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1 Introduction

Based on Landauer formula [6] for quantum conductance one may reduce the description of the
quantum current [11] in quasi — one-dimensional nano-wires to solution of relevant one-dimensional
scattering problem and calculation of the corresponding transmission coefficient % E) which connect
the amplitudes in front of the asymptotically plain waves constituting the scattered waves ¢ (z, F)
at oo _ _
e VB 4 ﬁe’ Er g — 400,

w(%E) ~ % —ivVEz
e , T — —00.

The averaging of the conductance over the Fermi distribution, [1]
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gives another version of the Landauer formula - the current-voltage dependence j(U) - for higher
temperature and nonzero voltage applied to the wire :

=7 / - | [F(E, Ep+eU)— F(E,Ep — eU)|dE | (1)

here EF is the Fermi level, U - applied voltage. Assuming that electrons in reservoirs on both ends of
the quantum wire are almost free, we may express the density of states in (1) in terms of momentum
as dE = 2kdk. For sufficiently small values of the transmission coefficient 7 (E) the formula (1) may
be reduced to the formula:

/|T F(E, Ep +eU) — F(E, Ex — eU)JdE (2)

We discuss below ballistic electron’s transmission problem in the nanowire neglecting at this stage
the electron-electron and electron-phonon interaction and considering only the one-body problem.
But we pay a special attention to the calculation of the effective mass [7] of electron in the lattice. In
fact the magnitude of the effective mass defines the mobility of electrons : the free path and the De-
Broghlie wavelength. The assumption about the small effective mass serves a base of application of
methods of the scattering theory to the description of ballistic electrons in nano-electronic networks,
see [8], [4], [3], [5]. We analyze here two possible mechanisms of appearing of a small effective mass
in super-lattices: the mechanism based on a strong interaction of blocks in the superlattice and
the mechanism based on a weak interaction between sub-lattices. Respectively two examples are
considered which show that electrons in strongly connected and weakly-connected superlattices may
exhibit a quasi-relativistic behaviour and may be described by an analog of a one-dimensional Dirac
equation, which is derived from the first principles under assumption of low temperature and weak
external electric field.

Basing on the derived Dirac equation we consider the time-periodic perturbations in form of
running wave and a localized singular potential. In both cases the transmission coefficients exhibit
spectral band structure. This phenomenon may be used for manipulation of quantum current in
quantum networks constructed of the narrow-gap superlattices.



2 A superlattice with a small effective mass.

In this section we construct a solvable model of a quantum waveguide with a small effective mass
of charge-carriers caused by splitting between energy levels of electrons in the basic block of the
corresponding lattice and strong interaction between blocks.

Consider an hermitian 2 X 2 matrix @@ : £ — E with real eigenvalues ¢, ¢o. Introducing the

+ L _
mean value ¢o := o 5 £ and splitting ¢ := El 5 i

w(o 1)1 L) <3>

We use () as a block for construction of a periodic lattice operator @ in the Hilbert space & =
lo x E'=[3(FE) of infinite sequences F = {fl}z , fieE.
=—00
Denote in this section by 7 the shift operator in £

T = A= e

> (0, we may present () as

and by Z the unity in /. Introduce the operators P;, P, projecting respectively onto the first and
second components of each vector f;:
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and by 75 the operators swoping the components of each vector ﬁ Jfor instance

T fia > _ Ji2 >
fio f__ /AN P
The required one-body lattice Hamiltonian is defined as

Q = Q X IL2 — iOé7T12P27-+ iOé7T12P1T+. (4)

It is presented by an infinite periodic Jacobian matrix with 2 x 2 blocks () on the main diagonal and
the interaction between blocks introduced by the shifts:
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Fourier transform

FF— Y f = F(p),
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FT{/i},_ _=€¢"F(p)
defines the similarity of the operator Q to the multiplication in Ly((—m, 7), E') by the matrix- function
qo + < O e
V2 © =z
The spectrum og of the operator Q is defined by dispersion equation
det (Q(p) — AE) = (A — q0)? — 6% — & + adV2 — adV2(1 — sinp) = (6)
(A —qo)? — 6% — a4+ adV2 — adV2 (sinp/2 — cos p/2)> =0, —7 < p < T,

and consists of two intervals - upper and lower spectral bands with the spectral gap between them :

((JO _ [52—1—&2—@5\/5]1/2, q0+[52+a2—a5\/§]1/2)
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is calculated from the dispersion function A(¢) defined by the dispersion equation (6). At the bottom
of the upper spectral band ¢ = 7/2, X\ = qo + [6% + o — adv/2]'/? it is positive and equal to

The effective mass

2[6% + a? — ab/2]'/?
ad\/2 '

It is as small as an inverse of the minimal of two (large) parameters a, ¢ is.

