected 2    

 
Figure 3.  (A-B): Examples of non-spike ECoG background events. (C-D): 

The corresponding Rbio2.8 wavelet transforms of the ECoG segments in A 
and B at scale 7. (E-F): The corresponding inverse Fourier transforms of the 
ECoG segments in A and B using band-pass filter 80-120Hz. 

low number of false negative (missed) and false positive 

(wrong) detections. The achieved high-accuracies of the 

WF-CNN classifier, that employs a much simpler, and 

computationally-efficient, feature extraction strategy 

compared to our WS-CNN method [15], confirm the 

robustness of the technique for the identification of high 

frequency ECoG events, although a more detailed further 

analysis will be required using a larger dataset. As a result, 

the spectrally-sufficient extracted features from an ECoG 

epoch also allowed classification of inverse polarity spikes 

in the data. 

IV. CONCLUSION 

This paper introduced a novel extension to our 2D-CNN 

sharp-wave classifier by presenting a computationally more 

efficient feature-extraction approach that robustly provides 

the dominant spectral feature-sets of an arbitrary EEG/ECoG 

pattern for training of a 2D 11-layers deep CNN classifier. 

The method we utilized was able to accurately identify high-

frequency spike transients in a noisy background of 1024Hz 

sampled ECoG, in real-time, with a high-accuracy of 

99.03±0.86%, tested over a total of 4 hours post HI ECoG 

recordings. Results emphasize the correct choice of the 

proposed spectral feature extraction strategy to efficiently 

obtain minimal, but dominant, features that result in optimal 

classification performance of the suggested deep WF-CNN 

architecture for spike transient identification. Overall, the 

exceptionally accurate results of the WF-CNN classifier, 

using a much simpler but computationally much faster 

feature extraction approach suggest that this method could 

be used for automated analysis of 256Hz neonatal EEG for 

the early detection of EEG biomarkers which may provide 

valuable diagnostic & prognostic information for clinicians. 



  

 

Figure 5.  ROC curve and the corresponding AUC for the 11-layers  

WF-CNN gamma spike classifier 

TABLE II.  PERFORMANCE MEASURES OF THE WF-CNN CLASSIFIER  
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Figure 4.  The schematic of our proposed WF-CNN classifier. 


