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Abstract: We consider an evolution model of population
of frogs on the aqueous stage of their development. Here
we study the problem of determination of the parameters of
the proposed model from the observation data, in particular,
from the average times of attainment of different biological
ages and from the survivability function.

Our model gives possibility to estimate the number of mor-
phologically indistinguishable ages which is particularly in-
teresting in the case of incomplete experimental data.

We consider a model of evolution of populations of larvae of Rana tem-
poraria L. and R. Arvalis Nills from the stages of the fertilized spawn till
the moment of outgo of young-of-the-year to land.

The number of the age stages for these populations can be rather large.
For example, there are 39 age stages from that of the zero moment fertilized
spawn till the free-swimming larvae stage, see [1].

The main feature of the model under consideration is the explicit de-
scription of all possible ontogenetic stages of a developing specimen till its
outgo from the water to the land. This is necessary for detailed account of
influence of different external and internal factors on the dynamics of the
population evolution.

The modeling of this evolution is constructed in terms on the intercon-
nected elementary processes described by the system of differential equations

dIU/dt = —(k'[) + d[))I();

d[j/dt: —(kj-l-dj)fj—i-kj_lfj_l; g=1...,n; (1)

dl,1/dt = +knI,,.

Here, the function I;(¢) describes the quantity of the fertilized spawn
on the age stage number j at the moment ¢, d; is the mortality rate of the
larvae at this age stage, k; is the velocity of transition from the age number



J to the age number j + 1. In general the parameters kj;, d; can depend on
the external factors (temperature, aeration etc). They are assumed to be
constant in our model.

One of the main aim of construction of our model is determination of
the values of these elementary processes parameters from the experimental
observation data.

It is easy to verify that the solution of the system (1) has the following
form

n
I()(t) = Cgeimot; I](t) = CJ Za]’,leimlt.
=0

Here, C; = Coky ... kj_1, 5 =0,...,n and

J
aji= [[ (ms—m)~" mj=kj+d;
s=0,s#l

As it was mentioned above, the number of morphologically distinguish-
able stages of the specimen development can be rather large. One can mea-
sure experimentally the length of each of these stages, the time M of the
mass outgo of the larvae from the spawn, the average deviation o of this
process and the survivability S of the spawn, see [1].

Consider interconnections of the measured parameters M;, o;, S; with
the coefficients k;, d; of our model.

It is not difficult to verify that for all values of these coefficients all the
functions I;(t) and their derivatives dI;/dt, j = 0,...,n have exactly one
maximum. Furthermore, the kinetics of the passing of each age stage of the
larvae depends on the unordered collection of the velocities of passing of the
previous age stages, i.e., this kinetics will not change if any two of these
velocities will be changed one to another.

If the number of the spawn which have passed from the j-th age stage
to the j 4+ 1-th is considered as a random value with the distribution density

j
pi(t) =mo-...m; Z ajexp (—myt),
=0

then the mean time of the j-th age stage attainment and the dispersion of

this process are
szl/mg—l-...—l-l/m]’, (2)

Dj = (1/mo)2 + ...+ (1/m;)%. (3)



The part of the spawn of the age number j in the total number of the
fertilized spawn has the form

Here, as above 7 =0,...,n.

The relations (2) — (4) make possible determination of the parameters
kj;, dj of the elementary processes in our model from the statistical charac-
teristics M;, D;, S;.

Our model is particularly interesting in the case of incomplete experi-
mental data, i.e., if they are known just for some of the age stages. Consider
for the beginning a simple variant of this model.

Assume that the biological age number j has n; indistinguishable sub-
stages and that all these sub-stages have the same parameters k;, d;. Then
this population has the following statistical characteristics

Mj = ng/mg + ... —|—nj/mj,

D]’ = ng/(m0)2 + ...+ n]’/(m]')2,
J
S; = H(ks/ms)”s.

s=0
The numbers 5 = 0,..., N correspond to the morphologically distinguish-
able ages.

This system has a unique positive solution if and only if M; < M;4,

D;j < Djy1, S§ > Sj4q for all j > 0. The values of the parameters k;, n;,
m; can be determined from the following recurrence relations

e = M= Mj)
7 (Dj—Dj1)’

kj = "{/Sj/Sj-1m;.

