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Abstract

Solvable models for two- and three-terminal Quantum Switches and Quantum Gates are suggested
in form of a quantum ring witha few one-dimensional quantum wires attached to it. In resonance case
when the Fermi level in the wires coincides with the resonance energy level on the ring , the magnitude
of the governing electric field may be specified such that the quantum current through the switch from
up-leading wire to the outgoing wires may be controlled via rotation of the orthogonal projection of
the field onto the plane of the device.The working parameters of the switches and gates are defined in
dependence of the desired working temperature, the Fermi level ' and the effective mass of the electron
in the wires.

1 Resonance Quantum Switch

Interference of the wave function may serve a base for design of the quantum electronic devices, see [9].
Though the the basic problems of the mathematical design of quantum electronic devices were already
formulated in term of quantum scattering by the beginning of nineties, see [11], still the design of most
of modern resonance quantum devices, beginning from classical Esaki diode up to modern devices, see
for instance [25], [27] are based on the resonance of energy levels rather than on resonance properties
of the corresponding wave functions. At the same time modern experimental technique already permits
to observe resonance effects caused by details of the shape of the resonance wave functions, see [20],
[21], [22]. In frames of the EC-project "New technologies for narrow-gap semiconductors” ( ESPRIT-
28890 NTCONGS, 1998 - 1999) the problem on mathematical design of a four-terminal Quantum Switch
for triadic logic was formulated by Professor G. Metakides and Doctor R.Compano from the Industrial
Department of the European Comission. Results of the theoretical part of the project were published in
papers [16], [17], [18], [19], [23] where a new design of Resonance Quantum Switches (RQS) was suggested
in form of a quantum domain or quantum ring with a few quantum wires (terminals) attached to it.
The idea of the new design, as presented in [23] for the device designed in form of a quantum domain
(quantum well), is based on properties of the shape of the resonance eigenfunction which corresponds to
the resonance eigenvalue ? of the Schrodinger equation in the quantum well. These resonance properties
were observed first, see [6], in the scattering problem for acoustic scattering on a resonator with a

1See [5]

2Resonance eigenvalue is equal to the Fermi level in the up-leading wires




small opening: an additional term in the scattering amplitude caused by the opening appeared to be
proportional to the value of the resonance eigenfunction at the opening (for the Neumann boundary
condition on the walls of the resonator) or to the value of it’s normal derivative (for the Dirichlet
boundary conditions).

We consider a single act of computation as a scattering process. In the corresponding scattering
problem for RQS formed as a ring of radius R a few (straight) quantum wires weakly connected to the
ring via tunneling of electrons of mass m across the potential barrier power of width [, hight H with
electrons charge already included into it in proper units. The potential on the wires is assumed to be
equal Vo < Ey, so that the resonance eigenvalue F, = Ef on the ring is embedded into continuous
spectrum of the Schrodinger operator on the whole graph. If the potential barriers separating the wires
from the ring are strong enough then the connection between the wires and the ring may be reduced to
the boundary condition with the small parameter

— \ —1
b= <COSh Q;nHl>

at the contact points ag, see below Sections 3 and 4. For weak connection between the ring and the wires
the transmission coefficient from one wire to another in the resonance case appears to be proportional
to the product of the values of the normalized resonance eigenfunctions ¢(as) at the contact points see
[16]. If the renormalized energy A\ = k* = (E — \/2)22—:;2 proportional to the depth of the quantum wires

E — V, at infinity is close to the renormalized Fermi level A\; = (E; — Vz)h;—f and £ is small then the
following approximate expression in scaled variables, see below Section 4, is true for the transmission
coefficient from the wire attached to a, to the wire attached to a; :
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where |@]? is the length of the channel-vector (pai, pas, ...pay4) the second term is uniformly small

when 8 — 0, but the first one exhibits a nonuniform behaviour in dependence on ratio (A\; — \)/3%
The last formula being applied formally to the case A = Ay shows, that the transmission coefficient is

approximately equal to
2
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This looks rather surprising for # & 0 since it would supply a nonzero transmission coefficient for almost
zero connection. Actually this means that the transmission coefficients are not continuous with respect to
the renormalized energy A uniformly in . The physically significant values of the transmission coefficient
may be obtained in limit case via averaging over intervals |E'— Ey| < T for relatively small and relatively
large temperature. In the first case we still have:
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but in the second case, we have :
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Hence for small # and non-zero temperatures the averaged transmission coefficient is small, according to
natural physical expectations.



Nevertheless the above formulae show that in certain range of temperatures the transmission is
proportional to the product of values of the resonance eigenfunctions at the contact points. Similar
observation takes place for switches based on the quantum well with Neumann boundary conditions ,see
(23] and analog of it with normal derivatives of the resonance eigenfunction remains true for the Dirichlet
boundary conditions, see [24].

One may obviously construct the dyadic RQS basing on this observation. But even triadic (four-
terminal) RQS may be constructed with minimal alteration of the geometrical construction. For instance,
on a circular quantum well Qg : |Z| < R for a special choice of the constant electric field £, |7] = 1, and
the shift potential Vj, see [23], the corresponding Schrédinger equation
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may have a resonance eigenfunction with an eigenvalue equal to the Fermi level £ = E in the wires such
that it has only one smooth line of zeroes which crosses the circle dividing it in ratio 1 : 2. Then, attaching
the wires ' to the domain at the points a;, as, as, a4 characterized by the central angles 0, 7 /3, 7 we
obtain the Resonance Quantum Switch manipulated by rotating 7 — 7/ of the constant electric field
EV in the plane parallel to the plane of the device. In particular, if for some direction 7 the line of
zeroes arrives to the boundary exactly at the contact points : as, a3 (or as,ay, or else ag,as ) , then
the corresponding wires I'y, I'3 ( or respectively I's, 'y , or else T'y, T's) are blocked. With two outgoing
wires blocked, one up-leading wire I'; and one outgoing wire (respectively I'y, or 'y, or I's) remain
open. Hence the electron current may go across the well from the up-leading wire to the outgoing wire.
The corresponding transmission and reflection coefficients may be calculated in course of solution of the
corresponding scattering problem, [23].

