OBSTRUCTIONS FOR EMBEDDING CUBIC GRAPHS ON THE
SPINDLE SURFACE
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ABSTRACT. The spindle surface S is the pinched surface formed by identifying
two points on the sphere. In this paper we examine cubic graphs that mini-
mally do not embed on the spindle surface. We give the complete list of 21
cubic graphs that form the topological obstruction set in the cubic order for
graphs that embed on S.

A graph G is nearly-planar if there exists an edge e such that G—e is planar.
All planar graphs are nearly-planar. A cubic obstruction for near-planarity is
the same as an obstruction for embedding on the spindle surface. Hence we
also give the topological obstruction set for cubic nearly-planar graphs.

1. INTRODUCTION

Kuratowski’s Theorem [9] says that a graph embeds in the sphere if and only if
it does not contain a subdivision of either K33 or of K5. Another way of stating
Kuratowski’s Theorem is that these two graphs are obstructions to embedding in
the sphere, and any non-spherical graph must contain one of these obstructions.
Kuratowski’s Theorem is one of the most celebrated results in graph theory, as well
as one of the most useful. Herein we study two variations on Kuratowski’s theme.

A spindle surface is formed from the sphere by identifying two distinct points,
commonly considered as the north and south poles N and S. Equivalently, a spindle
surface is a quotient space formed from the torus by identifying a contractible cycle
to a point. Despite its name, the spindle surface is not a surface, but rather
a pseudo-surface with a single pinch point N = S. We assume that any graph
embedded on the spindle surface has a vertex at the pinch point. We ask:

Question 1.1. What are the obstructions to embedding on the spindle surface?

Obstruction sets for embedding on surfaces give nice structural characterizations
for these classes of graphs. Except for Kuratowski’s result about planar graphs, lit-
tle is known. Archdeacon [1, 2] (see also [7]) gave the complete list of 103 topological
obstructions for embedding in the projective plane (the topological order allows tak-
ing subgraphs and supressing degree-two vertices). This is the only other surface
for which a complete list is known. It follows from the work of Robertson and Sey-
mour [15, 16] on graph minors that the set of obstructions under the minor order
(which allows taking subgraphs and contracting edges) is finite for embedding on a
particular fixed surface.

Finding obstruction sets for pseudosurfaces is more subtle. If H is a subdivision
of G and G embeds in a pseudosurface, then H embeds in that pseudosurface. The
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corresponding statement for minors H of G is not true. The minor-obstruction set
for other pseudo-surfaces is not necessarily finite [17]. Knor [10] has characterized
the pseudosurfaces that are minor-closed, and hence have finite obstruction sets.
These resemble a pseudo-surface with a single pinch point and spheres attached in
a tree-like structure. This includes our spindle surface, so it is known that the set
of minor obstructions for embedding here must be finite.

Kuratowski’s Theorem also characterizes those graphs that are one edge-deletion
away from planarity: if a graph is non-planar, but the deletion of any edge makes
the graph planar, then the graph is a subdivision of either K33 or of K5. Say a
graph is nearly-planar (under the subgraph order) if there exists some edge whose
deletion makes the graph planar. We also ask:

Question 1.2. What are the obstructions for nearly-planar graphs?

It is important to note that being nearly-planar is hereditary under the subgraph
and topological orders; that is, if G is nearly-planar, then so is every topological
subgraph of G. However, it is not hereditary under the minor order. An example
is the graph G created by adding a single edge joining a pair of antipodal vertices
of the icosahedron. This G is nearly-planar, delete this new edge. However, if we
contract the new edge, then we get a graph that is not nearly-planar. The concept
of obstructions makes sense only for hereditary properties. Hence it makes sense to
look for obstructions for being nearly-planar when using the subgraph or topological
order, but not when using the minor order.

A graph is non-nearly-planar if and only if every edge is disjoint from a Kura-
towski subgraph. Call an edge of e of a non-planar graph G essential if it is in every
Kuratowski subgraph of G, that is, if and only if G — e is planar. A graph is non-
nearly-planar if and only if every edge is non-essential. An edge e of G is redundant
if every edge of G — e is non-essential. Thus our second question is equivalent to
finding graphs that are not nearly-planar and have no redundant edge.

Unfortunately, we can’t answer either of our two main questions. However, we
can answer both questions in an important special case. A cubic graph is one
with every vertex of degree three. The cubic order makes smaller graphs by edge
deletions followed by suppressing the resulting degree-two vertices. It is equivalent
to the topological order for the class of cubic graphs, but the name emphasizes
the class under consideration. In the cubic order, the analogue of Kuratowski’s
Theorem is that a cubic graph is planar if and only if it does not contain a K3 3.

We answer both of the above questions for obstructions in the cubic order. It
turns out that the two obstruction sets are the same, as shown by the following two
lemmas.

Lemma 1.3. A cubic graph G embeds on the spindle surface if and only if there
exists an edge e such that G — e is planar.

Proof. First, suppose that G embeds on the spindle surface. Then one vertex v lies
on the pinch point. Because G is cubic, either the North pole or South pole part
of a neighborhood of the pinch point has only a single edge end. Deleting this edge
gives a planar graph.

Conversely, suppose that there is an edge e = uv with G — e planar. Extend this
embedding to one of G’ by adding a new edge €' = uv’ incident with u. Identifying
the two vertices v and v’ in the sphere gives an embedding of G on the spindle
surface. O
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The preceding lemma, is not true for non-cubic graphs. The relation between a
non-cubic graph that embeds on the spindle surface and the non-cubic analogue of
near-planarity is more subtle.

We immediately get the following.

Lemma 1.4. A cubic graph G is minimally non-spindle if and only if it is mini-
mally non-nearly-planar. a

We can now state our main results.

Theorem 1.5. There are exactly 21 minimal non-nearly-planar graphs in the cubic
order. They are given in Figures 3-11.

Corollary 1.6. There are exactly 21 minimal non-spindle graphs in the cubic order.
They are given in Figures 3-11.

