ON THE ORIENTABLE GENUS OF THE CARTESIAN
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ABSTRACT. We apply the technique of patchwork embeddings to
find orientable genus embeddings of the Cartesian product of a
complete regular tripartite graph with a even cycle. In particular,
the orientable genus of K, 1 m X Cap, is determined for m > 1 and
for all n > 3 and n = 1. For n = 2 both lower and upper bounds
are given. We see that the resulting embeddings may have a mix-
ture of triangular and quadrilateral faces, in contrast to previous
applications of patchwork method.

1. INTRODUCTION

In [1, 2, 3], Pisanski develops the theory of “patchworks” that can
be used to derive, for example, exact values for the genus of the Carte-
sian product of regular bipartite graphs. The resulting embeddings are
quadrangulations. The purpose of this paper is to show these tech-
niques can be extended to other families of Cartesian products where
the resulting embeddings may have a mixture of triangular and quadri-
lateral faces. In particular, we show that for the Cartesian product of
the complete regular tripartite graph K, ,, ,» with the even cycle Cy,

Y(Kmmm X Con) = 14+m(m —1)n, m>1,n>3.

The orientable genus of K, ,,,.m was shown to be (m —1)(m — 2)/2
by Ringel and Youngs [4] and independently by White [5]. (For m = 3,
the genus embedding is in the torus — see Figure 1.) There is an
embedding of K, ,, in the surface of genus (m — 1)(m — 2)/2 with m
faces such that every face is a Hamiltonian cycle of the 2m vertices (see,
for example [6]). Placing a new vertex into every face that is adjacent to
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Ficure 1. Case m = 3. Triangular embedding of
K, m,m in torus with two patchworks indicated.

the vertices on the boundary gives a required triangulation of K, ,, m
in the surface of genus (m —1)(m —2)/2. A patchwork in an embedded
graph is a 2-factor in which the connected 2-regular subgraphs are all
facial boundaries. By the construction of the triangulation of K,y p, it
is immediate that there are 2m disjoint patchworks in this embedding.
(For m = 3 the embedding has 6 disjoint patchworks, two of which are
indicated in Figure 1.)

2. MAIN RESULT
Theorem 1. The genus of Ky mm X Copn for m > 1,n > 3 is given by
V(Km,m,m X CZn) =1+ m(m — l)n

Proof. We first prove v(Kpmmm X Con) < 1+ m(m — 1)n. For m =1,
we have K,y m = Cs X Cy, which is obviously toroidal, and hence the
result holds.

Now assume m > 2. We start with 2n copies of the above mentioned
triangulation of K, m in a surface S, of genus g = (m — 1)(m —
2)/2. Since Cy, is a bipartite 2-regular then by the patchwork methods
of [1, 2, 3], Kpm.m X Ca, has an embedding in the orientable surface
of genus 1 + m(m — 1)n. The two patchworks used in this method
may be constructed (for instance) by taking alternating edges of any
Petrie walk of the above mentioned embedding of K, ,, in the surface
of genus (m — 1)(m — 2)/2, then augmenting the edges to appropriate
triangles of Ky, in the same surface. We double-check the genus
formula by the following argument. Note that:
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(1) there are 2n copies of Sy, arranged in a circle, each triangulated
by a copy of K m.m,

(2) there are m tubes (C3 x K3) between any two consecutive Sy,
giving a total of 2nm tubes, and

(3) of these tubes, 2n — 1 are needed to connect the 2n copies S,
to a single surface X,

Hence the final surface ¥ is homeomorphic to a sphere with 2ng +
2mn — (2n — 1) = 1 + m(m — 1)n handles attached. The embedding
consists of 4m(m — 1)n triangles remaining in the original surfaces S,
and 6mn quadrilaterals along the 2mn tubes. There are 2m + 2 faces
incident with any vertex: 2m — 2 triangles and 4 quadrilaterals. The
result that 7(Kpmm X C2,) < 14 m(m — 1)n follows.

We now show that (K, mm X Co) > 1+ m(m — 1)n.

Take an embedding of a graph with vertices 1, xs, ..., z, and a total
of f faces. Let f; denote the total number of faces of size k and let
ai(x) denote the number of faces of size k incident with a given vertex
x. Clearly:

(1) deg(x) = az(z) + ag(x) + -,
kfk = ak(xl) + ak(xg) + -+ ak(xv),
and
f=h+ft-.
For a vertex x define its face contribution to be
o) = az(x)/3 + ag(z)/4+ - - .
Let ¢ denote the average face contribution (¢(z1) + ¢(z2) + --- +
é(z,))/v. Evidently, f = ¢(x1) + ¢(x2) + - -+ + ¢(x,). If a graph has
v vertices, e edges then the genus of this embedding can be expressed
as: v =14+¢/2 —v(l+ ¢y)/2. Therefore minimizing ~y is equivalent to
maximizing ¢.