For fixed contact points the working regime of the RQS is defined by the position of the working
point R, £, V; in the three-dimensional space of the parameters. This position is uniquely defined, see
Section 2, by the desired working temperature 7" and by the Fermi level E, in the up-leading quantum
wires. Note, that the position of the working point can’t be defined experimentally just by naive scanning
on one of parameters for other parameters fixed at random, since the probability of proper choice of the
remaining parameters is zero (proportional to the zero-measure of a point on a 2 — d plane).

Discussing the RQS based on a quantum well in [23] we assumed that the connection between the
wires and the quantum well was defined by some small parameter [ in the corresponding boundary
conditions (Section 2). This boundary parameter was interpreted in [23] as an “exponential power” of
the potential barrier separating the wires from the well. At the moment of submitting of the paper the
authors did not have any idea how the power of the potential barrier may be controlled practically. It
appeared that actually not the hight of the barrier but the width of the the part of the up-leading channel
connecting the wire and the well may be controlled by a special nano-electronic construction — the split-
gate. The power of the potential barrier inside the split-gate may be manipulated by the classical electric
field applied to the brush of boron’s dipoles sitting on the shores of the channel. This construction was
suggested in experimental papers [20], [21], [22], [26]. The hight of the barrier, and hence the power of it,
is defined by the position of the lowest energy level in the cross-section of the channel of variable width.

The plan of our paper is the following. In the second Section we suggest a procedure of selection
of size of the device in form of a circular quantum well in dependence on desired working temperature.
In the third Section we show, that for weak connection between the wires and the ring the scattering
matrix near the resonance eigenvalue may be approximated by an analytic matrix function with two
poles only. Then we calculate the life time of resonances and suggest conditions of elimination of the
Coulomb blockade. In the fourth Section we discuss the realistic boundary conditions at the contact
points defined by the adjacent split-gates and estimate the position of the working point of the RQS
modeled as a Quantum Ring, assuming that the working temperature and the Fermi level are fixed. We



omit essential part of reasoning concerning the spectral and the scattering problem for the Schrédinger
operator on the Quantum Ring, see [16], but derive the boundary conditions for the scattered waves at
the Fermi level “from the first principles” and define the life time of the corresponding resonance for the
selected working point in dependence of the power of the potential barrier. The life time defines both
the speed of switching and the minimal current through the device. In the last Section we calculate
the working parameters of the ring-based three-terminal Quantum Gate, manipulated by the single-hole
charging of electrodes situated inside the ring. We show, that the problem of calculating of the working
parameters of the Gate may be reduced to the situation discussed in Section 4.

Note that the derivation of the boundary condition at the contact points ”from the first principles”
is actually a part of the general program of replacement of the partial Schrédinger equation on the
quasi-one-dimensional structures with properly chosen extensions on a one-dimensional Schrodinger op-
erators, see also [10], [8], [7], [14], [15]. Using of this approach in mathematical design of nano-electronic
devices permits predict qualitative features of devices and gives preliminary estimation of their working
parameters.

Note that the next two important problems of the mathematical design of the Resonance Quantum
Switches and Gates are : calculation of the Voltage-Current characteristics and estimation of an affordable
precision of the geometrical details of it. These problems are not discussed yet here: we just estimate the
minimal current eliminating the Coulomb Blockade and assume that both the ring and the wires have
the ideal geometry. Since the technologically affordable deviation of geometrical parameters is now circa
2 nm, it is clear that the device should work at the nitrogen temperature 77 K , but it is not clear yet if
this precision is sufficient to guarantee the stability of the working regime of the switches and gates at
room temperature.

2 High-temperature triadic RQS

Consider a RQS constructed in form of a quantum domain - a circular quantum well - with four terminals -
quantum wires - attached to it at the contact points a1, as, a3, a4, selected as suggested above. To choose
the working point of the switch in dependence of desired temperature we consider first the dimensionless
Schrodinger equation

— Au+el€, Du=Au (2)
in the unit disc |§| < 1 with Neumann or Dirichlet boundary conditions at the boundary. The dimen-
sionless Schrodinger equation may be obtained from the original equation by scaling ¥ = RE :
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Here £ is the magnitude of the selected electric field and the unit vector 7 defines it’s direction, e is the

absolute value of the electric charge of the electron and R is the radius of the circular well. Selecting

2me€ R? .. . .
€ = ——— = 3.558 for Neumann boundary conditions one may see, [23], that the eigenfunction

u. (3)

corresponding to the second lowest eigenvalue 15 = 3.79 of the dimensionless equation (2) has only one
smooth zero line in the unit disc which crosses the unit circle at the points situated on the ends of
radii forming the angles +% with the electric field e/. The minimal distance dy of p» to the nearest
eigenvalues (the spacing of eigenvalues at ), depending on boundary condition on the border of the
well, may be between 2 and 10. For Dirichlet or Neumann boundary conditions the eigenfunctions of
the spectral problem for the above Schriodinger equation (2) are even or odd with respect to reflection
in the normal plane containing the electric field e/. In particular for the Neumann boundary conditions
the nearest eigenvalues corresponding to even eigenfunctions are equal p; = —0.79 and pu3 = 9.39,
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that it the spacing between s, and other eigenvalues of the even series may be estimated as dy :=
min{|pue — p1|, |2 — p3]} ~ 4. Generally for the circular domain the spacing between the second lowest
eigenvalue py and other eigenvalues ( of both even and odd series ) may be estimated from below as
0o > 2. The working regime of the switch will be stable if the bound states corresponding to the
neighboring eigenvalues will not be excited at the temperature 7' :

2mR2 (50
. . . 2mR°T
This condition may be formulated in terms of the scaled temperature © = 2 as
0,
KO < 5“ (5)

The temperature which fulfils the above condition we call low temperature for the given device. If the
radius R of the corresponding quantum well is small enough , then it may work at the (absolutely) high
temperature, which correspond to the low scaled temperature. It may take place if the radius of the well
is sufficiently small. Importance of developing technologies of producing devices of small size with rather
high potential barriers is systematically underlined when discussing the prospects of nano-electronics,
see for instance [27].