The proof of Theorem 1.5 is given in Section 8. We give here a sketch of the
proof of our main result, combined with an outline of this paper. When study-
ing the embedding properties of a graph G it is helpful to study the Kuratowski
subgraphs K33 and K5 of G. To this end, in Section 2 we define K-structures—
disjoint subgraphs of G' that contain portions of Kuratowski graphs. In Section 3
we characterize those obstructions that have rich K-structures. These correspond
to obstructions with low connectivity in which one component is non-planar. Sec-
tion 4 contains a technical study of obstructions that have a cyclic-cut-set of three
edges. The lack of such a cut-set allows us to assume that the remaining obstruc-
tions G have a highly-cyclically-connected subgraph H. We then study the possible
bridges, components of G — H. Section 5 sets up the study of these bridges, and
in Section 6 we give bounds on the size of G in terms of the size of H for certain
special cases. Section 7 finishes our technical analysis of graphs with a K-structure,
in part involving a computer search of all small order cubic graphs.

We are ready for the proof of our main result in Section 8. The proof develops a
relationship between being nearly-planar and embeddings in the projective plane.
Basically, a nearly-planar obstruction that embeds in the projective plane is minimal
with face-width three. A non-projective nearly-planar cubic obstruction must then
contain a cubic obstruction for embedding in the projective plane. This set is
known. These subgraphs are either on our list of nearly-planar obstructions, or
show that the graph has a K-structure that has already been analysed.

The proof of our main result relies in part on an exhaustive computer search. In
Section 9 we discuss the algorithm used in this search and give some double-checks
that our work is correct. We close in Section 10 with some comments and directions
for future research.

2. BRIDGES AND K-STRUCTURES

A common method of studying embeddings of a graph G is to first embed a
subgraph H, then to try to extend that embedding to all of G. The following
definition is useful in this context.

A (G, H)-bridge of a subgraph H of a graph G is the closure of a
topologically-connected component of G — H. Each bridge consists of a connected
component of the graph G — V(H) together with all edges joining that component
to H, or else it is a single edge. A foot of a bridge B is a vertex in common with B
and H. A leg of B is an edge incident with a foot. Finally, a
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The graphs we study frequently have a common structure involving portions of
Kuratowski graphs. We next describe this structure.

Let G be a graph. A topological K§73 is a subgraph that is a subdivision of K3 3.
A Kj3 is a subgraph H of G that is a subdivision of K33 — Kj, provided that
there is a K} 5, K, with H C K C G. Equivalently, a K33 is a subdivided Ky,
provided there is a bridge with feet in the interior of two edges that are a matching
on the K4. Whether or not a graph H is a K s depends also on the supergraph
G. Similarly, a K 3 is a subgraph H of G that is a subdivision of K> 3, provided
that there is a K} 5, K, with H C K C G. Hence K33 and K3 are topologically
complete bipartite graphs missing an edge and a vertex respectively, provided that
the missing parts are in the whole graph G. This is similar to the idea of k-graphs
[3], frequently used in studying embeddings.

A K -structurein a graph G is a pair (Hj, Hg) of disjoint subgraphs such that each
H; is either a topological Kf 5, K35, or K3 3. Observe that the K;’s completing
the H;’s need not be disjoint, only the subgraphs must be disjoint.

We use the natural transitive “containment” relation that a K3 5 is richer than
K33 which is in turn richer than K3 3. In a K-structure we always list the richer of
the two parts first. We extend this order to K-structures by saying that (H;, H»)
is richer than (H{, Hj) whenever H; is richer than Hj, or if the two are equal, then
H, is richer than H) (this is the lexicographic order on pairs). Finally, we will refer
to the type of the K-structure by using, for example, the notation (K3— §,K?: 3)-
structure.

3. OBSTRUCTIONS WITH RICH K-STRUCTURES

In this section we study nearly-planar obstructions with rich K-structures. In
particular, we find all such graphs with a (K3 3, K 3)-, (K3 3, K35)-, or (K3 5, K33)-
structure. These in turn correspond to all nearly-planar obstructlons with either a
2-edge-cut, or a three-edge-cut with one component non-planar, as shown in Lem-
mas 3.3 and 3.5.

Proposition 3.1. Let G be cubic obstruction to near-planarity with a
(K3 3, K 5)-structure. Then G is the disjoint union of two K 5 as shown in Figure
3.

Proof. If G has a (K} 5, K 5)-structure K, then every edge not in K is redundant.
By minimality, G = K as claimed. a

This is the only disconnected nearly-planar cubic obstruction. It is easy to
show that no such obstruction has a cut edge, so henceforth we can assume that
obstructions are 2-edge-connected.

Proposition 3.2. Let G be cubic obstruction to near-planarity with a

(K3 3, K3 5)-structure (but with no richer K -structure). Then G is one of the graphs
of Fzgure 4.

Proof. Let (Hy,H;) be the (K} 3, K5 5)-structure. Then any edge not in Hj is
non-essential. Likewise for any edge e € Hy, H, still completes to a K§73 inG—e

since H; is 2-edge-connected. The result now follows by an easy exhaustive search
considering every way to complete H to a K§73. O
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As the following shows, any remaining obstructions must be at least three-edge-
connected.

Lemma 3.3. Let G be a cubic obstruction to near-planarity with
edge-connectivity two. Then G has a (K} 5, Ky 3)-structure.

Proof. Let B be a cut set of two edges with components H; and H,. Each H; has
two degree-two vertices that are the ends of edges in B. Let H; denote the graph
formed from H; by adding an edge between these two vertices. If both H; are
planar, then deleting any edge of B yields a planar graph, and hence G is nearly-
planar. Therefore, now suppose H; is non-planar, and hence contains a K. §73. If H,
is planar, then G is nearly-planar, contrary to our assumption. So H, is non-planar,
and hence H> contains a K3_ < as desired. O

Proposition 3.4. Let G be cubic obstruction to near-planarity with a
(K3 3, K3 3)-structure. The G is one of the graphs of Figure 5.

Proof. Let (Hi, Hy) be the (Kj 3, K4 3)-structure. Then any edge not in Hj is
non-essential. Likewise for any edge e € Hy, Hs still completes to a K§’3 inG—e
since H; is 2-edge-connected. The result now follows by an easy exhaustive search
considering every way to complete Hs to a K§73. The proof essentially reduces to
finding all ways to insert the three degree 2 vertices corresponding to the feet of the
(G, Hy)-bridge containing H, into the K3 3. Each of these insertions gives one of
the graphs of Figure 5 with two exceptions: (i) if all three vertices are in the same
topological edge of H; then the resulting graph has a richer (K§73, K; 3)-structure
and is covered in the preceding proposition, and (%) if the three vertices are in a
perfect matching of the K3 3, then the resulting graph contains the Petersen graph
(see Figure 10) and hence is not minimally non-nearly-planar. a

As the following shows, any remaining obstructions with a cyclic three-edge cut
must have both sides planar.

