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Abstract

At one extreme, the global error for symplectic explicit Runge-Kutta Nystrom
(SERKN) methods consists entirely of truncation error and grows as ¢t. At the
other extreme, the global error consists entirely of random round-off error and grows
stochastically as #/2. We use numerical testing to investigate how the global error
grows for stepsizes between these two extremes. The testing is of representative
SERKN methods of orders four to seven on three long N-body simulations of the
Solar System. The work also provides an opportunity to introduce two new test
problems for symplectic methods and to present comparisons of the efficiency of
SERKN methods.
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1 Introduction

Figure 1 contains plots of the Ly norm of the global error for five one-million year simula-
tions of the Sun and the gas giants (Jupiter, Saturn, Uranus and Neptune) using the order
seven SERKN method of Calvo and Sanz-Serna [3]. The simulations were done in double
precision using stepsizes of 4, 8, 16, 32 and 64 days. The reference solution was calculated
in quadruple precision using a variable-stepsize integrator with a small tolerance.
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Figure 1: Base 10 log-log graph of the global error for a simulation of the Sun, Jupiter, Saturn,
Uranus and Neptune, using the order seven SERKN method of Calvo and Sanz-Serna [3].

The norm of the global error for stepsizes of 32 and 64 days grows approximately as
t. We used least squares to fit the power law at? and found 3 was 1.05 for the stepsize of
32 days and 1.07 for the stepsize of 64 days. These two values agree reasonably well with
the value of one we would expect if the round-off error was insignificant.

The norm for the stepsizes of 4, 8 and 16 days grows faster than ¢. In addition, the plots
for these stepsizes are almost coincident and have more undulations than those for the
larger stepsizes. These three features suggest round-off error is a significant component of
the global error. The exponent of the power law fit is 1.51, 1.60 and 1.68 for the stepsizes
of 4, 8 and 16 days, respectively. Brouwer [1] proved that when the global error consists
entirely of random round-off error, it grows stochastically as t>2. Since 1.51 is close to
3/2, Brouwer’s theorem suggests the global error for the stepsize of 4 days is dominated
by random round-off error, although the agreement in exponents may be fortuitous.

The plots in Figure 1 raise interesting questions about how the growth of the global
error for SERKN methods depends on the stepsize and the order, and how Mgller’s
technique [7, 8] changes the growth.

We present numerical comparisons of representative SERKN methods of orders four
to seven on three long N-body simulations of the Solar System. The simulations are a
one million year simulation of the Sun and gas giants, a 22,000 year simulation of the Sun
and nine planets, and a 11,000 year simulation of three Saturnian satellites.

A simulation of one million years may seemed contrived because it is far longer than
normally used in testing SERKN methods. In fact, a simulation of one million years is
short by modern standards of computational astronomy, 10° years being common. For
example, Grazier, Newman, Kaula and Hyman [5] simulated the Sun, the gas giants and
10° particles for 10° years, and Kuchner and Holman [6] simulated 1500 trans-Neptunian
particles for 4.5 x 10° years.

We begin in §2 with a few definitions and briefly discuss the selection of the SERKN
methods we used in our testing. Then in §3 and 4 we give the comparisons when Mgller’s



technique is not used (§3) and is used (§4). We end in §5 with a summary of our results.

2 Definitions and methods

The initial value problems for the three simulations can be written as

§(t) = fy(@), ylto) =y, Y(to) = o, (1)

where the dot operator denotes differentiation with respect to ¢, f : R® +— R", and f is
sufficiently smooth.

The explicit Runge-Kutta Nystrom methods we test calculate order p approximations
y; and y; to y(t;) and §(t;), respectively, i = 1,2, ..., using the formulae

Vi =i+ b+ B2 bifi, G =i+ h Y ViS5, (2)

where h = tz — ti—l and fj = f(ti—l + th, Yi—1 + thyi—l + h2 i:;ll ajkfk), ] = ]_, e, S
Method (2) is symplectic if

ajp = (c;j —cp)by,, k=1,...,7—1, j=2,...,s. (3)

Hence, once c;, b;, and b;, j=1,...,s, are known, the remaining coefficients a;; are.