1. The model dimension estimates.

nj = (Mj — Mj_1)-mj;

Assume the mean times M; of larvae sojourn in the j-th morphologi-
cally distinguishable age stage, j = 0,..., N, and the dispersions D; of this
random values to be measured in the experiment. Let n; be the number of
indistinguishable age stages. In this example, we shall begin the numbering
of these stages from one.



So, one has
Mj=1/my + ...+ 1/my,; (5)

Dj = (1/m1)? + ...+ (1/my,)% (6)

We need to determine here the number of indistinguishable age stages n;
and the values of the parameters my,...,m;,,. This problem is equivalent
to determination of intersection of the positive octante of nj-dimensional
euclidean space of the variables 1/m;, ¢ = 1,...,n;, the plane P in this
space which is described by the equation (5) and the sphere S™~! of the
radius /D, centered in the origin of this space given by the equation (6).

It is obvious that the distance between this origin and the plane P is
M;/ /M- Hence, the plane P and the sphere S"i~1 do intersect only if
M;//7; < \/Dj. So, we obtain a lower estimate for the integer n;: n; >
M? /Dj. If this inequality is strict, then this plane and this sphere have
infinitely many common points in the positive octant of the space.

Additional information on relations of the unknown parameters allows to
reduce this intersection. In particular, if it is known that n; = LM? /Dj]+1
and that for some number 7; < n; one has m; = m(2) for all 7 # i1, then the
system (5), (6) has the form

L/mi, + (nj = 1)/mey = My; (1/mi)* + (nj — 1)/ (m(z)* = Dy,
and hence,

n; nj—1

, Mgy = ————.
(nj - 1)1 /nij - M? ® Mj - l/mil

As usual, we denote by |z]| the largest integer less than or equal to z.
Consider another example. Assume that the parameters 1/m; corre-
sponding to the morphologically indistinguishable age sub-stages at the stage
number j compose an arithmetical progression with an unknown difference
A.
1. Let n; = LM?/D]J + 1 =2p+1 be an odd number and p = 1/my,

m;, =

2
Fj =2p+1-—u=z.
So, 1 — x is the fractional part of the number M?/Dj.
Then M; = (2p+ 1)p, Dj = (p+ Dp® + A%(p+1)(2p +1)/3, and
consequently
Di?p+1) _, , Aplp+1)
M? 3uz



hence

U 3Djz_
2p+ 1\ p(p+1)

2. In the same way for an even n; = LM?/DJJ + 1 = 2p one has

A= ii\/ L
2p\ (p+1(2p+1)

So, for all odd and even values of n; the sequences of the parameters
m;, © = 1,...,n; are determined up to the direction of their numeration,
either this is an increasing arithmetical progression, or this is a decreasing
arithmetical progression. The choice of the sign in the previous two formulas

can be done matching the obtained results with the parameters determined
for the nearby age stages with the numbers 5 — 1 and j + 1.

2. Determination of the parameters from the survivability
function.

Suppose that for all values of ¢ the total number of species in the popu-
lation can be determined. Thus, one can define the function

Xn(t) =Cy zn: ko-...- ki1 (zz: ;5 exp(—mﬁ)) . (7)

J=0

We call X, the survivability function. Corresponding random value de-
scribes the quantity of specimens whose age does not exceed n at the moment
t. ,

Here, as above a;; = f[ (mi —mj)~ Y, app=1.

J=0,i#j

Consider a distribution with the density F;,(¢) = 1 — X,,(¢)/Cp and cor-

responding moments of all integer orders

oo

dFy,
Voo = | t
PN dt dt,
0
p=1,...,00, see. [2].
Let a; = kij/m;, 7, =1/m;, Bi =ap-... - a;, where i =0,...,n. It is

obvious that 0 < a; < 1,1 > 8; > Bi+1 > 0.
We shall use in the sequel the following symmetric function



Sp(TO,...,TZ-):ZTS‘O-...-TiC”

of the variables 9, ..., 7;; here, we summarize over all partitions of a natural
number p to non-negative summands «y, . .., ;.
Simple calculations show that

Vl,n =710+ ...+ Bn-17n,

VQ,n = 2[7’02 +,607’1(7'0 + 7'1) +... —i—,anlTn(To + ...+ Tn)],
and for p > 1

Vo = p! <7'(’)J + BomiSp—1(10,71) + ... + P10 Sp—1(70, . .. ,Tn)>.