Lemma 3.5. Let G be a cubic obstruction to near-planarity with a cyclic three-
edge-cut having one side non-planar. Then G has a (K} 3, K3 3)-structure.

Proof. Let B be a cut set of three edges with components H; and H». Each H;
has three degree-two vertices that are the ends of edges in B. Let H; denote the
graph formed from H; by adding a vertex adjacent to each of these three degree-two
vertices. If both H; are planar, then deleting any edge of B yields a planar graph,
and hence G is nearly-planar. Say H; is non-planar, and so contains a K§’3. If H,
is planar, then G is nearly-planar contrary to assumption. So H, is non-planar,
and hence H> contains a K; 4 as desired. O

We do not yet have all of the desired obstructions with a non-trivial three-edge-
cut. We examine cubic obstructions with a three-edge-cut having both sides planar
in the next section.
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4. OBSTRUCTIONS WITH CYCLIC
EDGE-CONNECTIVITY THREE

In this section we characterize the cubic obstructions to near-planarity with
cyclic-edge-connectivity exactly three. Fix a three-edge-cut B where both compo-
nents of G — B are planar (the case where one component is non-planar was covered
by Lemmas 3.3 and 3.5). We break into two main cases, depending upon whether
one side of G — B has the special property described next.

Let G be a cubic graph with three distinguished edges, which we will call the
red edges. We say that G has the three-red-edge property if G is planar, but no
embedding of G in the plane has two red edges on the boundary of a common face.

In Proposition 4.2 we will give the complete set of nine minimal cubic graphs
with the three-red-edge property. (In our order on edge-colored graphs, deleting any
red edge and supressing degree-two vertices allows either of the two new edges to
become the third red edge.) First, however, we describe the relationship with cubic
obstructions to planarity. If H is a cubic graph with the three-red-edge property,
then let H 4+ v be the graph formed by subdividing each of the red edges and adding
a new vertex v adjacent to the three degree-two vertices. Similarly, let H + K53
be the graph formed by subdividing the red edges and adding three arcs making
a matching between the three degree-two vertices of H and the three degree-two
vertices of the K 3. In general, if B is any graph with all vertices of degree three
except for three vertices of degree one, let H + B be the cubic graph formed by
subdividing the red edges of H and identifying the degree two vertices pairwise
with the degree one vertices of B.

Lemma 4.1. Let H be a minimal cubic graph with the three-red-edge property.
Suppose that there exists an edge e such that H — e has all three red edges on a
common face. Then H + K 3 is non-nearly-planar. Moreover, given such an e and
a bridge B with H + B non-nearly-planar, then B contains a Kg_g If no such edge
e exists, then H + v is non-nearly-planar.

Proof. We will show that in both cases the graph GG augmenting H has every edge
disjoint from a K§73, and so is non-nearly-planar.

First suppose that e is an edge of G that lies in the original H. If H — e does
not have a face with all three red edges on a common face, then it does not extend
to an embedding of (H —¢e) +v. If H — e does have a face with all three red edges
on a common face, then it does not extend to an embedding of (H —e) U K3
(however, it does if B is a bridge not containing a K3 3). In either case, there is a
K} 5 disjoint from e in the appropriate extension G.

Next suppose that e is an edge of G that does not lie in the original H. Then
there are two red edges r; and ry that do not correspond to that portion of G — H
related to e. Now G — e is planar if and only if r; and 72 lie on a common face. O

Before giving the complete set of minimal graphs with the three-red-property
we make the following simple observation. A planar graph H with two red edges
will have the two-red-edge property if no embedding has both edges on the same
face. Subdivide the two red edges and add an edge e between the new degree-two
vertices. Then H has the two-red-property if and only if H + e is non-planar. It
follows that the only topological minimal graph with the two-red-edge property is
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Proposition 4.2. There are exactly 9 planar cubic graphs that are minimal with

the three-red-edge property. They are given in Figure 1, where the red edges are
denoted with solid circles.

D OQ6 B

Ty Ty

T; Ty Ty

FIGURE 1. Minimal Graphs with the Three-Red-Edge Property
(red edges are indicated with solid circles)

Proof. Let H be a minimal cubic planar graph with the three-red-edge property.
Our analysis breaks into cases depending on the edge-connectivity &' of H, with
sub-cases depending on whether a cut set has red edges. Throughout this proof B
will be a cut-set with Hy, H> the components of H — B.

Case 1: k'=1. First suppose that B is a single red edge e. Observe that each
H; contains a red-edge, or else the original H was not minimal. Let Hj' be the
graph made by supressing the degree-two vertex of H; and coloring the resulting
edge red. Then H; has the 2-red-edge property, and by the comments preceeding
this proposition is a Kj 5. It follows that H is the graph T of Figure 1.

Next, suppose that B is a single edge e that is not red. Let H; be H; with the
degree two vertex supressed, and let H. f be H; with the resulting edge colored red,
call this the special red edge. First, if one of the H:r has two red edges on a common
face and neither is special, then H has a similar embedding; this contradicts the
hypothesis. If both H f have two red edges on a common face and both pairs involve
the special edge, then H has an embedding with the two non-special red edges on
a common face. Hence at one of the H Z‘" must be minimal with two red edges, that
is, without loss of generality H; is a K3 5. Now, H must contain a K3 § with one
red edge, and hence H contains either 75 or T3 of Figure 1.

Case 2: k'=2.  We first observe that a 2-edge-cut B cannot contain two red
edges, because they must appear together on a face.
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Suppose that B has a red edge. Note by minimality, each H; has one of the
remaining red edges. Define Hf as H; with a red edge joining its two degree
two vertices. If either H:r has its red edges on a common face, then there is an
embedding of H with this property. Hence each H, f has the two-red-edge property.
Again, by minimality, each H:r isa K;; Hence H is the graph Ty of Figure 1.

Next, suppose that B does not have a red edge. Define H Z+ as before, and define
H; as H;" with the new edge not colored red. If both H; and H, have two red
edges on a common face, then so does some embedding of H. Hence at least one of
the Hf do not have two red edges on a common face. Without loss of generality
this is H 1+ , and by minimality H 1+ and H, both have exactly two red edges. Now,
H, must have the two-red-edge property. Once more by minimality, both Hf and
H, must be K ;. Hence H is the graph T5 of Figure 1.

Case 3: k'=3. First note that H has at least six faces. We will show that H
has exactly six faces. Call an edge e of H reducible if deleting e and supressing the
resulting degree-two vertices results in a 3-connected graph.

