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Nonlinear trans-resonant waves, vortices and patterns:
From microresonators to the early Universe
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Perturbed wave equations are considered. Approximate general solutions of these equations are
constructed, which describe wave phenomena in different physical and chemical systems. Analogies
between surface waves, nonlinear and atom optics, field theories and acoustics of the early Universe
can be seen in the similarities between the general solutions that govern each system. With the help
of the general solutions and boundary conditions and/or resonant conditions we have derived the
basic highly nonlinear ordinary differential equation or the basic algebraic equation for traveling
waves. Then, approximate analytic resonant solutions are constructed, which describe the
trans-resonant transformation of harmonic waves into traveling shock-, jet-, or mushroom-like
waves. The mushroom-like waves can evolve into cloud-like and vortex-like structures. The motion
and oscillations of these waves and structures can be very complex. Under parametric excitation
these waves can vary their velocity, stop, and change the direction of their motion. Different
dynamic patterns are yielded by these resonant traveling waves in thex–t and x–y planes. They
simulate many patterns observed in liquid layers, optical systems, superconductors, Bose–Einstein
condensates, micro- and electron resonators. The harmonic excitation may be compressed and
transformed inside the resonant band into traveling or standing particle-like waves. The area of
application of these solutions and results may possibly vary from the generation of nuclear particles,
acoustical turbulence, and catastrophic seismic waves to the formation of galaxies and the Universe.
In particular, the formation of galaxies and galaxy clusters may be connected with nonlinear and
resonant phenomena in the early Universe. ©2001 American Institute of Physics.
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Perhaps, Da Vinci first understood that surface water
waves, sound and light waves are all propagated accord
ing to the same laws. This idea is valid both for linear and
nonlinear waves. Brilliant investigations of nonlinear
body and surface waves in different physical, chemical,
and biological systems have been made during the las
two centuries. In particular, anomalous parametric sur-
face waves were observed in the last decade. We hav
found that similar waves may be in different physical,
astrophysical, and chemical systems. The generation an
the evolution, form, and amplitudes of these waves de
pend on the competition between nonlinear, dissipative
dispersive, and spatial effects inside trans-resonan
bands. Due to this competition the waves in resonators
may be compressed into chains of jets and spots
mushroom-like waves, vortices „Karman’s ‘‘vortex
street’’…, ellipsoidal-, and spiral-like structures. The ve-
locity of the waves can depend on the parametric excita-
tion. These effects are strictly localized in the resonant
band and depend on the cavity detuning from resonance
They may be interesting for optoelectronics, quantum
computing, telecommunication, etc. Further investigation
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of nonlinearities in the microresonators may open up new
opportunities. In addition, highly nonlinear resonant ef-
fects can explain the amplification and the transforma-
tion of waves in large systems„e.g., earthquake-induced
mountains, valleys, islands, etc.… and very large systems
„e.g., the early Universe…. Thus, the nonlinear, trans-
resonant effects considered in this paper may be applied
to different technologies and systems ranging from the
atomic scale to the cosmos.

I. INTRODUCTION

The resonance is the classical problem with great pr
tical impact in different natural, mechanical, physical, op
cal, electronic, and electrical systems. For simple mechan
systems, the resonant amplification and trans-resonant o
lations were considered beginning with Galileo Galile
These phenomena were usually studied with the help of
degree of freedom or a few degrees of freedom models.
cording to the linear models the amplitude of the oscillatio
is infinite at the resonance. The amplitude is limited by no
linear and/or dissipative effects. Sometimes, one degre
freedom or a few degrees of freedom models are too ro
an approximation and wave properties must be taken
© 2001 American Institute of Physics
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account. The nonlinear resonant waves in infinite and fin
mechanical systems have been studied for about 50 yea1,2

The analogous resonant phenomena in optical and conde
matter systems are more recent developments, facilitate
advances in information technology and nanofabrication.3–9

The amplitude and the form of the resonant waves
defined by nonlinear, dispersive, dissipative, and spatial
fects. In the trans-resonant frequency band a balance
tween these effects varies together with the frequency. Th
fore inside the band unexpected phenomena can
generated. For example, the trans-resonant transformatio
harmonic smooth waves into shock waves were observe
tubes.2 In mechanical systems, only the first resonances
typically be observed, because of damping and the narrow
of the resonant band with increasing resonance numb2

However, in electronic, optic, crystal, and quantum syste
the damping may be very small and different resonances
occur. Electrons and atoms can form resonators. Interes
elliptic standing wave patterns were recently observ
formed by a single atom and a two-dimensional free elect
gas.7,8 It was found5 that the Bose–Einstein condensation c
have unprecedentedly large nonlinearity. As a result,
resonantly tuned light pulses travel at a velocity of only
m/s and are strictly compressed in the condensation. T
effect might explain various anomalous observations, in p
ticular, in the cosmos. Indeed, the varying-speed-of-li
theory of the cosmos was developed during recent yea10

The acoustic resonant and nonlinear effects may be im
tant for cosmology.11–20It has been discovered that the bac
ground radiation has large-size peaks~a fundamental mode!
and smaller peaks~‘‘overtones’’!.20 The early Universe rang
like a spherical resonator after the big bang. Thus, rec
observations show that the acoustic model of the early U
verse is correct. The rapid expansion of the Universe p
duced nonlinear pressure and density waves, since the m
of the early Universe was highly nonlinear and very dens

One of the goals of this paper is to study highly nonl
ear wave phenomena in various dissipative-dispersive r
nant systems. These systems are surface layers, microre
tors, the early Universe, etc. We develop the theory of tra
resonant wave phenomena in these systems. The pertu
wave equations are studied. It is known that physical p
cesses of generation and transformation of waves can d
dramatically, nevertheless equations and analytical solut
describing these processes are often similar. For exam
shock-, soliton- and cnoidal-like solutions are well known
nonlinear dynamics. In particular, it has been found rece
that similar solutions describe waves in spheri
resonators23 and different anomalous wave phenomena, a
wave patterns observed in water and granu
layers.21,22,24,25,27It has been shown that the perturbed Ma
well wave equation and the perturbed Klein–Gordon fi
equation~f4 field! have similar solutions.26 Here we develop
the theory presented in Refs. 2 and 21–29.

