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ABSTRACT. We consider embeddings of Eulerian digraphs that
have in-arcs alternating with out-arcs in the rotation schemes at
each vertex. We define the multicycle C4™ to be the digraph on
the vertex set {v1,v2,...,v,}, with arcs comprising [ copies of the
cycle (v1,v9,...,v,) and m copies of the cycle (vy,Vn—1,...,v1).
We consider maximal embeddings of multicycles and show that all
except the bracelet digraphs Cl'! are upper-embeddable. We find
that some multicycles have the maximum possible genus range, be-
ing both upper-embeddable and planar, and some multicycles have
a genus range of zero.

1. INTRODUCTION AND DEFINITIONS

This report builds on work by Bonnington, Conder, Morton and
McKenna [1] on embeddings of Eulerian digraphs.

The language used in this report is, as far as possible, faithful to the
definitions and conventions used in [1]. Embeddings considered are 2-
cell embeddings of loopless digraphs on compact connected orientable
two-manifolds or surfaces, as they will be called. In all discussions
of digraphs, the implicit assumption is that they are connected. One
convention is dropped: in this report digraphs with in-deg(z) = out-
deg(z) = 1 at some vertex x will be counted as embeddable digraphs,
rather than excluded from consideration. The reason is that the circuit
graphs occupy a natural position within the family of multicycles whose
embedding properties will be studied.

An embedding of a digraph on a surface is an embedding in which
the arcs and vertices of the digraph are placed on the surface with arcs
meeting at mutually incident vertices in such a way that the orienta-
tion of a region is consistent with the orientation of the arcs which

make up its boundary. When vertex rotation schemes are employed to
1



2 MAXIMAL EMBEDDINGS OF DIRECTED MULTI-CYCLES

represent an embedding, the conditions on the placing of arcs and ver-
tices are equivalent to the condition that in-neighbours alternate with
out-neighbours in the rotation schemes at each vertex. As with graph
embeddings, the regions of an embedding are the components of the
complement of the digraph on the surface. The term face is reserved
for regions enclosed by arcs that form an anti-clockwise cycle, with
the corresponding term antiface for regions enclosed by a clockwise cy-
cle. The genus and maximum genus of an embeddable digraph D are
denoted (D) and /(D) respectively.

Adjoining a collection @ of arcs to a digraph D = (V, A) will mean
creating the digraph D' = (V; AU Q). When the arcs in @ form a
directed cycle C, the result of adjoining C' to D will be denoted D+ C'.

We say that a digraph is upper-embeddable if it can be embedded with
two or three regions; no digraph embedding has fewer than two regions.
This is analogous to the usual concept of upper-embeddable graphs,
applied to those graphs having one-region or two-region embeddings.
This report considers the problem of upper-embeddability, describing
certain types of directed cycle that may be adjoined to an embedding
such that upper-embeddings are preserved. The results are applied to a
particular family of embeddable digraphs, the multicycles, introduced
in section 2. It is shown that all members of the family except the
bracelet digraphs are upper-embeddable.

Questions about upper-embeddability are closely related to questions
about maximum genus. For a survey of results on the maximum genus
of graphs the reader is referred to an article by Ringeisen [3]. It lists
some problems and questions about the upper-embeddability of graphs
which can be analogously posed for embeddable digraphs. One question
asked in Ringeisen’s article is: Can the genus and maximum genus of
a connected graph be equal? If we ask the question of embeddable
digraphs, Section 5 shows that some multicycles do have this property.

2. THE DIRECTED MULTICYCLES CL™

The notation C,™ will be used to denote the directed graph on the
vertex set {vy,ve,..., v}, whose edges consist of I cycles of the form
(v1,v9,...,0,), and m cycles of the form (v, v, 1,...,v1). We call
this three parameter graph a multicycle. It should be noted that either
[ or m may be zero, but not both.

3. ADJOINING CYCLES TO DIGRAPH EMBEDDINGS

We begin with two lemmas that will form the basis for an inductive
construction of 2 and 3-region embeddings of the multicycles CL™.



MAXIMAL EMBEDDINGS OF DIRECTED MULTI-CYCLES 3

U1

Vg U2

Vs V3

(2
FIGURE 1. The directed multicycle Co'".