Claim:  For any face f there is a reducible edge on the boundary of f.

Proof of Claim: Thomassen ([8], page 46) has shown that any non-cubic graph
contains a reducible edge. Our proof of this related result is similar in nature to
his. Consider the dual statement: a triangulation contains a contractible edge. (An
edge is contractible if and only if it lies on no non-facial triangles; after contracting
an edge we remove the resulting degree-two vertices). We have to show that every
vertex v is incident with a contractible edge. If v is not incident with a non-facial
separating triangle, then every edge incident with v is contractible. Pick a non-
facial separating triangle 7" incident with v enclosing the smallest area. Any edge
e in the interior of 7" is not on a separating non-facial triangle, and so is reducible.
The claim follows.

Having proved the claim, suppose that H has at least seven faces. Then there
exists a face f that is not incident with a red edge. By the claim, there is an
edge e in the boundary of f such that H — e is three-connected. Because f was
not incident with a red edge, and because each embedding of H — e corresponds
to an embedding of H, H — e has the three-red-edge property. This contradicts
minimality. We conclude that H has exactly six faces.

There are only two planar cubic three-connected graphs with six faces: the cube
and a graph made from K4 by “blowing up” two vertices into triangles. The cube
has a unique way to pick three edges with no two on a common face. This gives the
graph Tg of Figure 1. The other graph has three non-isomorphic ways of selecting
three red-edges with no two on a common face. These give the graphs 77,7Tg and
Ty of Figure 1.

These three cases complete the proof of the proposition. a

Our primary application of Proposition 4.2 is the following.

Corollary 4.3. There are ezxactly j three-edge-connected obstructions G to near-
planarity with a non-trivial three-edge-cut where both sides are non-planar, but one
side has the three-red-edge property. These are the graphs given in Figure 6. There
are exactly 5 obstructions G to near-planarity that contain a vertexr v with G — v
planar. These are the graphs given in Figures 4 and 11.
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Proof. In either case stated in the corollary, there is a three-edge-cut B of G so
that one component H of G — B has the three-red-edge property. By Lemma 4.1
either H + K5 3 or H + v is non-nearly-planar (and hence all of G) depending on
whether or not there exists an edge e with H — e having all three red edges on a
common face. Hence G is contain in either H + K5 3 or H + v respectively (in all
cases (G is exactly these graphs).

The proof proceeds by examining the nine graphs of Figure 1 and looking for
the desired edge e. Exactly four of the graphs have such an edge: Ty, Ts,T7,Ts. In
each case T; + K 3 is an obstruction for near-planarity. These are respectively the
four graphs 16.6, 16.2, 16.5, and 16.3 of Figure 6. Two more graphs T and 77 do
not have such an edge. Here T}, + v is an obstruction for near-planarity. These are
respectively the graphs 12.3 and 12.1 of Figure 11. (These graphs will arise again
in a later part of the argument.) Finally, three of the graphs T}, T», T3 have T; + v
an obstruction to near-planarity with edge-connectivity two. These are respectively
graphs 14.1, 14.9, and 14.8 of Figure 4.

A nice feature of this result is that the nine minimal graphs with the three-red-
edge property correspond exactly with nine obstructions to near-planarity. O

We next turn to nearly-planar obstructions with an edge-cut B of size three, but
where neither side of G — B has the three-red-edge property. We establish some
terminology.

Let eq,€p,e. be the three cut edges, let Hy, Hy the two components of G — B,
and let a;, b;, ¢; be the colored topological edges of H;, that is, those containing the
ends of eg, ey, e. respectively. We'll say two colored edges are a facial pair if there
exists an embedding of H; with these two edges on a common face. Because B does
not have the three-red-property, each H; has a facial pair. We study possible facial
pairs more closely using the following definition.

Consider a graph H with two distinguished red edges and one distinguished blue
edge. We also allow one edge to be colored red twice, in other words, the two red
edges are not necessarily distinct. Then H has the red-and-blue-edge property if no
embedding of H has a red edge and the blue edge on a common face. The two
red edges are allowed to lie on a common face, provided that that face does not
contain the blue edge. We characterize minimal graphs with the red-and-blue-edge
property in the following lemma.

Lemma 4.4. A graph that is minimal with the red-and-blue-edge property is one
of the four graphs of Figure 2. The red edges are those with one (or two) filled-in
circles; the blue edge is marked with an open square.

Proof. Fix one red edge a; and let ¢; be the blue edge. Because a; and ¢; are not
a facial pair, H must contain a Kj 5. If the two red edges coincide, then we have
the graph A in the Figure 2. The second red edge b; must lie in one of the two
faces on either side of a;. There are exactly three ways to add a chord that does
not re-embed on a face with ¢; and that not contain the graph A. These are the
graphs B, C, and D of the figure. a

We return to our analysis of obstructions to near-planarity.
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PP

FiGURE 2. Minimal Graphs with the Red-and-Blue-Edge Property

Proposition 4.5. Let G be a cubic obstruction to near-planarity with cyclic-edge-
connectivity three. Suppose that no cyclic cut has a non-planar component or a
component with the three-red-edge property. Then G is the graph of Figure 7.

Proof. Let {eq, e, e.} be a three-edge-cut with components H;, Hs; label the ends
of each e, in H; as before. By assumption H; has a facial pair, say it is (a1, by).
Note that (a2, b2) is not a facial pair in Ha, or else G —e, is planar. If we color ag, by
red and ¢; blue, then H; has the red-and-blue-edge property. Hence H; contains
one of {4, B,C, D} in Figure 2.

Also color as, by red and ¢; blue in Hy. Now, Hy doesn’t have the red-and-blue-
edge property, but instead has the property that the two red edges do not appear
on a common face. There are two minimal graphs with this property. The first
we’ll call X, which is a K5 where the blue edge and one red edge are the same.
The second, Y, is also a K3 3 with the red edges a matching, but now the blue edge
is distinct.

The key observation is that any one of A, B, C, D together with any one of X,Y
and the bond joining them has no essential edges. Because G is minimal, it must
be one of these 8 possible graphs. We examine each in turn.