The paper is organized as follows. In Sec. II the p
turbed wave equations for different nonlinear systems
presented. It is shown in Sec. III that the same methods
assumptions enable us to obtain similar general approxim
solutions of the perturbed wave equations@see, e.g.,~25!#.
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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Basic equations for the resonant waves are derived@see, e.g.,
~32!#. Trans-resonant effects, waves, and patterns are stu
in Sec. IV. Analytical solutions are considered in Sec. IV
They describe many wave phenomena and wave patte
which have been observed recently in water and gran
layers. In Sec. IV B the trans-resonant evolution of harmo
waves into particle- and cloud-like waves is studied with t
help of the analytic solutions and numerical calculations.
fects of high nonlinearity and ‘‘eddy’’ viscosity are als
treated. It was found that harmonic waves can amplify a
evolve into mushroom-like waves and then into a cluster
vortices. This cluster is reminiscent of Karman’s ‘‘vorte
street.’’ On the other hand, we believe that the last proc
qualitatively simulates the nonlinear formation and growth
large-scale structures in the early Universe.19 The particular
solution sech2(e sinz2) cos2z2 @see~53! and~55!# is treated
in Sec. IV C. It is known that this solution describes tran
resonant spherical waves23 and some waves observed r
cently in surface layers.21,22,24–28We show that this solution
describes the wave patterns observed recently in diffe
microresonators, in Bose–Einstein condensations, and
electron structures. The summary and a brief discussion
the results may be found in Sec. V.

Thus, in this paper a wide spectrum of the resonant w
problems are treated. However, stochastic resonances30 are
not studied in this paper.

II. GOVERNING EQUATIONS

The equations under the consideration are presente
the following.

1D (one-dimensional) waves in strings, lattices and s
face layers. The following equation may be valid for wave
in one-dimensional objects:24,27

utt2a0
2uxx52ghx1buxuxx1b1ux

2uxx1b2ux
3uxx

1b3ux
4uxx1mutxx1kuxxxx1X1b4t31,

~1!

where u is the longitudinal displacement,a0 is the sound
velocity, h is the thickness of objects,t and x are time and
coordinate, respectively. Here and in the following letter su
scripts denote differentiation with respect to the correspo
ing value. The first term on the right-hand side of~1! takes
into account the variation of the thickness. Then there
quadratic, cubic, fourth- and fifth-order terms with regard
u. The dissipative~mutxx! and dispersive~kuxxxx! terms in
~1! follow behind the nonlinear terms.X is a known function
of the coordinate and the time, which defines the amplitu
and the motion of sources or initial ripples. The last term
~1! is defined by the surface friction. Coefficients in~1! can
depend ont and x. This equation was derived for surfac
water, granular, and seismic waves.24,27In particular, some of
Charles Darwin’s seismic observations were simulated w
the help of Eq.~1!.24,27Versions of Eq.~1! can also describe
nonlinear waves propagating in bubbly liquids, molecu
and atomic lattices.29,31 For further details the reader is re
ferred to Refs. 22, 24–27, and 31.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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The perturbed Maxwell wave equation. One-dimensional
propagation of the electromagnetic wavesE is described by32

Ett2c0
2Exx5~a1E1a2E21a3E31mEt1kExx! tt

1X1F, ~2!

wherec0 is the velocity of light, coefficientsc0, a1, a2, a3 m,
andk may depend ont andx. Linear phenomenological dis
persive (mEt) tt and dissipative (kExx) tt terms were added in
~2!. The dissipative phenomenological nonlinear third-ord
term F was also inserted in~4!. This term will be defined in
Sec. III B. Equation~2! gives opportunities to study the ligh
propagation in spatially and temporally inhomogeneous m
dia and microresonators. Ifc0 is a function oft, then Eq.~2!
describes parametric excited waves. Nonlinear Schro¨dinger-
type equations follow from the perturbed Maxwell equati
~2!.32

Perturbed Klein–Gordon field equation. We shall con-
sider the following form of this equation:

f tt2c0
2¹2f52c0

2bc
2]F~f!/]f1m¹2f t

1k¹4f1X1F. ~3!

Herebc is the Compton propagation constant. Different e
pressions for the functionF can be found in Ref. 33. We
assumed in~3! thatc05c0(x,y,t), wherex andy are rectan-
gular coordinates. The phenomenological dispers
~m¹2f t! and dissipative~k¹4f! terms were added in~3!. In
particle physics the Klein–Gordon equation represents
wave equation of a free relativistic particle. In this case
havebc52pmc0 /h* , wherem is the mass of the particle
and h* is Planck’s constant. The Klein–Gordon equati
also describes the motion of the field in very small structu
and superconductors.34–36 It is interesting that the Klein–
Gordon equation may be reduced to the Schro¨dinger equa-
tion in the small-momentum limit.36 On the other hand the
Klein–Gordon equation can describe the waves in a cryst31

~sine-Gordon equation! and it is also known in
astrophysics.37

Cosmological perturbed wave equation. Some recent ob-
servations suggest that galaxies and galaxy clusters for
when the Universe was less than a billion years old.17,18 As-
tronomers have trouble explaining how they formed so ea
on. It was assumed that the early Universe contained see
these structures.18 In particular, the rapid expansion of th
Universe immediately after the big bang should have p
duced waves traveling from pole to pole of the expand
spherical Universe. These waves now show up as ripple
the amount of background radiation.19,20 Some
astronomers17–20 consider these waves as ‘‘seeds,’’ whic
later evolved into the large-scale structures of the cosm
We need to study the evolution of these waves in orde
understand the generation of galaxies, the formation of
axy clusters, and the evolution of the Universe.