If ey, =0,¢,=1and ay; =b;,j =1,...,5 — 1, the last stage f; can be re-used as the
first stage of the next step. This property, commonly called FSAL, means the number of
f evaluations on all but the first step is s — 1.

Yoshida [14] gave order eight symplectic methods that can be written as 16-stage
FSAL SERKN methods. Okunbor and Skeel [9] gave families of one-, two- and three-
stage SERKN methods. Calvo and Sanz-Serna presented a five-stage, order four FSAL
method in [2] and a 13-stage, order seven FSAL method in [3]. Both methods have
minimised error coefficients. Okunbor and Skeel [10] performed numerical searching and
found four five-stage, order five methods, and sixteen seven-stage, order six methods.
Chou and Sharp [4] presented a seven-stage, order five FSAL method with minimised
error coefficients. Tsitouras [13] gave a 33-stage order 10 non-FSAL method.

It is impractical to present comparisons of all of the above methods. Our preliminary
testing showed the results for the methods of orders one, two, three, eight and ten added
little to the results for the methods of orders four to seven. We also found the results for
the four order five methods of [10] were similar, as were the results for the sixteen order
six methods of [10].

These observations meant we could reduce the number of methods to five: the five-
stage, order four FSAL method of Calvo and Sanz-Serna [2], the seven-stage, order five
FSAL method of Chou and Sharp [4], one of the five-stage, order five methods in Table 1
of [10] (we chose the third method), one of the seven-stage, order six methods in Table 2
of [10] (we chose the first method), and the thirteen-stage, order seven FSAL method of



c1 = 0.0000000000000000000 c2 = 0.2051776615422863869 c3 = 0.6081989431465009739
cqs = 0.4872780668075869657 ¢ = 1.0000000000000000000 b} = 0.0617588581356263250
by, = 0.3389780265536433551 by = 0.6147913071755775662 b, = -0.1405480146593733802
bl = 0.1250198227945261338

c1 = 0.0000000000000000 ¢ = 0.2179621390175646 cz = 0.4424703708255242
¢y = 1.478460559438898  ¢5 = 0.3400000000000000 ¢ = 0.7000000000000000
c7 = 1.000000000000000 b} = 0.06281213570268329 by, = 0.3788983131252575
by = 0.2754528515261340 b} = -0.001585299574780513 bl = -0.1785704038527618
by = 0.3479995834198831 b, = 0.1149928196535844

c1 = 0.69883375727544694289  c» = 0.20413810365459889029 c3 = 1.02055757000418534370
cs = 0.36292800323075291580 ¢5 = 0.30508610893167564804 b = 0.40090379269664777606
b, = 0.95997088013412390506 by = 0.08849515812721633901 b} = 1.22143909234910252870
bl = -1.67080892330709041000

c1 = l-c7 cy = l-cq c3 = l-c5

cy = 0.5 cs = 1.43531315933193655010 ¢ = -0.24517048359575719767

cr = 0.88961673353684493504  b| = b} by, = bg

b= bL by = 0.00024286040977501724 by = 0.08191385007043372004

by = -0.23158642248235284281 b, = 0.64955114220703161414
c1 = 0.00000000000000000000 ¢ = 0.60715821186110352503 c3 = 0.96907291059136392378
cq = -0.10958316365513620399 5 = 0.05604981994113413605 cg = 1.30886529918631234010
cr = -0.11642101198009154794 g = -0.29931245499473964831 cg = -0.16586962790248628655
c1o = 1.22007054181677755238 c11 = 0.20549254689579093228 c12 = 0.86890893813102759275
c13 = 1.00000000000000000000
by =c2/2 by =(cj41 —¢j-1)/2, j=2,...,12 bz =(1—c12)/2

Table 1: The coefficients of the five SERKN methods we used in our testing: top — the five-stage,
order four FSAL method of Calvo and Sanz-Serna [2], top middle — the seven-stage, order five
FSAL method of Chou and Sharp [4], middle — a seven-stage, order six non-FSAL method of
Okunbor and Skeel [10], bottom middle — a five-stage, order five non-FSAL method of Okunbor
and Skeel [10], bottom — the thirteen-stage, order seven FSAL method of Calvo and Sanz-Serna

[3].