An inductive approach is natural for this family of digraphs, since all
multicycles can be constructed by repeatedly adjoining directed cycles
to a directed circuit.

The lemmas and their proofs are based on the section on Maximal
Embeddings in the book by Gross and Tucker [2].

Lemma 3.1. Let D be an embedded digraph. The edges of Cy may be
adjoined between any two vertices u and v of D, such that the number
of regions is preserved.

Proof. In a digraph embedding, every vertex meets at least two dis-
tinct regions, so let Ry and Ry be distinct regions containing v and v
respectively. When the arc (u, v) is placed on a handle between R; and
R,, the two regions are replaced by a single region R. When (v,u) is
placed such that the rotation schemes at v and v have in-arrows alter-
nating with out-arrows, it lies across R, replacing R with two distinct
regions. The operation is complete, and the original number of regions
is preserved. O

It follows inductively that any number of copies of C5 may be ad-
joined to a digraph embedding while preserving the number of regions.

The next statement describes a cycle that can be adjoined such that
the number of regions is minimally changed.

Lemma 3.2. Let D be a digraph embedded with N regions, and Ry
and Ryy be two regions of this embedding, bounded by the directed cy-

cles Cy = (v1, 09, ..., 0y) and Cy = (wy, ws, ..., w,) respectively. Let
Viys Vig,y - -+, Vi, be a subsequence of Cy, and wj ,wj,,...,w; a subse-
quence of Cyw. The directed cycle C' = (vi,, Viy, . . ., Vi,, Wiy, Wy, - - ., Wj,)

has the property that D + C' can be embedded as a digraph with N re-
gions if r and s are odd, or N + 1 regions if r and s have opposite
parity.
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Proof. Without loss of generality we can assume r is odd. We can
assume, further, that Ry is a face; a reversal of arrows in the same
arguments will cover the case when Ry is an antiface.

The assumption on r gives the path v;,v;,,...,v; an even number
of arcs. Consider the graph D’ consisting of D with v, v;,,..., v,
adjoined. The embedding of D becomes an embedding of D’ when
the arcs of the adjoined path are inserted into the rotation schemes at

Viys Viyy - - -, Ui, as follows (or see Figure 2):
(TR .’U(il,l)Vh’U(ilJrl) C
Vigt + v Vig—1Vige, ) Vige gy Vig+1 - - - 0T k=2, (r—1)
Vi o ov Uir—lvi(r_l)vir—l—l Ce

where bold-face entries represent vertices inserted into the original ro-
tation scheme.

FI1GURE 2. The path v;,,v;,, vis, Vi,, Vi; adjoined to a face Ry .

This embedding of D’ has the property that all regions of the original
embedding of D are preserved except Ry, in whose stead is another
region, R, say. (One can directly check that this is the case for a
path with two edges, and note that the case for longer paths of even
length builds inductively on this.) Moreover, in-arrows alternate with
out-arrows at all vertices except v;, and v;,.

E]

Now consider the path w; , wj,, ..., w;,:

Case 1: s is odd

Then wj,, wj,, ..., w;, contains an even number of arcs; hence it may be
adjoined to D’ in the same way that v; , v;,, ..., v; was adjoined to D.
This embedding of D", as we shall call D' with the new path adjoined,
has the property that all regions of the embedding of D’ are preserved
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FIGURE 3. A pair of edges adjoined to an embedding
across distinct regions Ry and Ry, replacing them with
two new regions.

except Ry, which is replaced by a region Ry, say. Thus, it has the
property that all regions of the original embedding of D are preserved,
except Ry and Ryy. Moreover, in-arrows alternate with out-arrows at
every vertex of D" except at the four vertices v;,,v; , w;, and wj,.

Suppose the arcs (v;,, w;,) and (w,,, v;,) are adjoined to this embed-
ding of D" to satisfy the condition of alternating in- and out-arrows
in the rotation schemes of these four vertices. The result is clearly a
digraph embedding of D+ C'. To see that the number of regions is still
N, we observe that when two edges are adjoined to a graph such that
each is placed across regions 7y and R, the regions R, and R, are
replaced by two new regions, and the other regions of the embedding
are preserved (see Figure 3). Hence, this embedding of D + C has N
regions.