First suppose that G is A together with either X or Y. This A has another
three-edge-cut: use the two segments at the ends of the red edge and e.. This cut
has H> non-planar, contrary to our assumption. Likewise, B with either X or Y
has another 3-edge-cut using the two edges that disconnect the red edges from the
rest of B. Again this has a non-planar component, contrary to our assumption.
Either C' with X or D with X has a non-planar H; using a 3-edge-cut involving
the ends of the common red/blue edge in X. Next, C together with Y has no other
3-edge-cuts. However, it has a redundant edge whose deletion yields graph 14.4 of
Figure 5. This leaves only D together with Y, which is the desired graph of Figure
7. O

By the results of Sections 3 and 4, we can assume that the remaining cubic
obstructions for near-planarity are cyclically 4-edge-connected.

5. OVERLAP GRAPHS

In this section we examine bridges of a graph with respect to a cycle and their re-
lation with planarity. The basic approach is related to the overlap graph introduced
by Tutte [18], we include it here for completeness.
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Throughout this section G will be a fixed graph with a fixed cycle C. We assume
that the cycle C' has some distinguished degree-two vertices that divide C into paths
called the sides of C'.

A 6-graph is a subgraph homeomorphic to K» 3. Each foot of a (G, C)-bridge
lies in a unique side of C. The pair (G, C) is #-less if there does not exist a #-graph
of G disjoint from C' — S, where S is a side of C.

There are two parts to this section. In the first part we consider only embeddings
of G where all of the (G, C)-bridges have to go on the same side of C (a disk
embedding). In the second part we allow (G, C)-bridges to embed on either side of
C (a planar embedding).

A disk embedding of the pair (G,C) is an embedding of G in a disk such that
C is on the boundary of the disk. The pair (G, C) is disk-critical if G has no disk
embedding, but G — e has a disk embedding for every edge e € G — C. A (G,C)
bridge is solid if it has feet in at least two sides of C'. Two bridges By and Bs are
skew if there exists distinct feet u;, v; of B; that appear in cyclic order uy, us, vy, v2
along C.

Lemma 5.1. Let (G,C) be a disk-critical -less pair with every bridge solid. Then
there are exactly two different (G, C)-bridges, they are skew, and both bridges are a
single solid edge. In particular, there are exactly four vertices in G of degree three.

Proof. We begin with the case that there is a single (G, C')-bridge B, so that C UB
is non-planar. If B has at most three feet, then there is a #-graph disjoint from C
in contradiction of the hypothesis. Hence B has at least four feet; say these are
V1, V2, U3, U4 appearing in that order along C.

Chose P to be a shortest vqvs-path in B. Let Bi,..., By be the (G,C U P)-
bridges. The half of C' — {v1,v3} that contains v, will be called P and the half
containing v4 will be Py. Each B; must contain a foot in either P, or Py, or else
we either have parallel edges or we contradict the hypothesis that (G, C) is -less.

Suppose that some B; has feet in both P, and Py. Then there is a second path
P’ in B; joining without loss of generality v and vs. Hence the original bridge
B contains an H-tree on 5 vertices, where the two vertices adjacent to one of the
cubic vertices in the H are skew with the two vertices adjacent to the other cubic
vertex of H. The two vertices adjacent to one of the cubic vertices are not feet on
a common side S of C, or else there exists a #-graph disjoint from C' — S. Hence if
we delete the edge e joining these two degree-two vertices, then the pair (G —e, C)
satisfies the other hypotheses of this lemma. This contradicts minimality.

From the last three paragraphs we conclude that there are at least two (G, C)-
bridges By, Bz, and that C'U B; is planar for each i. Because G is non-planar, there
must exist a single pair of skew bridges B;, By. We will show that these must each
have feet in different sides of C', that is, that they are solid.

Let uy,v; and us,vs be feet of By and Bs respectively such that they occur in
cyclic order ujusvyve around C. These four vertices divide C' into four paths which
we will denote (up,us), (u2,v1), (v1,v2), and (vs,u;). By way of contradiction,
suppose that u; and v; lie in the same side S of C'. By supposition, B; has a foot
wy not on S. If wy lies in (vy,v9), then we can delete the leg of B; incident with
vy and still have skew bridges. If wy lies on (v2,u1), then we can similarly delete
the leg incident with u;.

The conclusion of the lemma has been shown. O
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We next turn our attention to embeddings where bridges can go on either side
of C, that is, planar instead of disk embeddings.

The overlap graph L = L(G,C) has vertices the (G, C)-bridges, with edges join-
ing skew bridges. The original concept is due to Tutte [18], but in the more general
catagory of non-cubic graphs. Tutte showed the following.

Theorem 5.2. A graph G is planar if and only if for every cycle C, the overlap
graph L(G, C) is bipartite. O

Lemma 5.3. Let G be a non-planar graph containing a fixed cycle C. Suppose that
there are at least two (G, C)-bridges, and that for any leg e of any bridge B, G — e
is planar. Then

(1) there is an odd number of bridges By, ..., By,

(2) each B; is skew to B;—1 and to Bir1 but to no other bridge (subscripts are
read cyclically), and

(3) each B; has ezxactly two feet.

Proof. We first observe that C'U B is planar for every bridge B, since this graph is
contained in G — e where e is a leg of another bridge. We form the overlap graph
L= L(G,C). If L is bipartite, then as in Tutte’s Theorem, G is planar (we use the
bipartition to say whether bridges go inside or outside of C'). Hence L contains an
odd cycle. Let O be the shortest odd cycle of L. Observe that O is chordless, as
any chord makes a shorter odd cycle. Also note that if there were a bridge B that
is not a vertex of O, then for any leg e of B, we have the contradiction that G —e is
still non-planar. We conclude that the overlap graph is exactly a simple odd cycle,
which gives Conclusions 1 and 2 of this lemma.

Next, suppose that there is a bridge with | B;| > 3, where | B;| denotes the number
of feet (or equivalently legs) of B;. Let S;11 denote the set of legs of B; such that
B; — e is still skew to B;4; for any e € S; 1. Define S;_; similarly. It is easy to
see that |S;+1| and |S;—1| are both of cardinality at least |B;| — 1. Since |B;| is at
least three, there is a leg e € S;—1 N S;4+1. Deleting this leg still leaves a non-planar
graph, a contradiction. Hence we have shown Conclusion 3 of this lemma. g

We use this lemma only for the following corollary, whose proof now follows
immediately.

Corollary 5.4. Under the hypotheses of the preceding lemma, there is a K;g -graph
contained in G — B for every bridge B of a fized cycle C. O

6. EXTENDING PLANAR EMBEDDINGS

In this section we use the results of the previous section to restrict (under certain
conditions) the way a planar embedding of a subgraph can extend to a planar
embedding of the whole graph. These results will be used in the next section to
bound the size of a nearly-planar graph.