We assume that the effective depth V; of the bottom value V5 of the potential on the wires from the
Fermi-level £y in the wires is positive Vy = Ey — V5 > 0, and the De-Broghlie wavelength on Fermi level

is defined as
h

Then we obtain the estimate of the radius R of the domain from (4) as:
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For fixed radius R, the shift potential V; may be defined from the condition

Aj =
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For instance, if we choose the radius R of the domain as R* = 1 , we obtain :
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Finally, the electric field £ may be found from the condition

3
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where e is the absolute value of the electron charge. Hence for the value of R selected above we have :
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Hence the switch may work even at room temperature if the radius R of the quantum well is small
enough and the geometrical details are exact.

Similar calculations may be done for the circular quantum well with Dirichlet boundary conditions. It
appeared that for the dimensionless equation with the potential factor ¢ = 18.86 the eigenfunction with
a single zero-line dividing the unit circle into ratio 1 : 2 corresponds to the second smallest eigenvalue
po = 14.62. The lowest eigenvalue which corresponds to the even eigenfunction is p; = 2.09 and the
spacing between po and other eigenvalues of both even and odd series is estimated as before, dy > 2.
This gives proper base for calculation of the radius of the quantum well,the intensity of the electric field
and the shift potential subject to given temperature and the Fermi level. Similar calculation may be
done for RQS based on quantum ring, see below Section 4.

3  Scattering matrix: two-poles approximation, resonances
and estimation of the speed of switching

Consider RQS based on quantum ring. It is constructed in form of a graph constituted of a circular
quantum ring and four quantum wires attached to it at the contact points selected as suggested above. We
choose the boundary condition connecting the boundary values at the end-point of the wire 'y similarly
to the choice made in [16],that is the jump of the derivative [¢)!] and the value of the wave-function 1),
at the corresponding contact point ag on the ring :

()= ) () g

Later in Section 4 we shall suggest arguments approving the choice.
We find the scattered waves as solutions of a system of Schrodinger equations on the graph:
n? d?
_hdy + (Eelx,v) + Vi) ¢ = E,

2m dx?

h? d*i),
_% A2 + Vﬂ/}s = EQ/)S (8)

with the above boundary conditions (7). It is convenient to reduce the system (8) to the dimensionless
2m(E —Va)
n? '

form with respect to the new coordinate ¢ = x/R and the new spectral parameter k* = R

;2mé&e
h2

d*y,
dg?

The scattered wave iniciated by the input from the wire I'y may be found as smooth solutions of the

system (9) on the graph which have the standard form on the wires ( with positive values of the spectral
parameter k )

R L
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ws = kasa § = 1727374' (9)
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Here € is the vector (1,0,0,0) in the 4-dimensional ” channel-space” of the system (9) - the space, where
the results of the scattering processes are observed . The component of the scattered wave on the ring
is presented as a linear combination of Green functions G(z, a,, k?) of the equation on the ring :

4
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which satisfies the boundary condition [¢)'](as/R) = —us. The Ansatz {1, ¢, 1, 3, 14}, which obvi-
ously satisfies the equation, may be inserted into boundary conditions and used for calculation of the

Scattering matrix :

Using the notation {G(as/R, a;/R, k*)} = Q«(\), X = k%, we obtain the explicit formula for the scat-
tering matrix S of the dimensionless Schrodinger equation, see also [16], [23],

I
e — @

S=- .
i+ Q

(11)

In the case of quantum domain, see [23], the role of 4 x 4 matrix ) is played by the matrix combined of
the regularized values of the Green function at the contact points as. In the case of the quantum ring the
matrix () admits the spectral representation in terms of the orthogonal and normalized eigenfunctions ¢,
of the dimensionless Schrodinger equation on the ring. This matrix is an analytic function of the spectral
parameter A = k2, and has a positive imaginary part in upper half-plane )\ > 0 and simple poles on
the real axis at the eigenvalues p;, [ = 1,2... of the Schrédinger equation on the ring:

Qst()‘) = {G(GS/R, at/R7 )\)}s,t =

{lz; pi(as/R) SplA(at/R)}s,t'

i

It is easy to see that the zeroes of the numerator of the scattering matrix (11) sit in the lower half-plane
of the spectral parameter k£ = /X symmetrically with respect to the reflection in the imaginary axis of
k and are complex conjugate to the poles (zeroes of the denominator) in the upper half-plane.
Assuming that the normalized eigenfunctions are uniformly bounded ® one may derive the approxi-
mate expression for the matrix Q(\) when X\ = k? sits on the real axis close to the resonance eigenvalue
pa , |2 — Al < dg/2. Using the notation @, = {¢;(a1), ¢i(az),...¢i(as)} for the vector of the channel
space we obtain :
Q()\) |902| P2 Z |(Pl| Pl —
Mo — A 1#2 ,U’ —A
|B2|* P
po — A
1@

+ K,

where P, is the orthogonal projection in Ry onto |F;| 'F; and K admits an estimate outside the spectrum
{mu}, 1 # 2 as an operator in 4-dimensional complex euclidean space with the square of the Hilbert-

Schmidt norm estimated as ]

||K||2<sup|g01| Z e

1#£2 Iz
This suggests considering the additional term K as a weak perturbation. A convenient technique for
estimation of errors appearing from neglecting additional terms was developed in series of papers by R.
Mennicken concerning spectral problems for matrix operators see, for instance [13]. In particular one may
derive with use of this technique an approximation for the scattering matrix in the small neighborhood

3This fact may be derived for the Schrodinger operator on the Quantum Ring with smooth potential.



of the resonance eigenvalue ps embedded into the absolutely continuous spectrum of the Schrédinger
operator on the graph:

I |@2|* Py
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Assertion. The subordinate terms K in the numerator and in the denominator in the above
expression for the scattering matrixz are dominated by the leading terms

1 By |2 P
M(k) = - |§02| 2
ikB? 2 — A
on the boundary of a “small” W - neighborhoods wy of the zeroes ki of the group M (k) the leading
terms. In particular
supkeow,||M K (k)| < 3a8%||K|| < 1, (12)

if 222 <,

Rather technical verification of the Assertion may be found in the Appendix 1.