Note that the multiplication operator (5) has a uniformly convergent asymptotic expansion for
small deviations of quasimomentum ¢ from the lowest point of the upper spectral band ¢ = 7/2. This
expansion is defined by the Taylor series of exponentials after the change of variables (¢ —7/2) — p

+ e 6 + iOz o o] (*ip)l
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After the corresponding transformation of the spectral variable A — i := A\ — ¢y we obtain a new
operator

D=Q—qF= pr—l-%az—k(%—ka)aﬁ—

0 a(e—ip/a_l_i_ip/a) B
+(a(eip/a—1—ip/a) 0 ) B

B 0 a(e”"’/o‘ — 1—|—ip/a)
- D0+(a(eip/o‘—l—ip/a) 0 )

The main part of it o,p has the spectrum o” centered at the origin :

op={p:q+pcoy}t.



One can see that the last term in the expression for the operator D may be estimated near the origin as
p?. In fact small values of the p play an important role in conductance processes for low temperature
and weak potential U. Really, assuming that the potential U is small and the temperature 7" is low
we may introduce a new norm in the space of the spectral representation of the operator D :

(u, v) = /uﬁ [F(E, Ep +U) — F(E, Ep — U)] dE.

The weight function in this norm which is combined of Fermi distributions is almost a step- function
[TA under the above assumptions. It is localized on a small interval A, |A| ~ T + 2eU near the
Fermi -level. In particular assuming that the Fermi-level coincides with the bottom of the upper
spectral band

Ep=Qo+[0*+ 0o — 045\/511/2,

and introducing the quasimomentum ¢ instead of the energy A = E we see that the restriction of
the operator D onto the spectral subspace corresponding to the step-function Il differs from the
D, — Fourier image of the Dirac operator — only by the small addend

( 0 « (e*"”/o‘ -1+ ip/a) )

a (ei”/o‘ —1-— ip/a) 0

with the norm not greater than |a|~'A%. Summarizing the above observations we obtain the following
important assertion

Theorem 1 . The dynamics of electrons in the quasi-one-dimensional lattice combined of strongly
interacting two-dimensional blocks with large splitting of energy levels is described for low tempera-
tures and weak fields by the quasi-relativistic equation, if the Fermi — level sits at the bottom of the
upper spectral band.

This fact is in natural agreement with physical observation of quasi-relativistic behavior of elec-
trons in some semiconductors. But the same effect for the effective mass may arise in totally different
situation, see the next section.

2.1 Narrow-gap superlattice.

Consider a double superlattice combined of two parallel weakly interacting branches with equal pe-
riods. Each branch is constituted by equivalent quantum dots (atoms or quasi-molecular complexes)
with vacant normalized orbitals ¢, = ¢ (x—le), [ = 0,£1, £2...; 0, = ¢(x—me), m =0, £1, £2.. ..
We use the following assumption about the overlapping integrals:

(Wr, V) = (o1, ou) =0, if [I = 1'| > 2,
(o1, vy =0, if L £ 1,
(1, o) = aj, ifj=0,%1, a0 =1, ar = a_1 > 0; (¢, Yry) = by,
if; = 0,£1, bg=1, by =b_1 <O0; (% <Pl>:Oé:O_é. (8)

We assume, that the one-electron Hamiltonian of the superlattice is presented as a sum of the two
weakly interacting chains of quantum dots:

+o00 +o0o
Hu = A Z gol(u, g01> —|—A Z 1/)l/<u, 1/)l/>. (9)
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The formal eigenvalue A which corresponds to the vacant orbitals is assumed to be equal to the
Fermi level of the total superlattice. We may assume that A = 1 since it gives just an additional
factor in the description of the spectrum. The interaction « between the branches of the superlattice
is assumed to be weak, || << 1 compared with the Fermi level and the overlapping integrals a;, by,.

We find the spectrum of the superlattice and calculate the corresponding Bloch waves and effective
mass. We shall use the ansatz for the Bloch waves in form :

o0

U= Z uf o + um.