Let G be a graph with a subgraph H. Suppose that H is a three-connected
planar graph and that G is non-planar. The pair (G, H) is critical if for every edge
e € G — H, G — e is planar (there is no such restriction on planarity for e € H).
Recall that a pair is 6-less if no edge e € H has a f-graph disjoint from H — e.
The pair is minimal if every subgraph K of G that is homeomorphic to H has
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[V(G)U K| > |V(G) U H|, that is, if we have the topological copy of H in G that
has the fewest possible number of vertices in G.

In any embedding of a three-connected graph H there is at most one face con-
taining two topological edges of H. Recall that a (G, H)-bridge is solid if it has
feet in at least two topological edges of H. One of our goals is to restrict where
a (G, H)-bridge B can go when extending the unique planar embedding of H by
ensuring that B is solid. The following lemma achieves this.

Lemma 6.1. Suppose that (G, H) is a critical minimal 8-less pair. Then every
(G, H)-bridge is solid.

Proof. Let B be a bridge with at least three feet. Then B is solid unless all of its
feet lie on a common topological edge e of H. But in this case, there is a #-graph
disjoint from H — e, contradicting 6-less.

Let B be a bridge with exactly two feet. By minimality, B consists of a single edge
e. If B is not solid, there are either parallel edges in GG, contradicting criticalness,
or we can replace a portion of e with B, contradicting minimality. a

We turn our attention to ensuring that a pair is 6-less.

Lemma 6.2. Suppose that (G, H) is a minimal critical pair that has a 0-graph T
disjoint from H — e for some edge e (i.e., (G,H) is not 6-less). Then there is a
single bridge B, the one containing T. Moreover,

V(@) < |V (H)] +8.

Proof. We first examine the case that T is a K; ;-graph. Consider H together with
the (H — e)-bridge B containing the K33 graph. Then H U B is non-planar; by
minimality it is all of G. But adding G to H increases the number of vertices of H
by at most 8: the five topological vertices of the K 3 and the three feet of B.

We next show that a 6-graph 7" disjoint from H — e implies that there is a K 3-
graph disjoint from H — e, so that the arguments of the previous paragraph apply.
This supposed T contains three cycles. At least one of the cycles C' must have more
than one bridge, or else T is a K:;g—graph as desired. By criticality, each leg e of a
(G, C)-bridge has G — e planar. Hence (G, C) satisifies the hypotheses of Lemma
5.3. By Corollary 5.4 there is a K:;g—graph disjoint from H — B, where B is the
(G, C) bridge containing H — e. The conclusion follows. O

We begin our examination of #-less pairs with the following lemma.

Lemma 6.3. Suppose that (G, H) is a critical minimal 0-less pair. Then either

(1) there is exactly one bridge B consisting of a single edge whose ends do not
lie on a common face of H, or

(2) there are exactly two bridges which both embed in a common face f of H
but which are skew.

In either case, we have |V(GQ)| < |V(H)| +4.

Proof. If there is a (G, H)-bridges B with feet in topological edges ej, es of H that
do not lie on a common face of the planar embedding of H, then H U B is non-
planar. By criticality, B is a single edge, G = H U B, and so Conclusion 1 holds.
Note that |V(G)| < |V(H)| + 2 as desired.
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Next suppose that for each bridge B the feet of B are lie in a common face
F = F(B). By Lemma 6.1 each bridge is solid, so the choice of F is unique.
Partition the (G, H)-bridges according to their corresponding face. For each face,
consider the graph G consisting of the boundary of G and all bridges corresponding
to F. Then @ is planar if and only if every Gz has a disk embedding. It follows that
at least one G+ does not have a disk embedding. By Lemma 5.1 there are exactly
two bridges corresponding to F' and they are skew solid edges. By criticality
there are no bridges corresponding to faces other than F’. Hence Conclusion 2
follows. O

7. OBSTRUCTIONS WITH POOR K-STRUCTURES

In this section we complete our analysis of obstructions to near-planarity that
have a K-structure. There are three main remaining cases: (Kj 3, K33)-, (K33, K3 3)-
, and (K3, Kj 5)-structures. We examine them in Propositions 7.1, 7.2, and 7.3
respectively.

Proposition 7.1. There does not exist a cubic obstruction to near-planarity that
is cyclically-4-edge-connected and that has a (K33, K3 3)-structure (but no richer
K -structure).

Proof. We will actually show that any such G has at most 24 vertices. We then
conclude the non-existence of G by an exhaustive search.

We start with the hypothesised K-structure: the two subgraphs H; and H,.
By assumption each H; completes to a K§73. Hence there two arcs for Hy to Hs
needed to complete H; to K3 ;. If the two arcs intersect in G — Hy, then G has a
(K §’3, K 5)-structure contrary to our assumption. Similarly select another two arcs
(not necessarily distinct) to complete Ho. By 4-edge-connectivity there are at least
four distinct arcs from H; to Hs. If any of the previously selected arcs coincide,
select enough distinct arcs from H; to Ha to ensure cyclically 4-edge-connectivity.
Let K be the resulting graph. Select K as the graph between H and G with a
minimal number of edges in K} ; C K.

If every edge of K is essential in K, then G = K and |V(G)| < 16 as desired.
There are at most two non-essential edges. Let e; be one such edge, and if necessary
let e5 be the other such edge. Set H = K —e;. Then H is a three-connected planar
graph with |V(H)| = 14. Note that every edge in G — H except for e; is essential,
and every edge of H except for possible ey is also essential. Let H graph with
H C H C G such that (H, H) is a critical pair. Renaming H if necessary, we can
assume that this pair is minimal.

We first consider the case that (H, H) is not f-less. Let T be a f-graph disjoint
from H —e (where possible e = e3). By Lemma 6.2, [V (H)| < |V (H)|+8. If e # ea,
then every edge in H is essential. Hence G = HUe; and |[V(G)| < 14+8+2 =24
as desired. If e = eq, then we consider the (H; U H»)-bridge B containing T'. By the
arguments in Lemma 6.2 T is a K:;g—graph. Two of the paths P, P, completing
this K;g to a K§73 must connect to the same H;, say Hy. But now (TUP; UP,, H»)
is a (K33, K3 3)-structure with a K having only one essential edge, contradicting
our choice of K.