Consider the problem of determination of the parameters n, §;, 7, 1 =
0,...,n from the values of the moments Vi ,, Vo ,,..., V5, ... calculated
from the experimental data. Here, n denotes the number of indistinguishable
age sub-stages of some morphologically distinguishable age.

Lemma 1. Let k> 1, 0< vy <1, l=1,...,k, then

k

hm Si(la’YIa cee 37k) = H(l - ’yl)_l'
1— 00 =1

Proof follows from induction over k.
Lemma 2. Let k,q > 1, then

14+q—1 ! k
lim Si(lv"'alavla"'ayk) : ( -1 ) = H(]- _’Yl)il'
—_———

1—00 q e
q =1

Proof is based on induction over k£ and follows from the fact that the
number of partitions of an integer ¢ to £ nonnegative integer summands
equals to the number of partitions of the number i+ to k integer summands
each of which is greater or equals 1.

Given a collection of numbers 7y, ..., 7,, we call the multiplicity of the
number 7 in this collection the quantity of the numbers in this collection
which are equal to 7.

Next two lemmas follow from the previous statements and the definition
of the moments V; ,,.



Lemma 3. Let 7 = max{my,...,7,}, and let q be its multiplicity. Let
ms be the numbers for which T =t,,,, s=1,...,q. Then

k

lim —(q —DWin z”: <5k—1 11 (1- Tl/T)1>.

: _ (=)
1—00 (’L +q 2)7‘ k=myq 1=0, l#£my,...,mq

Lemma 4. v
. i+1,n
lim ———= = max{7,..., 7}
100 1Vin

Let 74py = max{7o,...,7,}. Denote by {7o,...,7,/T{0}} the set obtained

from {7,...,7,} by eliminating this maximal number.

If the multiplicity of 7o) is greater than one, we eliminate this number
with the maximal subscript. If the set {7o,..., 7 /7o), .., T(r—1}} is al-
ready constructed, then the set {70,...,7n/7(0},---, Tk} } of n — k numbers
is constructed by the same way.

Given a sequence of positive numbers ay,...,a,, we introduce the fol-

lowing recurrent notations

(1) . : .
V. (7—07"'7/6n7177—n7a0) = ‘/i,n_za(]v;fl,ny

)

k k-1

V;( )(7-07 s 7671,717 Tn; A0,y - - - 7ak}) = sz( )(7—07 s 7/6n7177—n; ap, - .. 7ak—1)_

. k—1

mk—1Vi(,1 )(TO, ooy Bu1, Tni @0, - -+ 5 Gg—1).
Let o be a permutation of the symbols (0,1,...,n) and ag = 75y, - - -, ap =
Ty(n)- Lt is easy to verify that the function Vi(f,)cﬂ(m, ey Bre1,Tni Qg - - - k)
is symmetric with respect to variables ag, .. ., ax, and that foralls > 1, 7 > 1

+j _
Vn(:l:ji)l(Tov oy B 1, T To(0)s - - -5 To(k—1)) = 0. (8)

This relation allows to determine the value of parameter n from the
experimental observations in our model.

Lemma 5. Let 0 < k < n and o be any permutation of the numbers
0,...,n, then

lim VZS@ (70, -+ Bn—1,Tnj Ho(0)}s - - ’T{U(k—l)})
i—o0 iVi(k)(

= T{k}
T0s -+ s Bn=1, T3 T{a(0)}> - - - » T{o(k—1)})

Outline of the proof. Choose k maximal numbers 74(g),. .., T,(x—1) in the
set {70,...,7n}. Here 0(0) <...o(k —1) and ¢ is the multiplicity of 7¢;, in
the set {70,...,7n/7f0}, .- T(k—1}}. Comparing the maximal summands in
the numerator and in the denominator in the fraction

k
Vi(+,1(70, s B, Ths ()} - s T{o(k—1)})
(i+k+q+ 2)!7{?}’“

)



one can verify that this fraction has a finite limit for # — oco. The statement
of the lemma is verified in the same way.
Hence, the lemma 5 and the equation (8) allow to determine uniquely

the values of the parameters 7; and n from the modified values Vz-(k) of
the moments of the distribution (7) and at the same time give a simple
algorithms of this determination.