If the functions M+ have zeroes ki with orthogonal projections Py onto the corresponding zero-
subspaces, then zeroes and projections onto the zero-subspaces of the perturbed operator-functions M
may be characterized with a help of the matrix-valued version of Rouche theorem, see [2]. The ana-
lytic operator function M (k) + K (k) which fulfills the domination condition on the boundary dwy of a
neighborhood wy of the (vector) zero kg of the analytic function M : M(ky)P, = 0 with some maximal

orthogonal projection F,
sup ||M;1K(k)|| <1,
kedw

has inside the neighborhood vector zeroes k, with the total multiplicity dim Py
[ M (k) + K (k)] P =0
with the sum of multiplicities equal to the multiplicity of the zero of the leading term:
3 dimP(k;) = dimP,.
1
If the vector-zeroes of the leading terms are simple, then the root - vectors of the scattering matrix are

simple as well and the corresponding root-vectors are close to the corresponding root - vectors of the
approximate scattering matrix

1 &
S _ zk,32 H2—A K (13)
approxr — ‘Lpz‘sz
R

In case of the weak connection 8 << 1 the numerator of the scattering matrix has zeroes k4 in “small”
neighborhoods w4 of zeroes of the corresponding leading terms. Due to the symmetry principle for the
unitary operator functions the zeroes of the denominator are situated in the complex-conjugated points
k.. These zeroes are usually interpreted as resonances, see below. These resonances are caused by the
embedded eigenvalue i = o? > 0 of the Schrodinger operator on the ring. Using the root-decomposition
of the polynomial k% + ik3%|@s|? — po = (k — ky)(k — k_) one may derive the “two-pole approximation”
which corresponds to the two poles ki and two zeroes k- of the approximate scattering matrix in k-plane

Sappros(k) = — — : ]]Z;PQ - -P)



In this case under condition of domination of the matrix K by the leading terms one may derive from
the Rouche theorem quoted above, that there exist zeroes ki of the original Scattering matrix which
sit in a small neighborhood of zeroes k. of it’s two-poles approximation Syppro; and have root-vectors

€, S(k)é = 0 which are close to the corresponding root-vectors @, of the approximate S-matrix. One
may derive from it that the original scattering matrix may be presented near the point £k, in form

_k—]} ) o

S(k) = Sy (k) | ——==P; — (I — P})|,

I ]

and near k_ in form ] )
_ k—Fk_ ~_ -

S(k):SO(k) ) ZPQ_(I_PQ) )

where the projections PZi onto root-vectors of the scattering matrix at the vector-zeroes ky ,are close to
P and the factors Si are analytic invertible functions near the zeroes k* respectively. The operators
P* are commuting and the operators P;" are almost commuting, we may use on the real axis k near the
points £« matrix any of three representations for the scattering - with small errors :

S(K) = S () [%P (1= Py)| [P = (= P o) =
SHO [: —=r, — (- 1%)] [: —LP = (=P +ol) =
S|Py~ (1= 2| [ =15 = (= P o)

with analytic invertible near ki factors Si, SF, Sgo. These representations play the role of an asymp-
totical two-poles representation for the S-matrix near the resonance eigenvalue.

5|52

The imaginary part — of resonances in the plane of the spectral parameter k is usually

interpreted as a inverse life time of the resonance state (with respect to the scaled time variable in our
case, see below). Being correct for acoustic equation, see [1], which contains the second derivative on
time, this interpretation should be reconsidered for the non-stationary Schrodinger equation. We follow
here the classical analysis of the problem via contour deformation described in [3], but add few details
concerning specific two-poles approximation of the Scattering matrix on the graph for the Schrodinger
equation with proper boundary condition at the contact points:

1oy KOy
;E ——%@qu(x)T/), (14)

where ¢(z) = (€e(Z, V) + Vj) on the ring and ¢(z) = V, on the wires. Introducing the scaled coordinate
2

¢ = 2/R and scaled time variable 7 = we may rewrite the non-stationary equation in form

2mR?
10y 0% 2mR?
o =~ T 1(ER)Y,
10T o0& h
and represent the solution of Cauchy problem with given initial data uq in spectral form via decomposition
in scattered waves. In particular the diffracted wave may be represented using the above two-pole



approximation and substituting k4, P, for l%(i), ]Szi respectively:

_% [ s Ellz - ngz - Z_; (uo, V(k))e " 2kdk.

If the initial data have a compact support, then all terms of the integrand are analytic functions near
the real axis and the integral may be deformed to the new path passing the origin along the direction
argk = 7/4 (the direction of the most rapid descent of the function ™7 for positive T ) and approaching
infinity along the line Sk = h, k — 400 +ih, h > Ski. Then the residue calculated at the pole k.
gives the exponentially decreasing term

iy (Be = ky)(ky — ko)
P—

<’LL0, w(lz;+)>2]5+eiik+£a

which is essential for relatively small time before the non-exponential terms begin play a role. The real

part of the coefficient in front of the physical time ¢ = 7'27252 in the exponent

/a2 _ BBt B2|gal*h? ~ af®|@s*h’
4 mR? 2mR?

plays the role of the inverse life time of the resonance state for the non-stationary Schrodimger equation.