Cosmic structures have formed as a result of comp
processes. During the last two decades, significant prog
has been made in the numerical simulation of these p
cesses. At the same time analytical models have b
developed.11–16In this paper the nonlinear wave processes
the early Universe are studied with the help of analyti
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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methods. In the early Universe the pressurep dominates over
gravity. A convenient relativistic equation of state isp
5(g* 21)a0

2r , where g* 5g* ~t! or a constant andr is
density.38 Usually, it was assumed thatg* .1. At early times
the speed of sounda0 in the Universe was about the speed
light. In the considered case, the fluid equations in expand
coordinates are r t13d21 dtr1d21¹(rn!50 and nt

1d21n¹n1d21dtn5d21r21¹p @see Eqs.~9.15! and~9.17!
from Ref. 14#. Hered5d~t! is a scale factor describing th
Hubble expansion of the Universe. We assume thatd ~t! is
known. Then we introduce the velocity potentialc : n5¹c :
As a result, after some algebra, the fluid equations are
duced to the following perturbed wave equation:

c tt2c
*
2 ¹2c52~11d21!¹c¹c t2d21~¹c!2¹2c

13c
*
2 dt1F1X2~dtd

21! tc2dtd
21c t

2dtd
22~¹c!22c

*
2 d~c

*
22d21! t

3@c t10.5~¹c!21dtd
21c#. ~4!

Herec
*
2 5(g* 21)a0

2d22. We inserted in~4! the functionsX
andF. Equation~4! is complex. Let us assume thatdt has the
second order andF 50. In this case we have from~4! that

c tt2c
*
2 ¹2c52~11d21!¹c¹c t13c

*
2 dt1X. ~5!

We eliminate the third-order terms in~5!. Generally speak-
ing, the equations of fluid dynamics can describe the evo
tion of acoustic waves in the Universe.14 However, following
Hu et al.39 we believe that wave-type equations provide
more convenient way to study the nonlinear developmen
waves in the early Universe.

Spherical waves. The sphere is the simplest object whe
there is interaction of nonlinear and spatial effects. H
some equations for spherical radial waves are conside
First we write an equation of radial oscillations of g
spheres23

c tt2a0
2~cjj12j21cj!52~g21!a0

22c tc tt22cjcjt

1ma0
22c ttt1X, ~6!

wherej is the radial coordinate andg is the adiabatic expo-
nent. The equation for body waves propagating in a so
body is derived in Ref. 23,

w tt2a0
2~wjj12j21wj!5a0

22w tw tt2wjwjt1ma0
22w ttt1X,

~7!

where w is the displacement potential. For the spheric
waves the sine-Gordon equation yields

fjj12j21fj2c0
22f tt5j22 sin 2f1X. ~8!

Equation ~8! describes some cosmological effects.40 The
early Universe was spherically symmetrical. Only after t
breaking of the symmetry of the different cosmic structur
strings and sheets were formed.

Two-dimensional waves in sheets, lattices, and surf
layers. The following 2D equation generalizes Eq.~1!:
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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w tt2a0
2¹2w5g~h02h!1b* ~¹2w!21b1* ~¹2w!3

1m¹2w t1k¹4w1X1b4* E t31dx. ~9!

Here the integral takes into account a boundary friction
sheet surfaces. In particular, all Charles Darwin’s seis
observations were simulated with the help of Eq.~9!.27 De-
tails are given in Ref. 27.

Hyperbolic reaction-diffusion equation. This equation is
written as41

ntt2an
2nxx52t

*
21nt1t

*
21F~n!1nt]F~n!/]n , ~10!

wheren is the density of particles,t
*
21 is the mean collision

time for chemical reactions,an
25t

*
21D ~D is the diffusion

coefficient!, andF~n! is the source function corresponding
the reactive process.

Nonlinear Schro¨dinger equation. This equation may be
derived from the nonlinear Maxwell wave equation, or t
Klein–Gordon equation, or equations of gas dynamic42

Therefore all results, which will be presented in the follo
ing, are also valid for systems described by the Schro¨dinger
equation.

We inserted in~2!–~7!, ~9! phenomenological terms. Fo
simplicity we used the similar notations for these term
However, in the different equations they can have differ
dimensions. Generally speaking, the above-mentioned m
equations with variable coefficients can have quite differ
intrinsic characteristics, coefficients, and different solutio
However, it will be shown in the following that all of the
above-mentioned equations also have a class of similar s
tions, written with the help of two traveling waves. They a
periodic and nonperiodic resonant wave solutions c
structed without using the time–space separation meth
The solutions describe forced, parametric-excited and
waves, and wave patterns, which have both classical
quantum-mechanical features.

III. GENERAL APPROXIMATE SOLUTIONS

A. Perturbation method and weakly nonlinear
solutions

In this section it is shown that Eqs.~1!–~10! have similar
approximate general solutions.

1D waves. First we briefly consider a method of solvin
applicable to all the above-mentioned equations. A solut
of ~1! will be obtained to demonstrate the method.

Equation~1! is rewritten, introducing the variables

r 5a~ t !2x, s5a~ t !1x, ~11!

wherea(t)[a5a0. Then we assume that

u5u(1)1u(2)1u(3)1u(4)1u(5)1••• , ~12!

whereu(1)@u(2)@u(3)@u(4)@u(5). Following Refs. 24 and
27 and using~1! linear differential equations foru( i ) ( i 51,
2,...,5! can be derived. For example, foru(1)andu(2) we have
that
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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(1)1att~ur
(1)1us

(1)!50, ~13!

4at
2urs

(2)5b~us
(1)2ur

(1)!~urr
(1)22urs

(1)1uss
(1)!. ~14!

Let the approximate localized solution of Eq.~13! be

u(1)5J~r !1 j ~s!. ~15!

Solution ~15! is valid only if att@J8(r )1 j 8(s)#'0, where
the prime denotes the differentiation with respect to the
propriate variabler and s. Thus, we shall consider the cas
whenatt'0. For example, we can assume thatat5const or
a~t! is proportional tota, wherea,2 andt→`. The other
example isat5sinn vt, wheren @1. On the other hand, so
lution ~15! may be valid for waves24,25 oscillating inside of
some regionsx and t, whereJ8(a2x)' 2 j 8(a1x). Solu-
tion ~15! is reminiscent of the d’Alembert-type solution, bu
here the velocity of wavesJ(r ) and j (s) can be variable and
depends ont.