Case 2: s is even

Now the path wj ,wj,,..., w;, has an odd number of arcs. If the arc
(wj,, wj,) is momentarily ignored, it follows from the previous case that
the paths wj,, wj,,...,w;, and v;,,v;,,...,v; and the arcs (v;,,w;,)
and (wj,,v;,) may be adjoined to D such that the resulting embedding
preserves all regions of the original embedding except Ry and Ry .
Also, in-arrows alternate with out arrows at all vertices except w;, and
wj,. Thus, if (w;,,w;,) is inserted into the rotation schemes of w;,
and wj, such that in-arrows alternate with out-arrows, the result is a
digraph embedding of D 4+ C'. The operation changes the number of
regions in one of two ways — either it increases by 1, or it decreases by
1. If it decreases by 1, the only regions affected are R;, and Ry, which
are replaced by a region R. This results in the region R lying on both
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sides of the arcs of C', which contradicts the embedding being a digraph
embedding. Hence, this embedding of D + C has N + 1 regions. [

FIGURE 4. Adjoining a cycle of length / between two
antifaces of an embedding. The antifaces are replaced by
a face and antiface.

4. MAXIMAL EMBEDDINGS OF (L™

Lemma 3.1 implies that all graphs formed by adjoining copies of C,
to an upper-embeddable graph are upper-embeddable too. A multicy-
cle Cb™ contains nxMin(l,m) copies of the directed cycle Cy, which
simplify the problem of finding maximal embeddings.

If C*0 is upper-embeddable for all &, it follows that C**!! is upper-
embeddable for all [, hence all graphs CL™ with [ > m; vice-versa for
[ < m. Similarly, if C2? is upper-embeddable for all n, then all graphs
C7™ with m > 2 are upper-embeddable.

With these considerations in mind, we will show that the bracelet
digraphs on n vertices, C'!''| are the exception to an otherwise general
rule: for all pairs (I, m) that are neither (1,1) nor (0,0), and all n > 2,
the multicycles CL™ are upper-embeddable.

Proposition 4.1. The directed graphs C*° (and the graphs C°* by
symmetry) are upper-embeddable.

Proof. This can be shown by a form of induction on k£ — showing first
that the digraphs C2*10 have a 2-region embedding, and then that the
digraphs C?+20 have a 2-region embedding if n is even, and a 3-region
embedding if n is odd.

We show by induction on [ that the graphs C2*1-0 have a 2-region
embedding. Taking [ = 0 as the base step, the digraph C is a circuit
on n vertices and has a 2-region embedding in the plane. For the
inductive step, suppose C2 10 has a 2-region embedding. Then the face
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and the antiface are each enclosed by a cycle made up of one or more
copies of the n-cycle (vq, vy, ..., v,), because these are the only directed
cycles the digraph has. Suppose n is even: the vertices vy, vs,...,v,_1
are encountered, in that order, along the cycle enclosing the antiface,
and the vertex v, is on the cycle enclosing the face. By Lemma 3.2
the n-cycle (vy,vs,...,v,) may be adjoined to the embedding such
that the number of regions is preserved. The same conditions hold
with the new digraph, so a further n-cycle may be adjoined such that
the number of regions is preserved, yielding a 2-region embedding of
C2HDFLO 1f s odd, the vertices vy, va, ..., v, sit, in that order, on
the cycle enclosing the face, and the vertices vy, vs,..., v, sit, in that
order, on the cycle enclosing the antiface. By Lemma 3.2 the cycle

(v1,V9, ..., Uy, V1, Va,...,0,) may be adjoined to the embedding such
C2UHDF10

that the number of regions is preserved; hence the graph of C},

has a 2-region embedding.

For graphs of the form C2*20 let the graph C2*10 be embedded
with 2 regions. The directed cycles in this digraph consist of one or
more copies of (vy,vs,...,v,), so the vertices vy, vs, ..., v, sit, in that
order, on the cycle enclosing the antiface, and the vertex v; is on the
cycle enclosing the face. By Lemma 3.2 the cycle (v, vs,...,v,) may
be adjoined to give a 2-region embedding of C?*20 if n is even, or a
3-region embedding if n is odd. ([l

Corollary 4.2. For | # m, the graphs Ct™ are upper-embeddable.
Proposition 4.3. For all n the graphs C>?* are upper-embeddable.