However, these statements do not give possibility to reconstruct the order
of the determined values 7y}, ..., 7, and the values of the numbers o; =

In general, this reconstruction problem has not an unique solution and
the survivability function can "forget” partially or completely the order of
the lengths of particular age stages.

Consider for the beginning a simple example. Assume that the ontoge-
nesis in our model has two stages (n = 2), and the mean lengths of these
stages are known: i.e.,

dly

dt
drl
d—tl = kolo(t) — m1I1(2), (9)

where mg > ky and the survivability function X7 = Iy + I
e*mOt _ emlt>

mp —mo

= —mUI() (t);

Xi(kog, mg, m1) = Cp (e_mot + ko - (10)

is known.

Now, we are going to determine the order of the numbering of the pa-
rameters 7y, either 7'{*0% = my (1) T{Zi = mq, or T{Bl} = my (1) T{Zi =m
For this purpose consider the mean for the survivability function (10).

o m1 + k
M= / td(1 — X, /Cp) = TR0,

0 mommy
M*T{O}
T{o}T{1}

and in this case

If 7'{7[]% = mg and T‘{fﬁ = my, then ko(7{0}, T(2y) =
the survivability function has the form
e—mot _ e—m1t>

mip —mo

X1(ko(Tioy, (13), mo, ma) = Co (emOt + ko (70}, T13) -

In the opposite case T{_Ol} = my and T{_ll} = my, we have kO(T{I}a T{o}) =
m, and hence,
T{O} {1}
e—mot _ e—m1t>

mip —mo

Xy (ko(T(1y, Tg0y), M1, mo) = Co <em°t + ko(T{1y> Tq0y) -

8



In the case
0 < ko(Tqoy, T1y) < mo, 0 < ko(rq1y, T40y) < M, (11)

both variants of solution are equivalent, so the problem of ordering of the
parameters 7(;) in the model (9) has not a unique solution. If the parameters
ko(T0y, T{1})> ko(7q13, T{0y) do not satisfy the condition (11), then only one
of these ordering will be possible:

if7'0<M§Tl,thenm0:7'0_1, m1:7'1_1;

if m < M <719, then mq = T(;l, mgy = Tfl.

So, it is not possible to predict does the survivability function ”remem-
ber” the ordering of the lengths of the age stages. For this purpose one
needs to determine the total number of these stages and the unordered set
of the values of the parameters {7 }.

The considerations above can be extended to the cases of arbitrary n > 2.
First, we shall show that the survivability function (7) is symmetric with

respect to the parameters my, ..., m, and to the moments V,, ,, p = 0,...,n.
This symmetric form is determined as follows: Given my,...,my, ky <
mo, ..., kn_1 < my,_1, introduce the notations

AO,jvn = 1’ A'Y:j,n = Z mjl e mjl’

0<n<...<5u<n
jl #]77]!#7

n—1

Ay i V-

i = (_1)n1<z Saialan 7”>m” i=1,....n.
v=0 ’

Then the survivability function (7) can be represented in the following sym-
metric form N
X,=0Cy Z ki,nan,ie_mit. (12)
i=0

Hence, for any positive Vo, =1, Vi 5, ..., Vyh_1,, and positive parameters
mo, . . ., My first n moments of the function X,, are equal to Vo p,..., Vi—1n,
respectively.

So, the problem of determination of the number n and the set of the
values {7f13,...,T{,}} is equivalent to determination of the symmetric form
(12) of the function X, and hence, the problem of determination of the
ordering of {7y1y,...,7f,}} is reduced to that of finding such permutation o
of the numbers 1,...,n that 7,1y} =m1,..., T(s(n)} = Mn.

In this case the function X, is represented in the form



J
—myt
ajyle ! N
0

n
Xn=) Cj,
7j=1 l

Cl = C()k(), 02 = Clkg, A ,Cn—l = Cn_gkn_l.

It can happen so that there are more than one permutation of the num-
bers for which the symmetric form (12) can be represented in the canonical
form. In such cases the problem of determination of the parameters m; for
7 =0,...,n has several solutions.
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