Now substituting~15! into ~14! and integrating, one can
find that

u(2)5J2~r !1 j 2~s!1ba0
22@r ~ j 8!22s~J8!2#/81d1 ,

~16!

whereJ2(r ) and j 2(s) are some arbitrary functions of inte
gration, d1 is a constant of integration, andJ5J(r ) and j
5 j (s). We assumed thatba0

225const. Using~15! and ~16!
we can findu(3), and thenu( i ) ~i54;5!. This process is de-
scribed in Refs. 24 and 27, where surface waves were s
ied. The final expression of general approximate solut
~12! is

u5J1 j 1J2~r !1 j 2~s!1J3~r !1 j 3~s!1J4~r !1 j 4~s!

1J5~r !1 j 5~s!2
1

4E E a0
22@g~hs2hr !2b4t312X#

3dr ds1d12 1
8ba0

22@s~J8!22r ~ j 8!2#1 1
4ma0

21

3~sJ91r j 9!1 1
4ka0

22~sJ-1r j -!1 1
32b

2a0
24@s2~J8!2J9

1r 2~ j 8!2 j 9#1 1
12~b1a0

222 5
8b

2a0
24!@r ~J8!31s~ j 8!3#

1 1
16b2a0

22@r ~ j 8!42s~J8!4#1 1
20b3a0

22@r ~ j 8!41s~J8!4#,

~17!

whereJi(r ) and j i(s) are some arbitrary functions of inte
gration ~i53,4,5!. For simplicity, the interaction of opposit
traveling waves was not taken into account in~16! and~17!.
This interaction was considered in Refs. 22, 24, 25, and

The solution~17! contains the coefficients, which grow
infinitely whent→`. Following Refs. 23, 24, and 27 we ca
eliminate t from these coefficients using the arbitrary fun
tions. For example, if we assume thatJ2(r )
5ba0

22r (J8)2/8, j 2(s)52ba0
22s( j 8)2/8 in ~16!, then the

solution ~16! yields

u(2)5ba0
22~r 2s!@~ j 8!21~J8!2#/81d1 . ~18!

After the elimination oft from the coefficients in~17! we
have the following solution of~1!:
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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u5J1 j 2
1

4E E a0
22@g~hs2hr !2b4t312X#dr ds1d1

2 1
4ba0

22x@~J8!21~ j 8!2#2 1
2ma0

21x~ j 92J9!

2 1
2ka0

22x~ j -2J-!1~b1a0
22/62b2a0

24/16!x

3@~J8!32~ j 8!3#1 1
8b

2a0
24x2@J9~J8!21 j 9~ j 8!2#

2 1
8b2a0

22x@~ j 8!41~J8!4#

20.1b3a0
22x@~ j 8!51~J8!5# . ~19!

Solutions of Eqs.~2!–~10! were obtained with the help of th
perturbation method. In the following some solutions a
presented. One can see that these solutions resemble th
lution ~19!. The expression for 1D weakly nonlinear electr
magnetic fields in finite space is

E5J1 j 1d110.5a1x~110.25a1!~ j 82J8!

2 1
2mx~J92 j 9!2 1

2kx~J-2 j -!1 1
8a1

2x2~J91 j 9!

2 1
2a3x@~J3!82~ j 3!8#10.25E E c0

22~X1F !dr ds.

~20!

For simplicity we puta250 in ~2!. The general case of Eq
~2! was considered in Ref. 25.

3D and 2D waves. The perturbation method allows us
construct expressions for 3D and 2D wave fields. In parti
lar, Eq. ~6! yields23

c5j21~J1 j !1d110.5a0
21j22@~J1 j !2#8

20.25~g11!a0
21j21E E j21~J81 j 8!

3~J91 j 9!dr ds10.25ma0
21j21~sJ91r j 9!, ~21!

whereJ5J(a0t2j) and j 5 j (a0t1j). A similar solution of
Eq. ~7! can be found in Ref. 23.

The approximate solution of the Klein–Gordon equati
~3! was written for thef4 field (]F/]f 5f 2f3!:25

f5J1 j 1d110.5~k1x1k2y!Fk12
22bc

2S E J dr2E j ds

2E J3 dr1E j 3 dsD1mk12c0
21~J92 j 9!1kk12

2 c0
22~J-

2 j -!G10.25k12
22E E c0

22~X1F !dr ds. ~22!

The cosmological wave Eq.~4! yields the following approxi-
mate solution:

c5J1 j 1d12 1
2~k1x1k2y!$c*

21k12@~J8!22~ j 8!2#

2 1
3c*

22k12
2 @~J8!32~ j 8!3#%10.25k12

22E E c*
22

3~X1F !dr ds. ~23!

For simplicity we have assumed that the right-hand s
terms in~3 and~4! have the same order. It was assumed t
d51 in ~4!.
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Some plane waves in sheets propagate according to
following solution27 of Eq. ~9!:

w5J1 j 1d11 1
6~b* !2a0

24k12
4 ~k1x1k2y!2@~J9!31~ j 9!3#

10.5~k1x1k2y!Hb* a0
22k12

2 F E ~J9!2dr2E ~ j 9!2dsG
1ma0

21k12~J92 j 9!1ka0
22k12

2 ~J-2 j -!

1k12
4 @b1* a0

222 2
3~b* !2a0

24#F E ~J9!3dr2E ~ j 9!3dsG J
10.25k12

22E E a0
22FX1b4

* S E t31dxD Gdr ds. ~24!

In ~22!–~24! we assumed thatJ5J(r )5J@k12a(t)2k1x
2k2y#, j 5 j (s)5 j @k12a(t)1k1x1k2y#, k12

2 5k1
21k2

2,
wherek1, k2, and k12 are constants. We also assumed th
at

2'c0
2 in ~22!, at

2'c
*
2 in ~23!, and at

2'a0
2 in ~24!. The

interaction of wavesJ(r ) and j (s) was not taken into ac-
count in ~16!–~20! and ~22!–~24!. This interaction was con-
sidered in Refs. 22, 24, 25, and 27.

