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Abstract 

This thesis investigated the formation of compositional gradients across 0.5 – 1 cm of 

porous silicon layers which had thicknesses of 2 – 10 µm.  These compositional gradients 

were then characterised, and their potential use as vapour sensors was probed.  Surface 

composition gradients have been reported on flat surfaces, but this is the first time that 

they have been reported on a three-dimensional material with controlled pore geometry.   

Chemical gradients have been generated across the surface of porous silicon by 

performing electrochemical attachment of organohalides with an asymmetric electrode 

arrangement, and by chemical hydrosilylation of alkenes in the presence of a diffusion 

gradient of diazonium salts across the porous silicon surface.  Samples with 

electrochemical gradients of methyl, pentyl acetate, and decyl and using chemical 

hydrosilylation with gradients of undecanoic acid and decyl groups.  The latter four 

gradient-modified porous silicon types have been ‘endcapped’ with methyl groups to give 

improved stability and greater hydrophobicity.  The pentyl acetate and undecanoic groups 

have been converted into pentanol and undecanoate groups respectively to increase the 

hydrophilicity of these porous silicon surfaces.  The gradients have been characterised 

using two-dimensional FTIR microspectrophotometry and water contact angle 

measurements.   

The interaction of these gradient porous silicon samples with ethanol, heptane, toluene 

and 2-hexanol vapours have been monitored either by UV-Vis reflectance spectroscopy 

at selected points across the surface or more globally using a digital camera.  The 

undecanoate gradient porous silicon sample showed a large difference in optical response 

between the undecanoate end and the methyl end of the gradient when exposed to water 

vapour, showing that imposition of a chemical gradient can alter the sensing character of 

porous silicon in a controllable manner.   
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CHANNEL OF A PHOTOGRAPH AT THE STATED TIME AND THE GREEN CHANNEL OF A PHOTOGRAPH 

TAKEN PRIOR TO DOSING, AND ARE CONTRAST ADJUSTED.  ( INDICATES THE DIRECTION OF THE 

GRADIENT FROM THE UNDECANOIC ACID END TO THE METHYL END). .................................................275 
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