Calvo and Sanz-Serna [3]. We have included two methods of order five to illustrate how
the global error can depend on the number of stages.

We denote the methods by CS4, C5, OS5, OS6 and CS7, respectively. The ¢; and b}
for the methods are listed in Table 1; the a;, are then calculated using (3) and the b;
using b; = (1 —¢;)b}, j=1,...,s.

3 No round-off error control

In this section we present the comparisons when Mgller’s technique for reducing the round-
off error is not used. The units of distance, time and mass are one Astronomical Unit
(denoted by au), one Julian day (denoted by day) and one solar mass.



3.1 Gas Giants

The Sun and the gas giants (Jupiter, Saturn, Uranus and Neptune) collectively drive much
of the dynamics of the Solar System. For example, they control the motion of asteroids,
short-period comets, and trans-Neptunian objects.

Let r;, . = 1,2,3,4,5, be the position of the i-th body, where the bodies are ordered
Sun, Jupiter, Saturn, Uranus, Neptune and the coordinates are Cartesian with the origin
at the barycentre of the five bodies. The equations of motion for the i-th body are

5
, pi(r; —r;)
f= ) % i=1,...,5, (4)

= r
J=1,j#1

where r;; = ||[r; — r;||2 and p; is G times the mass of the j-th body, G being the gravi-
tational constant. We used p; = (0.01720209895)2, o = 111 /1047.355, pz = p11/3498.5,
pg = p1/22869.0, s = p1/19314.0 and the initial conditions listed in the Appendix.

We did a simulation of one million years using the five SERKN methods with stepsizes
of 4, 8, 16, 32 and 64 days. These stepsizes were chosen because the round-off error is
insignificant for the larger ones and significant for the smaller ones. Figure 2 gives the
plots of the norm of the global error for CS4, C5, OS5 and OS6 (the plots for CS7 are in
Figure 1). Table 2 lists the exponent of the least squares power law fit to the norm.

Method h=4 h=8 h=16 h=32 h=064

CS4 1.0575 1.0232 1.0226 1.0227 1.0232
C5 1.4249 1.5628 0.9066 1.0051 1.0229
0S5 1.7145 1.0510 1.0192 1.0261 1.0323
0S6 1.9680 1.4041 1.1935 1.1871 1.1762
CS7 1.5098 1.5994 1.6797 1.0491 1.0686

Table 2: Gas Giants simulation without Mgller’s technique — the exponent for the least squares
power law fit. The stepsizes are in days.

The plots in Figure 2 show the global error for CS4 grows approximately as ¢ for
all five stepsizes. The exponents of the power law fit are all close to one, supporting
the observation. The global error for C5, OS5 and CS7 grows approximately as t for
larger stepsizes, and faster than ¢t and with undulations for smaller stepsizes. There is one
exception - the growth for C5 with a stepsize of 16 days levels out slightly for larger ¢.
The global error for OS6 grows faster than ¢ for all five stepsizes, a result we find puzzling.

We had hoped for the tidy conclusion that the round-off error became significant at
increasingly larger stepsizes as the order increased. This conclusion is well supported
by the results for the order four and seven methods, but not by the order five and six
methods.

The growth of the global error for the two order five methods provides an interesting
contrast. When the stepsize is 8 days, the growth for C5 is affected by round-off error,
whereas the growth for OS5 is not, suggesting OS5 is the better method. This reasoning
ignores the fact that a solution for C5 is of similar accuracy to the solution for OS5 with
a stepsize half the size. This means the most accurate solutions possible with C5 and
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Figure 2: Gas Giants simulation without Mgller’s technique — base 10 log-log graph of the norm

of the global error against time in years.