It differs from the imaginary part of the resonance by the presence of the factor /a? — W ~ /2
if B|Ps] << 1. More accurate estimate of the inverse life-time taking into account realistic boundary
conditions at the contact points see in the next Section, (23). The life time shows how long an electron
may stay in the resonance state and hence defines how fast is the switching process. On the other hand,
if one electron already sits in this resonance state , another electron in the same spin state can’t appear
in the same position. This situation is interpreted as Coulomb blockade: to pass the quantum well, the
next electron has to tunnel under the higher potential barrier defined by the spacing between s, and
the nearest bigger eigenvalue. The product of the charge of electron by the inverse life-time gives an
estimate for the minimal current through the device. It is essentially defined by the value of “small ”
parameter (3 in the boundary conditions, by the size R of the ring, by the value of the effective mass of
the electron m, and by the “geometrical” parameter |Fy|?.

4 Boundary conditions at the contact points.

In this Section we obtain “from the first principles” the parameter S in the boundary conditions for the
RQS based on the quantum ring with few terminals. We assume that the potential barrier separating
the ring from the quantum wire at the contact point may be controlled by the split-gate described above,
Section 1, see also [21], [22].

Consider a quantum switch constructed in form of a circular ring of quasi-one-dimensional quantum
wire 'y with a few straight radial up-leading wires 'y = I'y; U 'y attached to it orthogonally at the
contact points as, s = 1,2,...4. The Schrodinger equation on the ring I'y is defined by some smooth
potential ¢(z) + V4, and the Schrédinger equations on the wires I'y = I'y; U Iy have piecewise constant
potentials

v;(x):{ Vi, %f rel:—l<xz<0,
Vo, if zelh:0<2< 0

The hight H = V; — Ey of the potential over the Fermi level on the initial part of the quantum wire
(within the split-gate x € (—[,0)) is controlled by the electric field orthogonal to the wire , which may
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change the width of the the channel via turning the boron’s dipoles sitting on the shore of it. We assume,
that the Fermi level in the wires lies between Vi, Vo: H > 0 > V5 |, the boundary condition at the point
of contact is chosen in Kirchhoff form *:

[ug] (as) + uj(as) = 0, (15)

and the solutions ugs = {ugy, us} of the Schréodinger equations on I'y = {T'y;, Tso} are smooth functions
on the joint interval (—{,0) U (0,00) = I'y U 'y for which the matching conditions are fulfilled

U1 (—0) = us2(0), g (—0) = ugy(0).

For “low” temperature kO < %" one may assume that the dynamics of electrons is described as the

restriction of the evolution defined by the non-stationary Schrodinger equation (14) onto the spectral
interval length kT near the Fermi level (that is near the corresponding resonance eigenvalue on the
ring). Practically we should calculate the scattering matrix on the graph for values of energy inside this
interval. We may do it in different ways: beginning with the Green function Go(z,y, A) on the ring with
the smooth potential V(x)

defined by the macroscopic electric field, or beginning with the Green function éo(x, y, A) of the perturbed
problem on the ring which already takes into account the wires attached to the ring at the contact
points. We choose the second option of the two equivalent possibilities, which gives better approximation
for solutions in case of weak connection between the terminals and the quantum ring. The Kirchhoff
conditions for the solutions v, ¥; of the Schrodinger equation on the ring and the Schrodinger equation
on the wires at the contact points

W)I] + ¢;|as =0, ¢|as = ¢S|as’

may be simplified at the resonance E' = E; due to the assumption that the potential barrier on the initial
part of the wire is strong enough, so that the solution of the Schrodinger equation on the initial interval
of the quantum wire may be presented just as a solution of the equation with the constant potential V] :

= Ce- L,

Then eliminating the Cauchy data of the decreasing solution on the wire we obtain from the above
Kirchhoff condition the the jumping boundary condition for the wave-function on the ring at the contact
points :
2m(V1 — Ey)
W) YLy, =0

This boundary condition may be also presented in form of an additional singular potential :

4 hy/2m(Vy — E -
V(z) — V(z)+ 2_)15(35 —ay) ( 2 V().

2m =

“In fact one may show that the boundary condition connecting the solutions of the differential equations on the wires
and on the ring at the contact points depends on local geometry of the joining. We consider the Kirchhoff condition as a
zero-order approximation for the realistic boundary conditions.
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The formally introduced “perturbed” Schrodinger operator

on the ring with the new potential V serves as a convenient step to construct the scattered waves on
the whole graph. It is exactly the operator which substitutes asymptotically the operator L on the ring
for energy close to Fermi-level when the power of the potential barrier is growing, [ — co. Using of the
Green function G(z,y, \) of the “perturbed” operator L instead of the Green function G(z,y, \) of the
operator L with the smooth potential V'(x) is more practical, because it suggests a convenient Ansatz for
the component of the scattered wave on the ring with resonance energy and proper asymptotic behaviour
for strong barriers.

Note that the Green function G of the perturbed Schrodinger operator L may be easily calculated as
a linear combination of the Green functions of the Schrodinger operator L with the smooth potential:

dG(z,y, \)

=1
dx ] Y

é(x,y, A) =G(z,y, A +ng G(x,as, M), |

where the coefficients g, may be found from the linear system defined by the boundary conditions at the
contact points :

CiC h/2m(Vy, — E
(60 ) = l0) = - l au, o A +ng at,aS,A)] VemlVi - By)

2m 2m

Denoting by G the matrix G(at, as, A\) combined of the values of the non- perturbed Green-function
and by G(y) the vector (G(a1,y, ), G(as,y,\), G(as,y,\),G(as,y,)) in thje channel- space, one may
represent the solution ¢ := (g1, g2, g3, g4) of the above linear equation in form

h/2m(V, — E h/2m(V, — E -
- I o W P 61y

Q

We use, further, the perturbed Green function and the corresponding matrix when combining the Ansatz
for the scattered waves of the Schrodinger equation at the Fermi level.