Remark. Thus, we have shown that the approxima
weakly nonlinear solutions of Eqs.~1!–~10! may be written
as

U5J1 j 1F* ~J, j !, ~25!

whereU corresponds to unknown functions of Eqs.~1!–~10!
and F* is a known nonlinear function ofJ and j. The last
traveling wave functions are defined by boundary and ini
conditions of a problem. In the following we consider wa
problems for resonators.

B. Resonators and basic equation

Much research is devoted to nonlinear waves
resonators.2,3 Quadratic and cubic nonlinear effects a
treated. In particular, Chester44 studied effects of the cubic
nonlinearity and quadratic nonlinear dissipation~eddy for-
mation! on the resonant oscillations of gas in an open-en
tube. Here we shall briefly discuss boundary problems
the spherical resonator23,43 and elongate periodica
systems.3,21,24,26,27

Spherical resonator. We will study waves excited by a
simple-harmonic source of pressure, which has radiusR1 and
is placed in a center of the sphere. It is assumed that a p
sure source region is very small with respect to the exc
wavelength. The other boundary~j5R2! of the sphere is
free. Therefore we have

P2P052B cosvt ~j5R1!; P2P050 ~j5R2!,
~26!

where P2P052r0(c t10.5cj
220.5a0

22c t
2)1mr0a0

22c tt

~see Ref. 23!. Herec is defined by~21! and P0, andr0 are
the undisturbed pressure and the density, respectively. C
sidering the linear problem we found the following resona
frequenciesVN5 pNa0(R22R1)21 ~N51,2,3,...!. The lin-
ear solution is not valid inside of resonant bands, wherev
5VN1b. Here b is a trans-resonant parameter. Followin
Refs. 23 and 43 one can obtain the basic equation valid
side the resonant band:
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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a0v21b f92@a0v22b2~R22R1!1 1
2m# f-1 1

2~ f 8!2/R1R2

5r0
21BR1~R22R1!21cos2 1

2vt, ~27!

where f (a0t2j1R2)5J(a0t2j). Equation ~27! is the
Burgers–Korteweg–de Vries type equation writing for t
traveling wave. Different trans-resonant solutions of t
equation are presented in Refs. 22–27. It can be seen
the equation describes the strong amplification of waves
side resonant band if two first terms in~27! are
small enough. In particular, for the inviscid gas at t
exact resonance we have the algebraic problem andf 8

56Ar0
21BR2R1

2(R22R1)21cos1
2va0

21(a0t2j1R2). Accord-
ing to this solution the spherical resonant periodical sh
waves may be excited in inviscid gas.2,23,43

Thus, considering the spherical waves we have sho
that the boundary resonant wave problem may be reduce
an ordinary differential equation or algebraic equation.

Elongate periodical systems. We shall consider wave
having period 2L and boundaries where an unknown fun
tion ~or the space derivative of this function! equals zero or
varies according to a harmonic law. We assume thatj (r )
52J(r ) in the solutions, if an unknown function equa
zero at the first boundary. If the space derivative equals z
at this boundary, it is assumed thatj (r )5J(r ). Thus, we
have21–27

j ~r !5J~r ! or j ~r !52J~r !. ~28!

The resonance occurs if the reverberating waves are in p
with each other. In this case, the functionJ(s) may be ex-
panded in Taylor’s series at the second boundary:2,21–27

J~s!5J~r !1bJ8~r !10.5b2J9~r !10.133b3J-~r !1... .
~29!

For example, let the unknown functionU50 at boundaries.
In this case using~25! and ~28!, ~29! we may reduce the
boundary problem to the following ordinary differenti
equation: bJ8(r )10.5b2J9(r )10.133b3J-(r )5F* @J(r )#.
This equation is similar to~27!. Thus, the general approx
mate solutions of Eqs.~1!–~10! allow us to reduce the
boundary problems for trans-resonant processes to ordi
differential equations with respect toJ~r!. These equations
were written recently for waves in tubes,21 surface
waves,22,24–27spherical waves,23,43 and electromagnetic an
field waves.26 Following Refs. 2, 21–27, 43, 44, and 46 w
can write the general expression for these ordinary differ
tial equations:

D7J-1D2J81D4J91D1~J8!21D3~J8!31D5~J8!4

1D6~J8!51D* J8J91E E Fdr ds5X* 1d* , ~30!

whered* is a constant. The coefficientsDi ~i51,2,...,7! and
X* can depend on the time, coordinates, andr. There is
functionF in ~30!. It is assumed that this function is define
by so-called ‘‘eddy’’ viscosity.44–46 Let for the 1D surface
waves~19! F be a nonlinear function of the velocity and th
displacement. We assume thatt315(uuuu) t . As a result we
have
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E E F dr ds5
1

4
b4E E a0

22t31dr ds

5
1

4
b4E E a0

22~uuuu! tdr ds

5
1

4
b4E E a0

21@~uuuu!r1~uuuu!s#dr ds

'2
1

4
b4a0

21S E b j8ub j8uds1E bJ8ubJ8udr D
'20.5b4a0

21bubu E J8uJ8udr.

It is assumed thata0'const. It is emphasized that~19! and
~28!, ~29! were used here. Turbulence and the bottom frict
are often described with the help of the ‘‘eddy’’ viscosi
model.45 Sometimes this nonlinear dissipative mechanism
strictly localized and may be introduced in boundary con
tions. For example, with the help of this model, va
Wijngaarden46 and Chester44 described the generation of ed
dies at the lip of the open end of the resonant tube. Perh
the ‘‘friction’’ of vacuum47,48 and the generation of electro
magnetic and optic eddy-like waves18,35,49may be simulated
with the help of the above-mentioned strictly nonlinear fr
tion law. We shall assume that the following expression
valid for all perturbed wave equations presented in Sec.

E E Fdr ds5s2E J8uJ8udr. ~31!