OS5 are of similar accuracy. OSH retains a small advantage because it uses one evaluation
fewer than C5 per step.

For C5, OS5, OS6 and CS7, a factor of no more than two separates the stepsizes for
which the growth is nearly linear from the stepsizes for which the growth is faster than
linear.

3.2 Nine Planets

The next set of simulations are of the Sun and nine planets. The equations of motion are
those for the previous simulations except there are ten bodies instead of five. The bodies
were ordered as the Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune
and Pluto. We used u; = (0.01720209895)%, po = 111/6023600.0, pz = p,/408523.5, pq =
1/328900.53, s = p1/3098710.0, pg = pu1/1047.355, 7 = p1/3498.5, ps = p1/22869.0,
po = p11/19314.0, p19 = 11/3000000.0 and the initial conditions listed in the Appendix.



To make the simulation more realistic, we included the mass of the Moon with that of
the Earth and took the Earth-Moon barycentre as the position of the Earth.
We did a simulation of 8,192,000 days, approximately 22,428 years, with stepsizes of

27", 1=4,...,—1 days. The results are given in Figure 3 and Table 3.
Method h=2"% h=2"3 h=2"2 h=2"' h=1 h=2
CS4 1.0293 1.0064 1.0043 1.0042 1.0038 0.7498
Ch 1.5102 1.4826 0.8930 0.9961 1.0007 1.0020
0S5 1.4796 0.9893 1.0015 1.0022 1.0034 0.3296
0S6 1.4098 1.2256 1.0145 1.0105 1.0103 0.9702
CS7 1.4620 1.5597 1.6097 1.0257 1.0125 1.0119

Table 3: Nine Planets simulation without Mgller’s technique — the exponent for the least squares
power law fit. The stepsizes are in days.

The results in Figure 3 and Table 3 confirm most of the observations for the Gas Giants
simulations. One difference is that the global error for OS6 now grows approximately as
t for the larger stepsizes. There are other differences, such as the large dip in the global
error for OS5 with the largest stepsize, but these differences are probably not caused by
round-off error.

3.3 Saturnian Satellites

Sinclair and Taylor [12] used numerical integration to analyse the orbits of the Saturnian
satellites Titan, Hyperion and Iapetus. The equations of motion included terms for the
oblateness of Saturn, perturbations from the Sun and the inner Saturnian satellite Rhea.

Let ry, ry, r3 and ry be the position of Titan, Hyperion, Iapetus and Rhea at time ¢,
the coordinates being Cartesian with origin at the centre of mass of Saturn and its inner
satellites (excluding Rhea). The equations of motion in [12] were

GM(1 )T i j
I'Z = — ( +m Z GMm]< —r rJ 3> +
|33 Py Iy =]} 1Iry13
Ms< L Is >+VRZ, i=1,2,3,
s — ][} [|rs]3

where m; is the mass of the j-th satellite divided by the mass of Saturn, A is the mass
of Saturn, M, is the mass of Sun, GG is the gravitational constant, and r; is the position
of the Sun.
The term V;R; is the effect on the i-th satellite of the oblateness of Saturn. This term
is
VZRZ = Ari + Bi,

where Z is the unit vector in the z-direction. The coefficients A and B are

X:JH%R;Jr1 (zi/74), ZJnaoP' (zi/74),



where r; = ||r;||2, ao is the equatorial radius of Saturn, J,, are non-dimensional constants,
and P, is the Legendre polynomial of degree n.

Sinclair and Taylor assumed Rhea moved in a fixed circular orbit in the equatorial
plane of Saturn. Rhea’s coordinates were given as x4 = acosL, y, = asinL, z, = 0,
where L = 231°.761 + 79°.69004007 (¢t — 2411093.0) and a is a constant. The position of
the Sun was calculated from the planetary ephemeris JPL DE200 using interpolation with
Chebyshev polynomials.