Proof. Consider the embedding of C!' that has clockwise rotation
schemes at n — 1 of the vertices, and an anticlockwise rotation scheme
on the n'* vertex (see Figure 5). This embedding has n regions. With
reference to the labelling of the regions used in Figure 5, consider the
effect of adjoining the cycle (v, v,_1, ..., v1) to the embedding by plac-
ing each arc (vg, vry1) on a handle between region Ry and region Ry .
When n — 1 of the arcs are placed in this way, the regions Ry,..., R,
are amalgamated into a single region, giving the underlying graph a
1-region embedding. Adjoining the n'* arc results in a 2-region embed-
ding.

The following rotation scheme, derived from the original rotation
scheme, has that effect:

Vgt .. .v&_l)vaﬁl)vi_l)v@_l) oofork=1,....,.n—1

Up: ...vazr
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FIGURE 5. The embedding of CL' used in Proposition

4.3. The n regions of this embedding have been labelled
Ry,...,R,.

(Bold-face entries again represent vertices inserted into the old ro-
tation scheme. When k£ = 1 the subscript £ — 1 should be understood
as n, and the symbols + and - are to distinguish out-neighbours from
in-neighbours respectively.)

In this embedding in-neighbours alternate with out-neighbours in
the rotation schemes at each vertex, so it is 2-region digraph embed-
ding of C}%. Moreover, the vertices vy, vo, ..., v, 1 sit, in that order,
along the cycle enclosing the antiface, so by Lemma 3.2 the directed
cycle (vy,v9,...,v,) may be adjoined in such a way that the number
of regions is 2 if n is even, and 3 if n is odd. Hence the graphs C>? are
upper-embeddable. 0

Corollary 4.4. The graphs C]»™ for m > 2 are upper-embeddable.
Proposition 4.5. A mazimal embedding of C}-', the bracelet digraph
on n vertices, has n regions.

Proof. The authors of [1] proved the case when n is even. It is also
true for n odd. The following proof is independent of the parity of n.
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Let the colouring of a vertex black or white again represent anti-
clockwise or clockwise rotation schemes at that vertex. In this way a
particular 2-colouring of the vertices corresponds to a particular em-
bedding of the digraph.

Starting with a bracelet digraph coloured with alternating black and
white vertices, we show by induction that if one black vertex is sub-
stituted for an adjacent pair of black vertices, giving an embedding of
a bracelet digraph on one more vertex, the new embedding has one
more antiface than the original embedding, and the same number of
faces. Likewise the process of substituting a white vertex with an adja-
cent pair of white vertices, the new embedding has one more face and
the same number of antifaces. It is clear than any black and white
vertex-colouring of a bracelet digraph that has at least one vertex of
each colour can be derived from a bracelet digraph on fewer vertices,
vertex-coloured black and white alternately, with a series of such sub-
stitutions.

As the basis step, let a bracelet digraph on 2k vertices be vertex-
coloured black and white alternately — giving k£ black vertices, and k
white vertices. To each black-white-black sequence of three vertices
in the bracelet there corresponds one face (see Figure 6), so there are
2k

5 = k faces in the embedding, and to each white-black-white sequence

there corresponds one antiface, giving k antifaces.

I3 F

FIGURE 6. The face F corresponding to a black-white-
black sequence of vertices in the bracelet digraph.
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As the inductive step, suppose that various substitutions led to a
bracelet on 2k + r + s vertices, with k£ + r vertices coloured black
corresponding to k + r antifaces, and k + s vertices coloured white
corresponding to k + s faces. Let one vertex, let us assume a black
one, be replaced by a pair of adjacent black vertices, u and v. The new
bracelet has k +r 4+ 1 black vertices and k + s white vertices. The arcs
(u,v) and (v, u) enclose between them an antiface, call it A. If u, v, the
arcs between and the antiface A are contracted into a single vertex, the
remaining regions of the embedding are still preserved and the rotation
scheme at the contracted vertex corresponds to a black colour. By the
inductive hypothesis, these regions consist of k£ + r antifaces and k + s
faces. Thus, the embedding has k+r+1 antifaces, which is the number
of black vertices, and k+ s faces, which is the number of white vertices.
This completes the induction.