Now let’s return to graph K, mm X Cap; here, v = 6mn, e = 6m(m+
1)n. Hence y(Kmmm X C2n) > 1+ m(m — 1)n is equivalent to saying
that for any embedding of Ky, pm X Ca, we have ¢ < (2m +1)/3. If
we can show this inequality not only for the average face contribution
but for the maximal face contribution we are done.

Let t = az(x) be the number of triangles incident with a vertex x.
Since deg(z) = 2m + 2, it follows by Equatio (1) above that ¢(x) <
(m+1)/24t/12. Since adjacent vertices in different copies of K, m.m
do not belong to a common triangle, then 0 < ¢t < 2m. The case
t = 2m is impossible to attain in an embedding in a surface since the
triangles would “close-up” and the rotation at that vertex would consist
of more than one cycle. If ¢ < 2m — 2 then ¢(x) < (2m + 1)/3 where
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equality is attained only if £ = 2m — 2 and the remaining four faces
are quadrilaterals. This solution is indeed possible by our 2-patchwork
construction in the first half of the proof.

In the remaining case (t = 2m — 1) we have 2m — 1 triangular faces
and 3 other faces incident with z. The triangular faces are necessarily
consecutive in the rotation around z, since two of the neighbors of = are
not in triangles with z. There are 4 sub-cases, concerning the number
of quadrilateral faces ¢ = a4(x). We may have 0 < ¢ < 3. By an
arithmetical argument we rule out the cases ¢ = 0 and ¢ = 1. Case
g = 3 is impossible, since n > 2 and one face has two edges projecting to
C5,. This leaves us with ¢ = 2 and the remaining face either pentagonal
(i.e. as(r) = 1) or hexagonal (i.e. ag(x) = 1). Indeed, if the remaining
face has size greater than 6, the value (2m + 1)/3 cannot be attained.
The value ag(x) = 1 gives us exactly ¢(z) = (2m+1)/3. The only way
that as(z) = 1 could occur is to have a consecutive sequence of 2m — 1
triangles ended on each side by a quadrilateral and the pentagonal face
at x has both edges, say xy and xz projecting on Cs,. (See Figure 2.)
But this is impossible, since the shortest path from y to z not using
edge xy and/or xz has length 4. O

3. SMALL CASES

In Theorem 1, n > 3. The cases n = 1 and n = 2 turn out to be
non-trivial. For n = 1 exact results are given; for n = 2 we present
close bounds.

Theorem 2. The genus of Ky, mm % Ca,m > 1 is given by the formula:
Y(Kmmm X C2) = Y(Kmmm X K2) =1 —2m +m? = (m — 1)*

Proof. Tt is easy to see that the two graphs have the same genus em-
bedding and hence consider K, instead of C3. The proof is simpler
but analogous to the proof of Theorem 1. In the construction we only
need one patchwork. The surface is composed of two surfaces Sy joined
by m tubes, hence, it has genus (m — 1)?. The converse is easy since
each vertex must necessarily contribute only 2m — 1 triangles, and 2
additional quadrilaterals is the best one can hope for. O

Theorem 3. In general the genus of Ky, ym X Cy is bounded as follows:
[2m? —5m/24+1] < Y(Kmmm X Ca) < 14+2m(m—1) = 2m* —2m+1.

In particular, v(K111xCq) =1, y(Ka22%Cy) =5 and (K3 33%xCy) =
12.
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FIGURE 2. A consecutive sequence of 2m — 1 triangles
ended on each side by a (shaded) quadrilateral face and
a (shaded) pentagonal face at .
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FIGURE 3. Embeddlng K3,3’3 X K2 and K3’3,3 X K2 X KQ.
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Proof. The upper bound 1+ 2m(m — 1) is obtained from construction
of Theorem 1. The lower bound also follows from the argument in the
proof of Theorem 1. Namely, here we cannot rule out the possibility
that ¢g = (m +1)/2+ (2m — 1)/12 = (8m + 5)/12 that would arise if
2m—1 triangles and 3 quadrilaterals are incident with each vertex. For
m = 1 the two bounds coincide. For m = 2 the genus is between 4 and
5 and one can easily check that no genus 4 orientable embedding exists.
For m = 3 the lower bound is [11.5] = 12. In order to lower the upper
bound to 12 we may use the fact that K, ,,» x Cy is isomorphic to
Ky mm X Ko X Ky. We start with the genus embedding of K, 1 X Ko
described in Theorem 2. It contains a patchwork consisting of 2 trian-
gles and 3 quadrilaterals. (See Figure 3. The three triangles indicate
the patchwork that was used for embedding K333 x Ky. The three
thick edges mark the 3 selected quadrilaterals and the black triangle
comes in two copies to complete the new patchwork of the embedded
K333 x Kj.) Using this patchwork one can produce an embedding of
Kpymm X Ko x Ky that has 56 triangular and 30 quadrilateral faces
and is therefore an embedding on the surface of genus 12. The same
idea could be explored for more general values of m. It would slightly
improve the upper bound at least for m that is divisible by 3. 0
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