The values for the parameters in the equations of motion were a = 0.0035232 au,
GM = 8.45945 x 10~% au® day 2, ag = 60,000 km, .J, = 0.01675, J3 = 0, J, = —0.001,
my = 2.36777 x 107*, my = 0, mg = 3.30000 x 1075, m, = 4.4 x 1076, Sinclair and Taylor
did not specify the length of one astronomical unit - we used 149,596,000.0 kilometres.

The period of Rhea, Titan, Hyperion and lapetus is 4.51750 days, 15.94545 days,
21.27666 days and 79.33082 days, respectively ([11], p 478). We did a simulation of
4,096,000 days, approximately 11,214 years, using stepsizes of 27% i = 6,...,1 days.
To reduce the amount of CPU time required for the simulations, we omitted the Sun.
This simplifies the equations of motion, but they retain enough features to make them
interesting. The results are given in Figure 4 and Table 4. The results confirm the
observations for the Nine Planets simulation except when the exponent is less than one.

Method Ah=2"9% h=2"°% hB=2"%* h=2"3 K=272

CS4 1.0263 1.0010 1.0003 1.0000 0.9784
C5 0.7971 1.9186 1.3747 0.9440 0.9992
0S5 1.4666 0.8740 1.0029 1.0010 0.9930
0S6 1.7136 1.6147 1.1075 0.9946 0.9897
OS7 1.5305 1.6548 1.8823 0.7884 0.9994

Table 4: Saturnian Satellites simulation without Mgller’s technique — the exponent for the least
squares power law fit. The stepsizes are in days.

4 With round-off error control

Moller’s technique for reducing the round-off error replaces the update formula for y; by
T= ijfj —€6 w=Yiathlia+7, e=y— Wi +hvim1), vi=y, (5)
7j=1

where € = 0 at t = t5. The formula for g; is modified in a similar way.

We re-did the simulations of the previous section with Mgller’s technique applied to
the update formulae. Figures 5, 6 and 7 contain the plots of the global error for C5, OS5,
0OS6 and CS7, and Tables 5, 6 and 7 the exponents for the power law fits. We excluded
(CS4 because the results were almost identical to those in the previous section, indicating
the contribution of the round-off error to the global error was small.

Mgller’s technique was very effective with OS5, giving near linear growth for the
smallest stepsize except near the end of the simulation of the Saturnian satellites. The
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technique was effective near the start of the simulations with the remaining three methods,
reducing the global error for the smallest stepsize by at least an order of magnitude. The
reduction decreased as t increased and was small at the end of the simulations. The
reductions were usually smaller for the second to smallest stepsize.

A number of the exponents 5 for C5, OS6 and CS7 with the smaller stepsizes were
close to two. For example, in the simulation of the Saturnian satellites, § for CS7 was
1.97, 2.01 and 2.00 for stepsizes of 276, 275 and 27*, respectively. One explanation is
that Mgller’s technique introduced a systematic error proportional to t* and this error
dominated the global error.

Method h=4 h=8 h=16 h=32 h=064

C5 1.9733 1.8906 0.8072 1.0048 1.0229
0S5 1.0330 1.0133 1.0202 1.0261 1.0323
0S6 1.9552 1.4091 1.1923 1.1871 1.1762
CS7 1.8208 1.9525 1.9297 1.0362 1.0688

Table 5: Gas Giants simulation with Mgller’s technique — the exponent for the least squares
power law fit. The stepsizes are in days.

Method h=2"% h=273 h=2"2 p=2"' h=1 h=2

C5 2.1049 1.6020 0.9161 0.9959 1.0007 1.0020
0S5 0.9270 1.0016 1.0012 1.0022 1.0034 0.3296
0S6 1.8878 1.4040 1.0116 1.0105 1.0103 0.9702
CS7 1.9011 1.9227 2.0176 1.0084 1.0129 1.0119

Table 6: Nine Planets simulation with Mgller’s technique — the exponent for the least squares
power law fit. The stepsizes are in days.