Note that the Kirchhoff boundary condition imposed at the point of contact a, which has the co-
ordinate x = —[ may be transformed to the point x = 0 of the wire with use of the corresponding
transfer-matrix for the Schrodinger equation on the wire I'y for the corresponding component of the

scattered wave: 0
h* d*,

We shall use the scaled equation on the scaled wire:

- d2ps  2mR2 - 2mR?
ls s — — 12 V - V s —
,QZ) d§2 + hZ ( 1 2)’¢} hZ

(Ef - V?)I/N)s = k21/~)37
and on the scaled quantum ring with V({(R) = eRcos(§,v) + Vo — V — 2:

-~ d24y 2mR2 om(Vi — Ey) -
lwo——d62 0 V(ER) O+Zf5€—— :

7/10 - k2'§/)07

12



Then Cauchy data of the solution 1, (&) = cosh Rr¢ 1/;5(0) SmhR’"g w’( ), at the points £ = —I/R and
¢ = 0 are connected by the transformation which leaves the boundary form ' — ¢ invariant :

~,( l/R) cosh rl SIHTW 1//( )
( 22 (~1/R) ) N ( —Rrsinhrl  coshrl ) ( 0% () ) : (16)

3

Here the notation r = M, is used. We shall transmit the Kirchhoff boundary condition, via

transform-matrix on the wire for the scaled equation, from the point { = —I /R to the point & = 0.
This way we connect the boundary values {[%‘j’g—o](as), zﬁo(as)} of the solution of the scaled Schrédinger

equation on the ring with the boundary values {@/)5(0), %’%(0)} of the solution of the scaled Schrédinger
equation on the wire:

[dc;i“o (as/R) = Rrsinhrl ,(0) — coshrR C;/;S( )
) R inh r di,
tho(as/R) = coshrl ¢4(0) — SHII%TT dzé (©)

Eliminating the function dN)s(O) from the first equation we obtain the connection between symplectic
variables on the ring at the contact point and on the wire at the point & = 0 in hermitian form :

[dwo J(as/R) Rrtanh rl ﬁ 'QZ}O(U:S/R)
( 1,(0) ) ( L ;—itanhrl) ( ) ) (17)

coshrl d¢

Denote by g(&, ) the Green function of the scaled perturbed Schréodinger equation on the ring. Then
the jump of the derivative of it is equal to —1 at all points on the unit circle, except contact points,
where the jump is calculated as:

10'¢=as/r — TRG(as/R, a;/R) = —

We choose an Ansatz for the component v, (€) of the scattered wave on the ring in form

o(€) = ;ﬁ(& as/ R)ug = g(£) o

Inserting this Ansatz into the boundary condition (17) we obtain the equation

1
cosh rl

—uy = Rr(tanhrl — 1)1/;0(%) + (0)),

w o~

(=40
90(0) = —— dofay) — 5 tanhrl (~4(0)).

We may substitute now into the first equation the corresponding component of the Ansatz g(as/R)iy :=
{giiy}, instead of ¢y (a,), and the s-component of the standard Ansatz [ *¢ + S(k)e ’kg] ¢ of the scattered

wave for 1),:

COSh rl

Vs(0) = ([ + 518); == u,(0), 95(0) = ik([I — S]&), = u,(0),

then the equations may be rewritten in vector form as:

_60 Rr cosh rl coslh rl gﬁo
( @(0) — ;@(0) ) B ( e —ik[I — S)e )’ (18)

cosh rl
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where g is a matrix combined of values of the perturbed scaled Green function §(as/R, a;/R) at the
contact points. The scattering matrix may be found from these equations via eliminating of the variables
g on the ring.

We shall assume now, that the ratio 1/ coshrl plays a role of the small parameter. Then the diagonal
elements of the matrix in the right-hand side of the last equation have the second exponential order,
meanwhile the anti-diagonal elements are of the first exponential order.

Seems natural that for cosh®rl >> 1 one may cancel the diagonal elements thus obtaining in the
above boundary condition a matrix similar to the matrix used in (10) for calculation of the scattered
waves. But now we already have an explicit expression for the parameter 3 = (coshrl)~!. Notice, that
the role of the non-perturbed operator is played by the Schrodinger operator with a special boundary
conditions (or singular potentials) at the contact points. These potentials take into account the presence
of the potential barrier hight V; — E; over the Fermi level on the initial interval (—/,0) of the quantum
wire. If we assume coshr{ >> 1 and use the corresponding simplified version of the boundary conditions

Lo ) ()
. i — cosh r i , 19
(um)—#—g«») ( 0" ) |~ (19)

then the calculation of the scattering matrix may follow the pattern suggested in the previous Section

3. Taking into account that @(0) = ifgh_fl)é’ we may solve the equation (19) with respect to the S€ for

any 4-vector € and then obtain an expression for the scattering matrix in form

BN o1 1
S(k‘) — co~sh rl Rr zk‘ (20)

g(\) 141
cosh? rl + Rr + ik

Here g(\) is a matrix combined of values at the contact points of the Green- function of the scaled
perturbed equation on the ring: {g(\)},, = g(as/R, a;/R, \), A = k?. Now, similarly to analysis done
in Section 3, we may select the leading terms in the numerator and denominator of the matrix function
g(\) near the resonance eigenvalue py of the perturbed operator :

|B2[* P

+ K.
po — A

g =

Here P, is the orthogonal projection in 4-dimensional euclidean space onto the vector gy formed of
the values of the resonance eigenfunction ¢, at the contact points; the non-singular addend K may be
estimated similarly as in Section 2. If the condition of domination of the non-singular term K by the
group of the leading terms,
1 L1y @
h21<———> [-P h21<———>—7P::Mk
cosh™rl { = — = ( ») + |cosh” r Ry | (k),
is fulfilled,
IEM™ (k)] << 1,

in a small real neighborhood of the resonance eigenvalue p5 then calculating of an approximate expression
for the scattering matrix in this neighborhood one may pertain the leading terms only:

)
)

To obtain the corresponding two-poles approximation for the scattering matrix and estimate the decay of
the resonance terms in solution of the non-stationary Schrodinger equation it suffice to calculate zeroes

|Z2]2 2 1
o5 Pa o+ cosh” ri(g;

—Lfi‘iPQ + cosh? rl(ﬁ + ;

Sapprom (k) -

(21)