In particular, for the 1D layer we have thats2

520.5b4a0
21bubu. As the result,~30! yields the following

basic equation:

D7J-1D4J91D2J81D1~J8!21D3~J8!31D5~J8!4

1D6~J8!51D* J8J91s2E J8uJ8udr5X* 1d* . ~32!

One can see that the ‘‘eddy’’ viscosity effect depends onb.
Thus, this effect varies in the trans-resonant band toge
with the frequency, and it can amplify for some value ofb.
The ordinary integral-differential equation~32! approxi-
mately simulates resonant properties of Eqs.~1!–~10! in the
case of weakly nonlinear waves and~31!. Different particular
cases of Eq.~32! were considered in Refs 24, 25, and 44.
particular, Chester44 wrote

2cos~vr /a0!5a0v21d@~J8!313RJ8/22/3#/dr1s2J8uJ8u,
~33!

which follows from~32!. Equation~32! is complex but sim-
pler than Eqs.~1!–~10!.

Coefficients in~32! are defined by a considered equ
tion. One can find these coefficients using~19! or ~20!, or
~21!, or ~22!, or ~23!, or ~24! and~28!, ~29!. For example, for
the gas sphere the coefficientsDi ( i 51,2,...,7),D* , X* ,
and d* may be defined by a comparison of Eqs.~32! and
~27!, and we haveD45a0v21b, D752@a0v22b2(R2

2R1)1 1
2m#, D15R1

21R2
21, X* 5r0

21BR1(R22R1)21cos21
2

3va0
21r, D25D35D55s25d* 50 in ~32!.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Ordinary differential equation for the early Universe.
Let us transform the 2D solution~23! into Eq. ~32!. We as-
sume the following boundary conditions for the potential
velocity c : c50 if k1x1k2y50 or L. Solution ~23! is in-
serted at the boundary conditions. Then, using~28!, ~29!, and
~31!, one can obtain the following equation for some pla
waves propagating in the early Universe:

bJ810.5b2J910.133b3J-1 1
3c*

22k12
2 L~J8!31s2E J8uJ8udr

50.25k12
22E E c*

22Xdr ds. ~34!

This equation is a particular case of Eq.~32!.
Remark. We emphasize that inside the resonant band

coefficient D2 ~or b! is small or D250 ~b50!, which ex-
plains the amplification of the waves inside the reson
band. Thus, we found that the investigation of weakly no
linear resonant waves described by~1!–~10! may be reduced
to analysis of Eq.~32!.

C. 2D resonant localized nonlinear waves

The perturbation method was based on the assump
that the nonlinear terms are smaller than the linear ter
This restriction is often not important if a considered equ
tion is derived for weakly nonlinear waves. However, som
times we must consider strongly nonlinear waves. Gener
speaking, the velocity of these waves depends on the am
tude and the weak dispersion, and it may be different fr
the velocity of the linear waves. Let us consider these wa
using the following variables:

r 5a~ t !k122k1~x!2k2~y!2K12~x,y!,
~35!

s5a~ t !k121k1~x!1k2~y!1K12~x,y!.

Here k1(x), k2(y), and K12(x,y) are unknown functions
which will be defined later@see~54! and ~55!#.

2D surface waves. As an example, Eq.~9! will be con-
sidered. Let us rewrite~9! using ~35!:

k12att~w r1ws!1a0
2~k1,xx1K12,xx1k2,yy1K12,yy!

3~w r2ws!1$k12
2 at

22a0
2@~k1,x1K12,x!

2

1~k2,y1K12,y!2#%~w rr 1wss!

12a0
2@~k1,x1K12,x!

21~k2,y1K12,y!2#w rs

52g~h2h0!1b* ~¹2w!21b1* ~¹2w!3

1m* ¹2w t1k* a0
22¹2w tt1X1b4* E t31dx. ~36!

We treat three cases of the resonant amplification of
waves.

~1! Let w rs'0, w r'ws'0, then we have resonance if

k12
2 at

22a0
2@~k1,x1K12,x!

21~k2,y1K12,y!2#50. ~37!

~2! Let w rs'0 andatt'0, k1,xx'0, k2,yy'0, K12,xx'0,
K12,yy'0, then we again have the resonant condition~37!.

~3! In this case, we assume a set of the following re
nant conditions:
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wsr'w r'ws'0, at'k1,x'k2,y'K12,x'K12,y'0.
~38!

If the above-mentioned resonant conditions occur, then
~36! reduces to the following form:

g~h2h0!5b* ~¹2w!21b1* ~¹2w!31m* ¹2w t

1k* a0
22¹2w tt1X1b4* E t31dx. ~39!

We note that the value¹2w is proportional to the surface
elevation.27 Equation~39! is the ordinary differentialreso-
nant equation for¹2w. Thus, at the resonance, the proble
again reduces to Eq.~32!. If effects of the dissipation and th
dispersion are very small, then we have theresonantalge-
braic equation for¹2w: g(h2h0)5b* (¹2w)21b1* (¹2w)3

1X.
The perturbed Klein–Gordon field equation. Let

]F(f)/]f5 3
4f

522f31f in ~3!.33 As a result, in the
above-mentioned case~1! or ~2!, or ~3! Eq. ~3! yields

c0
2bc

2( 3
4f

522f31f)5mc0
22f ttt1kc0

24f tttt1X1F, since
f tt'c0

2¹2f.
Cosmological perturbed wave equation (5). If one of the

above-mentioned cases@~1!, ~2!, or ~3!# takes place we have
from ~5! that (¹c)25*(3c

*
2 dt1X)dt. It was assumed tha

d51 in ~5!.
Thus, it was shown in Secs. III B and III C that the ce

tral problem of this paper is reduced to studying Eq.~32!. In
the following we shall consider solutions, waves, vertic
and patterns yielded by~32!.

We emphasize that coefficients in the above-mentio
ordinary differential and algebraic equations may be fu
tions of r, s, x, y, or t.