Method Ah=2"9% h=2"°% hB=2"%* h=2"3 K=272

C5 1.9678 2.1154 1.4185 0.9524 0.9993
0S5 1.2299 0.9970 1.0012 1.0010 0.9930
0S6 1.9833 1.6922 1.0885 0.9943 0.9897
CS7 1.9677 2.0084 2.0023 0.8091 0.9994

Table 7: Saturnian Satellites simulation with Mgller’s technique — the exponent for the least
squares power law fit. The stepsizes are in days.

5 Summary

We compared five representative SERKN methods of orders four to seven on three long
N-body simulations of the Solar System. The simulations were of the Sun and gas giants,
the Sun and nine planets, and three Saturnian satellites. Our aim was to investigate how
the growth of the global error depended on the stepsize and order, and how the growth
was affected when Mgller’s technique was used to reduce the round-off error. The stepsizes
were chosen so the round-off error was typically insignificant for the larger stepsizes and
significant for the smaller stepsizes. All testing was done in double precision.



For larger stepsize, the global error usually grew as t'™¢ where ||¢|| < 1, confirming
the asymptotic results for the growth of the global error in the absence of round-off error.
One exception was for the order six method of Okunbor and Skeel [10] on the simulation
of the Sun and nine planets - the exponent of the power law was approximately 1.18.

For smaller stepsizes, the global error usually grew as t°, 5 > 1, when Mgller’s tech-
nique was not used. The value of § varied with the problem, the method and the stepsize.
When Mgller’s technique was used, the global error was reduced. For the order six and
order seven methods and one of the order five methods, the reduction decreased with ¢.
For the other order five method, the reduction produced a near linear growth in the global
error, although it is possible the linear growth would not occur for stepsizes smaller than
we used. Our results suggests Mgller’s technique can introduce a systematic error that
varies as t2.

A factor of no more than two separated the stepsizes for which the growth was nearly
linear from those for which the growth was faster than linear. This sharp transition could
be useful if it is necessary to find the smallest stepsize for which the growth is nearly
linear.

Our testing provided insight about the efficiency of the order seven method relative
to the lower order methods. The relative efficiency clearly depends on the stepsize, but
for the stepsizes we used, we can make general statements when the growth of the global
error is nearly linear. The solution for the order seven method with a stepsize of 2h is at
least as accurate as the solution for the order six method with a stepsize of h. This means
when the number of f evaluations is used as the measure of work, that the order seven
method is more efficient because it uses only 12/7 as many evaluations as the order six
method. If the CPU time is used as the measure of work, the efficiency of the order seven
method is reduced because it has greater overhead. Reasoning in a similar way, the order
five method of [4] is more efficient than the order seven method for the larger stepsizes
and less efficient for the smaller stepsizes, and the order four method of [3] is less efficient
for all stepsizes we used.
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Appendix

Tables 8, 9 and 10 lists the initial conditions for the Gas Giants, Nine Planets and Satur-
nian Satellites simulations. The first half of the rows in each table list the initial positions,
and the second half the initial velocities. The initial time for the Gas Giants and Nine
Planets simulations is taken as 0, that for the Saturnian Satellites simulation as 2442000.5.
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Sun
Jupiter
Saturn
Uranus
Neptune
Sun
Jupiter
Saturn
Uranus
Neptune

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

T
0.9209498686328694e-03
0.3350285173564643e+01
-0.8971584118413477e+01
-0.1002083045458687e+01
-0.2919365978874257e+02
-0.4665246664531984e-05
0.5580977902917778e-02
-0.1862917203661242e-02
-0.3959919409682252e-02
0.8160828111535530e-03

y

0.2304166030756204e-02
-0.3471457282981824e+-01
0.2281986174163616e+01
0.1732581263930256e+02
-0.7716981025967714e+-01
-0.3149154564335707e-05
0.4959111982658174e-02
-0.4987007735981776e-02
-0.3790629396772767e-03
-0.2775247414144566e-02

z
0.9127217048523883e-03
-0.1571236964688948e+-01
0.1331251331416312e+-01
0.7605737768120762e+01
-0.2426332656583918e+-01
-0.1269852543206254e-05
0.1991007074196164e-02
-0.1981527265350456e-02
-0.1101198438310003e-03
-0.1157385882979126e-02

Table 8: The initial conditions for the Gas Giants simulation.