=] &=

E
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of the leading term in the numerator assuming that cosh rl >> 1. Using the notation o = +,/Ji3, we
obtain two zeroes in lower half-plane :

irR |52
i — TR 2cosh’rl’

k~a-+ (22)
One may derive from it an analog of the two-poles approximation, see the previous section, and define
the inverse life time ¥ of the resonances. The scaled time 7 corresponding to the scaled equation and
the real time ¢ are connected by the formula k%r = (E — Va)t, or t = 22227 The exponential decay
of the resonance states of both scaled and the non-scaled equations is deﬁned by the behaviour of he
exponential factor ek’ = iRKTe=SK*T The decreasing exponential factor may be rewritten with respect
2

to real time as e¥ma7’. Hence the role of the real inverse lifetime is played by k2 mth
calculated approximately for coshrl >> 1 as

and may be

ar’h?| |
2m(a? + r2R?) cosh? rl’

(23)

In fact even substituting the above Ansatz for scattered waves into the non-simplified boundary
conditions (18) we actually may obtain a slightly inconvenient, but still exact expression for the scattering
matrix in form

—rl

k-l—

—r cosh? rl coshr] + Rra
(1 B % + cgsh:l) e " coshrl + 1 (I*TRJrcf)shrrz)e "t cosh ri+1 g
- : 24)
S(k) 1 rR rl hrl 1 9 |prRy e=rl il N (
( + ik + coshrl) e~ coshri + cosh” rl ik ___coshrl + Rrg

e—rl
cosh rl

(H—%-ﬁ- )e ml coshrl+1

1

r“R
1+ n2

the previous formula for the scattering matrix neglecting e~2"! compared with /1 + ’"Z—’f. Then we
obtain more convenient approximate expression for the approximate scattering matriz near the resonance
eigenvalue o:

For intermediate values of cosh?rl >> = one may simplify the expressions in both terms of

3ik — Rr 2 cosh? rlg R’" ’k -+ Rrg

2 Rr zk
3ik + Rr 2cosh® rig=be + Rrg

Sapprom (k)

There two zeroes which coincide with the approximate zeroes (22) calculated above. Syppror gives more
accurate two-poles approximation for the scattering matrix of the switch, than the expression (21) derived
from the simplified boundary condition. The comparison of the explicit expression (24) for the scattering
matrix and the approximate scattering matrix shows that under some natural domination conditions the
scattering matrix has also three zeroes in small neighborhoods of zeroes of the approximate scattering
matrix. Complete analysis of this alterantive will be done in another publication.

We shall discuss now a version of RQS based on a circular quantum ring [, of radius R with three
outgoing straight radial quantum wires I',, s = 1,2,3 attached to it at the points ¢ = +7/3, 7 via
tunneling across the potential barriers controlled by the split-gates. We assume, that the up-leading
quantum wire is supplied with so high potential barrier that the jump of the derivative of the wave-
function on the ring at this point may be neglected when calculating the eigenvalues and eigenfunctions
of the perturbed operator L. Still we pertain the jumps at the contact points of the outgoing channels
¢ = +m/3, m, characterized by the potential barriers width / and hight H = V; — E; over the Fermi
level £, in the radial quantum wires I',. In this Section we assume that RQS is manipulated by the

constant macroscopic electric field £7 which generates the potential £eR(#7, ) + V; in the Schrdinger
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equation on the ring # = RE, |§?| = 1. We assume as before that the influence of the field on the quantum
wires is eliminated by some additional construction, so that the potential on the wires produced by the
macroscopic field is equal to zero. It means that the Schrodinger equation on the network combined of
the up-leading wire, the ring I'; and outgoing wires I';, I',, I, may be written as a system of Mathieu
equation on the ring I'g

——— + (€e(v, ) + Vo) u = Eu, u = uy,

and the Schrodinger equation with the step-wise potential

vy [HAE. i —i<z<0,
s\l E.+V, if 0<z<o0, V<0
h* d?
—%d—;;—i—‘/;(x)u:Eu, U = Uy,

on the outgoing wires I'_, s = 1,2,3 and on the incoming wire I',. We assume also, that the incoming
wire I', is attached to the quantum ring at some point @ different from the above points a,. The
connection of the outgoing wires with the quantum ring is characterized by the “small” parameter
S = (cosh 7Wl)_1.

An important engineering problem is actually the proper choice of the macroscopic electric field &
such that the corresponding differential operator on the ring has an eigenfunction with special distribution
of zeroes: the zeroes of the eigenfunction corresponding to the second smallest eigenvalue should divide
the ring in ratio 1 : 2. We assume that the potential barrier at the contact point a, with the incoming
wire is so high that we may neglect the jump of the derivative of the perturbed operator L eigenfunction
at this point. Then the whole potential of L on the ring is combined of the smooth potential defined by
the macroscopic field £ and an additional singular potential appearing from the Kirchhoff’s conditions of
smooth matching of the solution ¢ at the contact points a;, s = 1, 2, 3 on the ring with proper solutions
of the equations on the wires when the energy is fixed on the Fermi level £ = Ey :

2m (Vi — Ey)
h

ag

2 9 N h/2m(V; — E
8V ey 43 8 — a2 T ED e — B

2m

s=1
We select the field € such that the resonance eigenfunction for £ = E; would have, for certain direc-
tion of the unit vector 7, two zeroes on the ring sitting at the points ¢ = +7/3 . When using the
standard form of the scaled Mathieu equation with properly renormalized coefficients ¢ = %75133,
frac8mR?(E — Vi + V3)R?,

y" + (a —2q cos(2z2))y =0, (25)

we should pass from the angular (scaled) variable { = x/R to the new variable z = 5% which is changing
on the interval —m /2, /2. We have found that if the vector 7 is directed toward z = 0, and the solution
Y, we are looking for, is an even (cosine-type ) solution of the Mathieu equation on the scaled ring

—7/2 < z < 7/2 with a positive value at the point z = 0, and zeroes at z = +x /6, then it is smooth
at the contact points with z == 47 /6 and has a jump of the derivative [¢}'], = wi)(ﬂ) a

the point £ = £7/2. Hence, y = 1(2z) satisfies the Mathieu equation on the interval (0,7/2) and the
boundary conditions



dy Ry\/2m(V;, — Ey)

—(7/2 2) = 0. 2

Yirf2) + Ly w2 =0 (26)
The dimensionless Mathieu equation in standard form (25) with properly scaled variable z , —7/2 < z <
7/2, was analyzed with Mathematica in dependence of the re-normalized electric field and the parameter

R\/2m(V, — E;) '

v = - in the boundary condition [%’éﬁ] — y1p = 0 at the contact points. It was found that

for the following values of the parameters ¢, v the resonance eigenfunction with two zeroes at z = +7/6
exists, for instance :
v=10, ¢ = —1.98, a = 5.24.