Next consider the case that (H,H) is #-less. Then by Lemma 6.3, |V (H)| <
|[V(H)| +4 = 18. If e; were the only essential edge, then |V (G)| < 18 +2 = 20 as
desired. However, if H contained a second essential edge e2, then it is no longer
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essential in H unless at least two feet of (H, H)-bridges lie in e». But in this case
we have a different homeomorph K in H. This has fewer essential edges, so it again
contradicts our choice of K.

We have shown that any such G as hypothesised in the proposition has at most
24 vertices. The proof is completed by a computer search on all cubic graphs with
at most 24 vertices to see if any are obstructions to near-planarity. The details and
double-checks of the algorithm are presented in Section 9. O

Proposition 7.2. Let G be a cyclically 4-edge-connected cubic obstruction to near-
planarity with a (K33, K3 3)-structure (but no richer K-structure). Then G is the
graph of Figure 8.

Proof. The proof mimics that of the last proposition. We will actually show that
any such G has at most 22 vertices. We then conclude that G is the graph named
by an exhaustive search.

We begin again with the hypothesised K-structure: the two subgraphs H; and
H,. As before, we select the subgraph K of G that is cyclically-4-edge-connected,
contains Hy U Hy, and such that the number of edges that are non-essential in K
is minimized.

If every edge of K is essential in K, then G = K and |V(G)| < 14 as desired
(observe that this is where the graph of Figure 8 arises). There are at most two
non-essential edges. Let e; be one such edge, and if necessary let es be the other
such edge. Set H = K —e;. Then H is a three-connected planar graph with
|V(H)| = 14. As before, every edge in G — H except for e; is essential, and every
edge of H except for possible ey is also essential. Let H graph with H C H C G
such that (H, H) is a critical pair. Renaming H if necessary, we can assume that
this pair is minimal.

We first consider the case that (H, H) is not f-less. Let T be a f-graph disjoint
from H — e (where possible e = e5). By Lemma 6.2 |V (H)| < |V(H)|+8. If e # ea,
then every edge in H is essential. Hence G = HUe; and |V(G)| < 12+8+2 =
22 as desired. If e = ey we consider the (Hy U H»)-bridge B containing 7. As
before, by the arguments in Lemma 6.2 T is a K:;g—graph. Two of the paths Py, Py
completing this K3 to a K}, must connect to the same H;, say H;. But now
(T'U P, U Py, Hs) is a (possibly richer) K-structure with a K having only one
essential edge, a contradiction.

Next consider the case that (H, H) is §-less. Then by Lemma 6.3,
|V(H)| < |V(H)| +4 = 16. If e; were the only essential edge, then |V(G)| <
16 + 2 = 18 as desired. However, if H contained a second essential edge ez, then it
is no longer essential in H unless at least two feet of (H, H)-bridges lie in es. But
in this case we have a homeomorph of K in H. Since this has fewer essential edges,
it again contradicts our choice of K.

We have shown that any such G as hypothesised in the proposition has at most
22 vertices. The proof is completed by a computer search on all cubic graphs with
at most 22 vertices to see if any are obstructions to near-planarity. The details and
double-checks of the algorithm are presented in Section 9. O

Proposition 7.3. Let G be a cyclically 4-edge-connected cubic obstruction to near-
planarity with a (K3 3, K3 3)-structure (but no richer K-structure). Then G is one
of the graphs of Figure 9.
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Proof. The proof mimics the proofs of the last two propositions. We will actually
show that any such G has at most 20 vertices. We then conclude that G is one of
the graphs claimed by an exhaustive search of all graphs on 20 vertices.

We again begin with the hypothesised K-structure: the two subgraphs H; and
H; and a subgraph K of G with the aforementioned properties.

If every edge of K is essential in K, then G = K and |V(G)| < 12 as desired.
There are at most three non-essential edges. Let e; be one such edge, and if
necessary let es, es be the other such edges. Three of the edges joining H; to Hs
must form a bijection between the topological edge of H; with those of Hs. Label
the topological edges A;, B;, C; such that each X; is in H; (where X € {A, B,C})
and each X is bijectively matched with Xs.

First, suppose that an edge of K connects say A; to Bs. Then the only remaining
essential edge is one joining C; to Cy. The analysis proceeds as in the previous
propositions, yielding |V (G)| < 12+8 = 20. (This is where the first graph of Figure
9 arises.)

Second, suppose that all remaining arcs from H; to Hs join X; to X». As soon
as we get corresponding arcs between two corresponding edges of H;, then both are
non-essential. Hence there are at most three additionial such arcs, and |V(G)| < 16.
(This is where the second graph of Figure 9 arises.)

As before, we have bounded the number of vertices in G. The proof is completed
by an exhaustive search. a

We have finished the three propositions covering the three remaining K-structures,
and hence have found all obstructions to near-planarity under the cubic order that
contain a K-structure.

8. PROJECTIVE PLANARITY AND THE MAIN PROOF

In this section we give the proof of our Main Theorem 1.5. The proof uses an
interesting connection between nearly-planar graphs and graphs that embed in the
projective plane. We need a preliminary definition.

A projective-planar map is a fixed embedding of a graph in the projective plane.
The face-width of a projective-planar map G is the minimum |C'UG| taken over all
non-contractible cycles C.

Lemma 8.1. A cubic projective-planar graph is nearly-planar if and only if it has
face-width at most two.

Proof. Fiedler, Huneke, Richter, and Robertson [5] have shown the remarkable
result that the orientable genus of a graph embedded in the projective-plane with
face-width w > 3 is |w/2]. Note that the face-width can vary between different
projective-plane embeddings, but not by more than one if one embedding has face-
width at least three. The result now follows. O

It follows from this lemma that the obstructions to near-planarity that embed
in the projective plane do so with face-width three, and are minimal with that
property. It is known [19] that there are exactly six minor-minimal graphs for the
property of having face-width at least three in the projective plane. These are six of
the seven members of the Petersen Family (the remaining member of the Petersen
Family is non-projective-planar). Any topological obstruction to this property in
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the cubic order must be a splitting of one of these graphs. It is straightforward to
check their possible splittings and conclude the following.

Proposition 8.2. Let G be cubic obstruction to near-planarity that embeds in the
projective plane. Then G is one of the graphs of Figure 10.

Proof. The proof follows from the preceeding comment. However, this has also been
noted in the literature as we will now describe. Any graph with crossing number
one is nearly-planar. Hence any obstruction has crossing number at least 2. Any
such graph that embeds in the projective plane must do so with face-width at least
three. McQuillan and Richter ([12], see also [14]) have shown that there are exactly
two minimal cubic graphs that embed in the projective plane with face-width at
least three. These are the two graphs claimed. O

We are now ready for our main result.