[=—00

Substitution of the above ansatz into the constructed Hamiltonian gives the following infinite system
of linear equations :
{ auf + ad + auf+ auf = Muf (10)

buuf + blu}p+1+ bouf + auf = Aul.
The Bloch-type solution of it is defined by the property
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which gives the following equation for the basic vector uy:
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The Bloch exponent © may be found from the condition

a; 0 1 ay o .
det{( o b ) [SERC] ]+< o0 b ) +AI} = 0.
We accomplish the calculation assuming that a; = 1 = —b; and ag = by. Then we obtain for
quasimomentum p, © = e’ the simple algebraic equation

(ag — A)?* — 4(cosp)? = a?.

The spectrum of the Hamiltonian (9) consists of two spectral bands separated by the gap (—«, ).
The gap is centered at the value of the quasimomentum py = 7/2, M\ = ag £ a, so the gap is narrow
if the interaction between the branches of the superlattice is weak. On the other hand the direct
calculation of the effective mass gives the following result :

2(A\5 — ao)\pp = 8(sinpg)?, (12)

hence mep; = (App)~™' = ¢ is small. This result is in good agreement with observation of the
narrow-gap property for weakly-connected superlattices, in particular for non-stable semiconductors
like HgTe, [5]. Analysis of the operator in the invariant subspace corresponding to the small neigh-
bourhood of the Fermi level at the bottom of the upper spectral band reveals the quasi-relativistic
properties of the dynamics of electrons subject to the condition kT + 2eU << 1, similarly to the

case discussed in the previous section.



3 Dirac equation with running potential

The quasi-relativistic property of the dynamics of electrons observed in the previous sections permits
to suggest a method of manipulation of the quantum current through the wire with use of the running
wave, similar to the method suggested in [9] and [10].

Consider a non-stationary Dirac operator with running potential €; cos ex(z — vt).

0 0
e (10)a e (o B ramete (G T

Following [10] we apply the Lorentz transform

r — vt t—ovx

e " Vise (14

and obtain a new equation

1 ) »
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which admits separation of variables. Introducing the spectral variable 2 representation ¢ as ¢ =
e pq, we obtain the spectral problem :

< 1/117.,02 1/17/1},02 > Q(,O ( 1/IU,:UQ 1/1 ,02 > 8@9 _|_
w Q= i
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The differential operator L which corresponds to this spectral problem in the corresponding

weighted space of all square integrable function has periodic coefﬁcients and band spectrum oy,.
_t—vx xr —

i t
Hence the equation (13) has also running solutions of the form e’ v 2ol ) for Q € oy,

v
V1—?

parametrized by the spectral points 2 .

4 Time-periodic Dirac equation

Another possibility of manipulation quantum current may be achieved via localized periodic excita-
tions. Consider the Dirac operator with a singular time- periodic potential defined as an extension of
the non-perturbed Dirac operator restricted (from D to Dy) onto the class of all W, -smooth vector-
functions vanishing near the origin = 0. The adjoint operator Dj is defined on the piecewise
continuous W}-smooth vector - functions W= (11, 1) which may have a jump at the origin, i.e. the

left limit 1/7(—0) = (zpf, 1/)5) is not equal to the right limit 1;(+0) = (1/){“, Wy ) The straightforward

calculation of the boundary form of the operator Dy gives the following result for any elements 1/) qﬁ
from the domain of the adjoint operator:

<Df, 6> — <, Dy >=i (v, + iy by ) —i (b5 + 56/ ). (17)
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This implies the following description of boundary conditions defining the selfadjoint extensions Dr
of Dy parametrized by 2 x 2 hermitian matrices I",see[2]:

(o )-r( %) as)

In what follows we omit the vector notations J, having in mind that each time the lower indices as
in 1) o are absent, we have a 2-vector, that is ¢ = 1;

One can easily calculate the spectral properties of operators Dr in terms of the matrix [". Really,
the solutions of the non-perturbed homogeneous equation may be presented in form

- [A—qo+9d it/ (A—q0)2—52
zl):l: — + /\—Zg—éel (=) ’ ) (19)
eii\/(/\fqo)zfﬁm

Solutions of the perturbed equation which satisfy the boundary conditions (18) are combined of 1*
as -

?_ T+ Ry~ for <0

B ?df’ for > 0,

— YT+ ﬁ@/}* for x >0

= 20

v { (Tw_ for z <0 (20)

Then the scattering matrix of the operator Dr may be defined as

SF:<§§>. (21)

The values of transmission coefficients T do not depend on the normalization constants, i.e.
they remain invariant with respect to replacement of ¢¥* by |a|e***. For special choice of the
normalizing constants |a|e®™ the scattering matrix is unitary. But for our aims it is sufficient to
calculate the transmission coefficients only. The following statement is true:

Theorem 2 The scattering matrixz of the operator Dr with respect to solutions wi has the form
[A=q0to 1 0 -t
0 1 0 /5 go-s

{(FE (i) e

Proof may be obtained by the straightforward calculation of the transmission and reflection

coefficients from the boundary conditions (18) for ¢ :

7 [Ai—qtd Vi
)‘7%76 =T ot | B Anr |
1+ Ve T I 3=

- — — <~
_v;ggf% Rvi,ggiﬁ =T 1t i -
T =T
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In particular the last pair of equations may be solved as

(P05 0) (o e )}
(5 )G v o)

The solution of the first pair of equations may be represented in a similar way. The combination of
them gives the announced result.

(Il

We consider now the Dirac equation with time-dependent singular potential as a selfadjoint
operator in space- time Hilbert space Ly(R) X Lo(R, E) which is obtained as an extension of the

“non-perturbed” operator
0 0 1)\ .0y 1 0 o

restricted D — Dy onto the linear set of all Wy functions vanishing near the ¢- axis on the phase
space Ry = R; x R,. The corresponding adjoint operator is defined on the splitted space W (Ry,t <
0)® W, (Ry,t > 0), and the boundary form of it may be written as the integral of the boundary form
(17) of the operator Dy over Rj:

1

<DSFT/7,<;>—<1;, Darq§>:
/_ 0:0 {i (Ur oy +uydr) —i(UF o5 +vid))}dt. (24)

Existence of the boundary values wli,Q € Ly(R;) follows from standard embedding theorems. To
define the selfadjoint extension Dr we submit the boundary values 1[)%:2 to the local time-dependent
boundary conditions:

Wy vy
= ["cos Ut . 25
( v ) ( i ) (25)
with a constant Hermitian matrix I' . The solutions of the homogeneous equation
O 0 1Y\.0¢Y 1 0 _

serve the eigenfunctions of the operator Dr. One can show that the whole spectrum of this oper-
ator is absolutely continuous and consists of two branches : the branch with infinite multiplicity,
which corresponds to the scattered waves combined of solutions of the non-perturbed homogeneous
equations

5 (1)1 = ia),

Dyy = My
for A=Q + )\ as
N +%1/)*, forz <0

%
Vo= Palt) x { (I forz >0, ’



— YT+ ﬁz/;* for x >0
Uprg= t 27
AR wﬂ(){ T for 2 <0 (27)
and the waveguide branch which is constructed of outgoing solutions on z-axis:
B Ypt(z) forz >0
RO B 28)

The transmission and reflection coefficients T, R for given A still depend on € and may be defined
from the boundary conditions (25). One may construct of them the scattering matrix as

som-(57)

The amplitudes K are defined uniquely for given A\ from the additional condition of quasiperiod-
icity with respect to the time-variable: Wy (z,t + 25“) = OU,(z,t) which may be imposed just on
the boundary values W, (+0,¢). The quasimomentum exponential ©(A) may play the role of an al-
ternative spectral variable for the waveguide branch of an absolutely- continuous spectrum. Similar
spectral variable may be introduced also for the scattered waves \IlfQ to substitute one of parameters
A, Q.

We concentrate now on the analysis of eigenfunctions of absolutely continuous spectra which
correspond to the spectral point A = 0. The corresponding eigenfunction satisfy the equation
D,¥ = 0. In particular the waveguide-type eigenfunction of this type (if exist) may correspond to
some sort of bound states which depend on time harmonically. For investigation of the conductance
of the quantum channel of the narrow-gap semiconductor manipulited by the localized time-periodic

(29)

excitation an important role is played by the scattered waves EJA,Q. Precisely, the conductance

for given ( is calculated from the corresponding transmission coefficients via Landauer formula as
2 2
e? |T(0,8 . .. . - : :
ﬁ% The investigation of the behavior of the transmission coefficient ?(O,Q) with
- )
respect to frequency €2 of the excitation is an important ongoing problem.

Let us estimate the frequency necessary for effective control of electrons dynamics in a narrow-
gap semiconductor using this method. It is clear that the required frequency must be of the same
order as the frequency of the ballistic electrons. When the Fermi level coincides with the bottom
of the upper spectral band the frequency of electrons v,; at average thermal energy kT (for room

temperature 7' = 300K) is
kT
Vel = 271’7 ~3-10%Hz,

which corresponds to IR wavelengths A ~ 10um.
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