IV. TRANS-RESONANT WAVES, VERTICES, AND
PATTERNS

A. Analytic research of waves generated by Eq. „32…

Let us consider a case whenD5, D6, s2, X* in ~32! are
zero andD751. In this case we have the following cub
nonlinear equation:

J-1D2J81D4J91D1~J8!21D3~J8!31D* J8J95d* .
~40!

According to Refs. 24, 25, and 27 we shall seek the appro
mate solution of the last equation as a sum of traveling
riodical waves

J8~r !5B tanh~e sinz2!cosk z2

1A sech2~e sinz2!cosK z21C cosz z2 , ~41!

wherez25pL21M 21(r 1c2), A, B, C, e are unknown con-
stants,k, K, andz are integers andc2 is an arbitrary constant
Expression~41! describes the interaction and the competiti
between the nonlinear, dissipative, and dispersive effects
the limit cases,~41! simulates shock-, soliton-, cnoidal-, an
harmonic-type waves. Thus, expression~41! describes all
well-studied waves. Therefore, we shall consider~41! asuni-
versalwave functions. They define infinite spectra of wav
becauseM 2151,2,3... . In~41! r is defined by~35! @or ~11!#.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 1. Simulation of parametrically excited surface water waves~Ref. 50! with the help of solution~49!: oscillations and the interaction of a pair o
soliton-like waves (c65L/2, k1252, andM51! ~a!; the interaction of a soliton and a boundary (c65L/4, k1252, andM52! ~b!; the localization of the
parametric harmonic excitation (c65L/2, k1251/3, andM51) ~c!.
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Therefore the wave functions~41! are not the d’Alembert-
type wave functions, and for any cases the solution~41! de-
scribes a new kind of wave. It will be shown that~41! de-
scribes many interesting results of recent physi
experiments.

Expression~41! is substituted into~40!. Next, equating
to zero nonlocalized terms, and terms contain
sech2(esinz2), or sech4(esinz2) or tanh(esinz2) we obtain

C~D22zp2L22M 22!cosz z21D1B2 cos2k z2

1D1C2 cos2z z213D3CB2 cos2k1z z21D3C3 cos3z z2

5d* , ~42!

A~D22Kp2L22M 22!cosK z2

22Ae2p2L22M 22 cosK12 z22D1B2 cos2k z2

12D1AC cosK1z z21D4BepL21M 21 cosk11 z2

23D3CB2 cos2k1z z213D3AC2 cosK12z z2

1D* BCepL21M 21 cosz1k11 z250, ~43!

D3A3 cos3K z213D3CA2 cos2K1z z21D1A2cos2K z2

1D* ABepL21M 21cosK1k11 z250, ~44!

B~D22kp2L22M 2212D1C cosz z2!cosk z2

1D3B3 cos3k z213D3BC2 cos2z1k z250. ~45!

For fixedk, K, andz one can obtain algebraic equatio
for A, B, C, ande from ~42! to ~45!. We emphasize again tha
the ordinary differential equation~40! and solution~41! de-
fine solutions for all equations~1!–~10!. These solutions de
scribe forced, parametric, and free waves. Here, as an
ample, parametric surface waves will be considered.
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surface elevationh is defined byux ~1D case! or ¹2w ~2D
case!.

Following Ref. 25 we consider a few cases when co
ficients in ~41! may be easily found.

~I! Let A5C50, k51, and d* 5D1B2/2. In this case
B254(p2L22M 222D2)/3D3 ande5BMLD1 /pD4. Thus,
quadratic nonlinear and viscous effects are taken into
count. If D35(p2L22M 222D2)/3, then we have

h52h@ tanh~e sinz2!cosz21tanh~e sinz1!cosz1#.
~46!

Here z15pL21M 21(s1c1) and c1 is an arbitrary con-
stant.

~II ! Let A50, k50, z51, and D1'D* '0, d* 50. In
this case one can find thatB25(3p2L22M 2222D2)/8D3 ,
C252(2D21p2L22M 22)/4D3 and e53BCMLD3 /pD4.
If D35(3p2L22M 2222D2)/32, thenB562 and we have
the next expression forh:

h5h@2 tanh~esinz2!1C cosz212 tanh~e sinz1!

1C cosz1#. ~47!

~III ! Let B50, K5z52, andd* 50. In this case one can
find A 523C 26D1/5D3 and e25p22M2L2(2D2/3
24p2M 22L22/31D1C15D3C2/4), where C50 or C is
defined by the equation: 5D3C216D1C18D2

216p2M 22L2250. Now we can write

h5h@A sech2~e sinz2!1C#cos2 z2

1h@A sech2~e sinz1!1C#cos2 z1 . ~48!
FIG. 2. Parametrically excited waves calculated according to solutions~46!, ~47! and ~50! for c653L/4, k152, and M51 @~a!, ~c!, and ~d!# and c2

53L/4, c15L/4, k152, andM51 ~b!. Cases~a! and ~b! describe oscillations and the interaction of surface water solitons observed in Ref. 51.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Let us consider a case whenC50 ande→`. Then the wave
transforms into a particle~jet! and we have approximately

h5hA@sech2~e sinz2!cos2 z2

1sech2~e sinz1!cos2 z1#. ~49!

For liquid layers we haveA'2 in ~49!.
~IV ! Let D150, B50, K 5z51, andd* 50. In this case

one can findA 523C, e25222p22M2L2D2, and C2

52(p2M 22L222D2)D3
21. Now we can write

h52hC@3 sech2~e sinz2!21#cosz2

2hC@3 sech2~e sinz1!21#cosz1 . ~50!

For liquid layers we found25 that C51.7(h/L)1/3 in ~50!.
Simulation of some experimental data by solutions (4

(47), (49) and (50). It was found24,25 that solution~48! de-
scribes parametrically excited water and granular wav
Here we additionally consider some recently observ
anomalous surface waves. Following Refs. 24 and 25
calculated these waves using in~46!, ~47!, ~49!, and~50! the
expressions~41! and ~11!.