For the parameter ¢ selected as shown above, there exist an eigenfunction u of the Mathieu equation
perturbed by the d-potentials attached to the points as with weight v such that the zeroes of u divide
the unit circle in ratio 1 : 2. These eigenfunctions may play a role of the resonance eigenfunctions for
the corresponding triadic Resonance Quantum Switch. Being normalized by the condition ¢(0) = 1
this function has square Lo-norm 3.5234. The spacing between the resonance eigenvalue py = § = 1.30
on the unit ring and the nearest eigenvalue p/ = % = 1.49 (from the odd series of the eigenfunctions)
is estimated as 0.19. Now the working temperature of the switch may be estimated as in Section 3:
kT < 02'717?}3@2. For quantum rings with radius 10 nm the switching time estimated from the life time of
the corresponding resonance may be circa 1077 sec.

5 Resonance Quantum Gate

The Resonance Quantum Switch manipulated by the macroscopic electric field is actually a classical
device for manipulating the quantum current. It can’t be used as a detail of a quantum network since
the macroscopic electric field can’t be used , generally , in the quantum network, since it would affect
simultaneously all elements of the network neighboring with the switch. In this Section we consider a
completely quantum device manipulated by a single electron or hole. Mathematical modeling of this
device requires solution of a two-electron problem on a network, similar to one solved in the simplest
case in [12]. In this note we consider a one-body version of the problem, assuming that a single hole is
sitting inside the circular ring at the hight A over some point b, on the continuation of one of the radii
corresponding to the contact point as; with outgoing wires, at the distance |bs| = b from the center of
the ring. We may have three electrodes inside the ring, and hence three possible potentials to be used
for redirecting of the electron current to different outgoing wires. The Coulomb potential on the ring,
produced by the single charge sitting on one of electrodes, is equal to
e

VR2+ 12+ b2 — 2bRcos(0 — 0,)

If the condition % << 1 is fulfilled, then using the Taylor expansion we may find the approximate

expression for the potential energy of the Schrédinger equation on the ring in form :
2

) P p— -
VR IE P
e?bR e2b2R?

cos(f —0s) + O(

. 27
(R? 4 h% 4 b2)3/2 (R? + h? + b2)5/2) (27)

Neglecting the comparatively small second addend we obtain the renormalized harmonic potential in
form

Vi(z) = —=Qcos(f — 05) — A,
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and thus we arrive again to the Mathieu equation of the same type as described in the previous Section.
The only difference is that after introducing the new variable z = 1/2 (6 — 6;) the coefficients of the
Mathiew equation in standard form (25) are calculated as

8mR? e?
= FE
= B e
8me?bR3
q =

h?(R? + h? + b2)3/2
Calculation of the working parameters may be accomplished similarly to one in previous Sections 3,4.
The above one-body approximation may be used if the life time of the single hole on the electrode is
greater than the life time of the resonance, but still small enough to provide necessary speed of switching.
If this condition is not fulfilled, then the corresponding scattering problem should be analysed in two-
body approximation similarly to [12].

6 Appendix 1: Verification of the Assertion.

Denoting ji5 by o? and assuming that % < 1, we may calculate the vector zeroes of the leading term
M+ = ]\47

1 1 |Fa|
M(k)_lk52(l_P2)+<Zk52_a2_k2>P2
M(k)e = 0.

Due to the orthogonality of the projections P, I — P, we see that the root- vectors may lie in the
subspace P, of the channel-space H only if the values of the spectral parameter k fulfil the equation
L 72| 0. Then we may find this values approximately as

kB a? k2

> 1292
ke~ da — il 200
2
This implies some useful estimates for the zeroes :
= ZBZ
|k:I: + Ot| ~ |g02|2 )
k- — k| = 20,
2 (232 2 1292
200 — 7|('02|2 g < |ks £a] <20+ 7|902|2 b
and the estimates of distances of points kzl)m on the boundaries Ow,,, of the neighborhoods wy, of the
Zeroes : o252
P2
k—kyn =
| P | 4
from +a: ) s ) oo
|Pa|* ' 3|@a|° 8
from k+

3, 32
2y — Z|802|252 S |k-;: — k:F| S 2a+ Z|§02|2327
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and from k5 :

3 = 12132 3 =2 12122
204—7“01' O k| < 2a+7|<’01| iy
The above estimates imply the estimate of the ratio
(k—ki)(k—Fk)
(k — a)(k + )
|g2|25”

on the boundaries of the

— - neighborhoods w4 of the zeroes k.:

o _ ool ‘(k'—h)(k’—k_)‘ 24 2L

T T ) (Rt o)

5287 > = [BlF
2 4 1218 9 — &l5”

4o
Hence the norm of the inverse of the operator function M

(k — a)(k+ «)
%—kﬁ%—kJ%]

Mt =ikp? [([ — P) +

for % < 1 may be estimated on the boundaries dwy of the neighborhoods w4 as

. ) @] 82 )
100 < 052 < 0
- 4o

and hence the domination condition is fulfilled on the boundaries Ow- :

1M~ K] < 3a5? sup ||K(F)|| < 1.
kEw+

for # small enough.
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