Proof of the Main Theorem 1.5: Let G be an obstruction to near-planarity
under the cubic order.

If G embeds in the projective plane, then by Proposition 8.2 this is one of the
graphs of Figure 10.

If G does not embed in the projective plane, then it must contain a cubic ob-
struction for non-projective-planarity. Thanks to Glover and Huneke [6] this set
is known: it contains exactly six graphs. (See [1, 2] for the non-cubic case, from
which this result also follows.)

We examine these six graphs in turn. The first graph is the disjoint union of two
K §73 as shown in Figure 3, and so is already on our list of near-planar obstructions.
This is the graph Fys in the notation of [7]. The next two graphs are shown
in Figure 11, and so are already on our list of near-planar obstructions. They
are F1p and Fi3 in the notation of [7]. The fourth graph (Fi4 in [7]) is minimal
non-projective-planar, but is not minimal non-nearly-planar: it has an edge whose
deletion gives a homeomorph of the Petersen graph. The remaining two graphs
(F11 and Gy in [7]) have a (K33, K33)- and a (K33, K3 3)-structure respectively.
Hence any non-projective obstruction to near-planarity is either on our list or has
a K-structure.

In Sections 3 and 4 we found all cubic obstructions to near-planarity that have
cyclic-edge-connectivity at most three or that contain one of three specific K-
structures. In Section 7 we found all cubic obstructions to near-planarity that
are cyclically-4-edge-connected and have one of the remaining three K-structures.
This completes the proof that our list of obstructions is complete. a

In Figures 3 through 11 we give the complete set of 21 obstructions to near-
planarity under the cubic order. By Proposition 1.4 this is also the complete set of
21 obstructions to embedding on the spindle surface under the cubic order.

9. THE ALGORITHM AND OUR DOUBLE CHECKS

The main result of this paper relies on an exhaustive computer search of cubic
graphs of small order. We give here several double-checks that this search was done
successfully.
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SjEs

2K3 3

FIGURE 3. Obstruction with a (K% ;, K 3)-Structure

14.1 14.8

FIGURE 4. Obstructions with a (K} 3, K3 5)-Structure

14.7

14.9

FIGURE 5. Obstructions with a (K} 3, K3 3)-Structure

We begin by describing the algorithm used for determining which small cubic
graphs are obstructions for near-planarity. The first program used is the well-
tested planarity algorithm for graphs included in the LEDA package [11]. Using
this program, it is easy to make a program to determine if a graph is nearly-planar:
we merely test each subgraph G — e to determine if one is planar. Similarly, it is
easy to make a program to test for an obstruction for near planarity: merely test
that a given graph G is not nearly-planar, but that all subgraphs G — e are.

To check all small cubic graphs we generated all cubic graphs using Brendan
McKay’s Nauty and Gtools packages [13]. We generated all cubic graphs on up to
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16.6 16.2

16.5 16.3

FIGURE 6. Obstructions from the Three-Red-Edge Property

16.4

FIcURE 7. Obstruction from the Red-and-Blue-Edge Property

14.10

FIGURE 8. Obstruction with a (K33, K3 3)-Structure

24 vertices and checked each to see if it was an obstruction to near-planarity. The
peculiar numbering of the graphs reflects the number of vertices and the order in
which they are generated by Gtools.

In Sections 3 and 4 we were careful to complete the analysis without using a
computer search. The graphs that we found with these structures agreed with the
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14.3 16.1

FIGURE 9. Obstructions with a (K33, K3 3)-Structure

10.1 (Petersen) 12.2

FicURE 10. Obstructions that Embed in the Projective-Plane

12.1 12.3

FicUrRE 11. Obstructions that do not Embed in the Projective-Plane

graphs found by our computer search. This is valuable evidence that the search
was correctly programmed.

There are several classes of nearly-planar obstructions that are easy to find inde-
pendently, for example those with small edge connectivity. We had also found ten
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or so examples of obstructions to near-planarity by hand. In each case our hand
calculations agreed with the computer search.

Finally, we checked each of the 21 computer-generated graphs by hand to verify
that each was an obstruction to near-planarity.

Perhaps the most compelling evidence of the correctness of our results is the
fact that there were no obstructions found for graphs of order 18 through 24. It is
difficult to believe that there may be a larger example, given that there are none
of these orders.

10. CONCLUSION

Most of the arguments given in this paper were geared towards finding the cubic
obstruction set for near-planarity. Some of the arguments hold in greater generality.
We mention a few cases.

The techniques of Proposition 4.2 generalize nicely. Say that a cubic planar G
has the k-red-edge property if it has k red edges and no planar embedding of G has
any two red edges on a common face. It’s possible to show that minimal graphs
with the k-red-edge property are either built along 1- or 2-edge cuts from examples
with the k'-red-edge property, k' < k, or have exactly 2k faces. In particular, the
following holds.

Proposition 10.1. Let G be a minimal cubic planar graph with the k-red-edge
property, and let m be the number of cut-edges of G. Then |V (G)| = 4(k — 1) +
2m. g

The material of Section 5 on overlap graphs can be generalized to the non-cubic
case fairly easily. We leave the details for another day.

The material in Section 6 on extending embeddings could be used for other
embedding problems. We worked hard to guarantee that our embeddings were
three-connected. Thus, when we were dealing with solid bridges (those with feet in
two different topological edges), there was at most one face where that bridge could
lie. The same idea would work for any H embedded in any surface with face-width
three.

To a large extent the techniques used in this paper are common for such structure
theorems. If you are only interested in proving that a set is finite, then you can often
apply cruder bounds. If you don’t use a computer search the casework analysis in
Section 7 is daunting. A combination of a careful analysis of bounds and a computer
search can be useful.

A natural question is to determine the obstruction set for embedding (possibly
non-cubic) graphs in the spindle surface. The authors feel that finding this set may
be within reach using the techniques developed herein. We note the work of [4]
who under a finer partial order have found some of these obstructions. However, it
is known that their set is not complete.

Finally, we have not discussed the algorithmic implications of our work. It is
easy to create a quadratic-time algorithm to embed a cubic graph in the spindle
surface: merely delete each edge in turn and run a linear-time planarity algorithm
on the resulting graph. Is it possible to adapt these techniques to give a linear-time
algorithm to embed a cubic graph in the spindle surface?
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