An embedding described by a 1-colouring of the vertices is planar,
with n+ 2 regions. An embedding of C!'! that is described by a colour-
ing with at least 1 vertex of each colour has n regions; hence it is a
maximal embedding. UJ

The maximum genus 7, of all graphs C-™ can now be stated as a
consequence of Euler’s formula:

Proposition 4.6. For all graphs Ct™ on n > 2 vertices, with [,m > 0
(excluding | =m =0),

Lmy _ L, if (I,m)=(1,1), and
T (C) = { [in(l+m —1)] otherwise

where square brackets denote the greatest integer function.

5. COMMENTS ON GENUS AND GENUS RANGE

Restriction on the genus range was demonstrated by the authors of
[1] to be a property of the spoke digraphs on n = 2k +1 vertices, which
have genus range 1. The multicycle family contains members whose
genus range is even more restricted, and is in fact zero:

Proposition 5.1. For odd values of n > 2, the multicycles C%? and

C20 have v = v = 25+

Proof. From the previous section we know that C%? is upper-embeddable
and has a 3-region embedding. We show it is a minimal embedding by
showing that it does not have a 5-region embedding. For, with a view
to contradiction, suppose it did have a 5-region embedding. The short-
est directed cycles in the graph have length n, so such an embedding
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would require the digraph to have at least L arcs — this number comes
from counting at least n arcs for each Cycle enclosing a region, and
in doing so counting each arc twice. The digraph has 2n arcs, and
2n < %n; a contradiction. The genus follows from Euler’s formula. [

For odd n, Lemma 3.2 can be used to derive an upper bound for
the genus of a multicycle CO*. Starting with a 2-region embedding
of a circuit in the plane, copies of the cycle (vq,vq,...,v,) can be
inductively adjoined, each time increasing the number of regions by
1. Hence C%* has an embedding with k + 1 regions, and by Euler’s
formula the corresponding surface has genus (E=Dn-1)

For even n, the genus of the graphs C%* and C*? is found via em-

beddings that have n-cycles enclosing all regions:

Proposition 5.2. For even values of n, and for k > 1, a minimal
embedding of CO* has 2k regions, and

(o) = (cpny = =22

Proof. By induction on k. For k = 1, the circuit C%!, has a 2-region
embedding in the plane, with each region enclosed by an n-cycle. As
the inductive step suppose C%* has an embedding with 2k regions,

with each region enclosed by an n-cycle. Let the cycle (vq,vq,...,v,)
enclose a face F' of this embedding. Suppose the cycle (vy,ve, ..., vy,)
is adjoined to the embedding by inserting its arcs into the existing ro-
tation schemes at vy, ..., v, as follows:

Uit U Vg Vit L. fori =100

where (as subscripts) 1 —1=n, and n+1 = 1.

By face-tracing (see Figure 7), and considering vertices v;_1,v; and
v; 11, there are three possible regions in place of the original face F': two
faces, which have been labelled F; and F5, and one antiface, labelled
A. The antiface A is clearly enclosed by an n-cycle. The faces F; and
F; follow arcs that alternate between the original arcs and the adjoined
arcs; because n is even, they retrace themselves after n arcs. Hence
F} and F, are distinct faces, each enclosed by an n-cycle. The number
of regions in this embedding of CY**!is 2k — 1+ 3 = 2(k + 1), and
all regions are enclosed by n-cycles. The genus follows from Euler’s
formula. 0
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FiGure 7. The rotation scheme at v; 1,v;,v;1 1. The
regions replacing F' have been labelled Fi, Fy and A.

The digraphs CL!, CLHL CUHLL obviously have planar embeddings.
With the exception of Cl!) they are also upper-embeddable, so in a
sense they have the greatest possible genus range.

Finally, it is clear that a copy of the cycle C5 can be adjoined between
adjacent vertices while preserving the genus. If [ > m, the graphs CL™
can have all its m cycles in one direction paired off with m cycles in
the other direction, and treated as a colletion of copies of C5. Hence,
for [ > m the graphs C.™ have genus less than or equal to the genus
of C!"™0 For the multicycles with m > [, the genus is bounded above
by the genus of Co™!.
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