T
0.9301259103994515e-03
0.3448565760800415e+00
0.1438953102536455e+00
-0.1354345700443955e+-00
-0.1368903850273021e+01
0.3350294349606409e+01
-0.8971574942371711e+01
-0.1002073869416921e+-01
-0.2919365061270080e+-02
-0.2623272065610510e+-02
-0.4559774360194479e-05
-0.8471091819370054e-02
-0.1989837205370269e-01
-0.1732455862288979¢-01
-0.7389123605631364e-02
0.5581083375222116e-02
-0.1862811731356904e-02
-0.3959813937377914e-02
0.8161882834578905e-03
-0.1320448472641354e-02

y
0.2292733100662641e-02
0.4790821305397614e-01

0.6492977991345496e+-00
0.8956906559576626e+-00
0.8454279811185666e+-00
-0.3471468715911917e+4-01
0.2281974741233523e+-01
0.1732580120637246e+-02
-0.7716992458897807e+-01
0.2056426815315656e+-02
-0.3150250493626429e-05
0.2561145505678817e-01
0.3109969215624964e-02
-0.2247454982261186e-02
-0.9480508889767826e-02
0.4959110886728884e-02
-0.4987008831911066e-02
-0.3790640356065674e-03
-0.2775248510073856e-02
-0.2623278455987146e-02

z
0.9059057664779422e-03
-0.1001813144545456e-01
0.2833883064268579e+4-00
0.3883642504058149e+4-00
0.4247388123779079e+4-00
-0.1571243780627322e+4-01
0.1331244515477938e+01
0.7605730952182388e+-01
-0.2426339472522292e+-01
0.1444546303354718e+4-02
-0.1274328432609927e-05
0.1458557100780699e-01
0.2658171477313190e-02
-0.9746354441906539e-03
-0.4152929465094740e-02
0.1991002598306760e-02
-0.1981531741239860e-02
-0.1101243197204039e-03
-0.1157390358868530e-02
-0.4283576834589079e-03

Table 9: The initial conditions for the Nine Planets simulation.

T
Titan
Hyperion
Tapetus
Titan
Hyperion
Tapetus

-0.0075533871
-0.0006436995
0.0219653473
-0.0010017342
-0.0029182723
0.0006187633

Yy
0.0025250254
0.0099145485

-0.0071369083
-0.0031443009
0.0000521415
0.0017696165

z

-0.0000462204
0.0000357506
0.0062333851
0.0000059503

-0.0000356145
0.0000439292

Table 10: The initial conditions for the Saturnian Satellites simulation.
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Nine planets, CS4, dp, h=1/16,1/8,1/4,1/2,1,2 Nine planets, C5, dp, h=1/16,1/8,1/4,1/2,1,2
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Figure 3: Nine Planets simulation without Mgller’s technique — base 10 log-log graph of the
norm of the global error against time in years.
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Figure 4: Saturnian Satellites simulation without Mgller’s technique — base 10 log-log graph of
the norm of the global error against time in years.
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Gas giants, C5, mo, dp, h=4,8,16,32,64

Gas giants, OS5, mo, dp, h=4,8,16,32,64
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Figure 5: Gas Giants simulation with Mgller’s technique — base 10 log-log graph of the norm
of the global error against time in years.
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Nine planets, C5, mo, dp, h=1/16,1/8,1/4,1/2,1,2 Nine planets, OS5, mo, dp, h=1/16,1/8,1/4,1/2,1,2
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Figure 6: Nine Planets simulation with Mgller’s technique — base 10 log-log graph of the norm
of the global error against time in years.
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Saturnian, C5, mo, dp, h=1/64,1/32,1/16,1/8,1/4

Saturnian, OS5, mo, dp, h=1/64,1/32,1/16,1/8,1/4
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Figure 7: Saturnian Satellites simulation with Mgller’s technique — base 10 log-log graph of the
norm of the global error against time in years.
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