Some results of calculations according to solution~49!
are presented in Figs. 1~a!–1~c!. It was assumed thata(t)
5B*k12@sin(vt/k12)20.333 sin3(vt/k12)#. Here B* is con-
stant corresponding to experimental parameters. It can
seen that~49! describes all solitons observed in Ref. 50.

Figures 2 and 3 were calculated fora(t)
5a0v

21k12sin(vt/2). Pairs of positive and negative vibratin
solitons observed in Ref. 51 on the water surface are si
lated by solution~50! @Figs. 2~a! and 2~b!#. Figures 2~c! and
2~d! were calculated according to solutions~47! and ~46!,
correspondingly. It is interesting that Fig. 2~d! resembles
some results obtained recently for radiation-damped s
systems.52

FIG. 3. Simulation of step-like standing surface oscillons excited in susp
sion ~Ref. 53!: single oscillon~a! and oscillon triad~b!.
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We simulated experimental data51 with the help of the
perturbed wave equation~see also Refs. 24 and 25!. It is
important for our theory that these data are described als
the nonlinear Schro¨dinger equation.51

Let us consider experimental data53 for parametric ex-
cited suspension layers. We assumed in~41! that r
5a0v21 sin(vt/2)2k1x, M51, and c25L/2, c152L/2.
Solution ~47! ~C50 and k151! and Fig. 3~a! describe the
single oscillon presented in Figs. 1~a! and 1~b! from Ref. 53.
The oscillon triad observed in Ref. 53 is simulated in F
3~b!. We used solution~46!, where k153. The reader can
find further comparisons of observed anomalous liquid a
granular waves and the solutions in Refs. 22 and 24–27

Figures 1–3 were calculated using the experimental d
The opposite traveling waves form Figs. 1–3@see~46!, ~47!,
~49!, and~50!#. These waves form waves oscillating~Figs. 1
and 2! or fixed ~Fig. 3! with respect to space points.

Thus, the parametric excitation allows us to keep
wave ~in other words the information! inside the resonators
In particular, the harmonic excitation may be compress
into the particle-like waves. These waves can oscillate~Figs.
1 and 2! or stand~Fig. 3! inside of the resonator.

Radial symmetrical waves. At the resonance, 1D local
ized excitations may be excited in the systems according
Figs. 1–3. Let us consider the 3D~spherical! resonant waves
We used the following expression for the pressure:

P2P0'2r0c t'2r0a0j21@J8~r !2J8~s!#.

Herer ands are defined by~11! and~41!. We considered the
exact resonance and assumeda(t)5a0t, B50, A523, C51,
K5z52, and c650 in ~11! and ~41!. Strictly localized
waves may be excited in spherical resonators accordin
the calculations~see Fig. 4!. These waves are defined by bo
number of the resonance~N! and number of the subharmon
mode~M!. There is a strong amplification of the waves ne
r 5R1. One can see that the long harmonic wave radiated
the source@see~26!# strictly compresses and amplifies at th
resonance.

B. Effects of high nonlinearity and ‘‘eddy’’ viscosity

We shall consider the following particular case of E
~32!:

A2~J8!51A1~J8!41~J8!31~3R/22/3!J81s2E J8uJ8udr

1cosvat
21r 50, ~51!

n-
ned by both
FIG. 4. Diverging and converging localized resonant pressure waves excited by a simple-harmonic source in the sphere. These waves are defi
number of the resonance~N! and number of the subharmonic mode~M!.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 5. The trans-resonant transformation of the shock-like waves into jet- and pyramid-like waves~R is trans-resonant parameter,N is number of the
resonance! and the simulation of experimental data~Refs. 53 and 54!.
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whereR is a trans-resonant parameter.21–27 We have at the
exact resonance thatR50. This equation generalizes th
Chester equation~33!. Equation ~51! has one solution or
three analytical solutions, ifA15A25s250. Using the three
analytical solutions we can construct discontinuous and m
tivalued solutions. These solutions were used in Refs. 24
27 for studying the trans-resonant earthquake-induced o
lations of surface topographies. Here we shall use both a
lytical and numerical methods for studying waves and p
terns generated by~51!. Solutions of the Chester equatio
~33!, and solutions of Eq.~51! rewritten for the inviscid me-
dium (s250) are compared. It will be shown that high no
linearity can qualitatively describe the generation of vortic

Waves and wave patterns described by analytical so
tions. The trans-resonant transformation of the shock-l
waves into pyramid-like waves is shown in Fig. 5. We u
both the single-valued and multivalued analytical solutio
whenR was near21 or 0. Between these critical values ofR
there is only the multivalued solution of~51!. Curves of Figs.
6, 7, 8~b! and 8~c! demonstrate the evolution of the analytic
solutions and the waves at the sectionx5L. It is possible to
give different interpretations of the curves. In particular,
shall treat the closed loops in the curves as vortex form
tions. In this case, Fig. 6 displays the generation~R520.4!
and the trans-resonant evolution of a mushroom-like wav
bifurcates into three surfaces whenR'21. Let us focus our
attention on the last case. In Fig. 7 we qualitatively show t
one structure of Fig. 6~R520.999 99! can bifurcate into
loop- and vortex-like structures@Figs. 7~a! and 7~b!# or stable
break-like waves@Fig. 7~c!#, or pyramid- and jet-like waves

One can see that Figs. 5–7 describe experimental d
The vertically excited pyramid- and jet-like waves@see Figs.
5 and 7~d!# on liquid and granular surfaces have be

FIG. 6. Curves calculated acording to the analytical solution of equa
(J8)31(3R/22/3)J81cosvat

21r50 demonstrating the generation~R
520.4!, the trans-resonant evolution~R520.8; 20.999 99!, and bifurca-
tion ~R521.01! of ripples. The cnoidal-type and saw-type~pyramid-type!
waves may be generated as a result of the bifurcation. Three types o
harmonic waves may be generated in the system according to the anal
solutions outside of the resonant band~R521.2!.
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observed.54–58 The shock- and/or step-like surface wav
~Fig. 5! were excited in Ref. 53. The strip-like waves,58

plumes, and mushroom-like waves with large heads w
also studied.59–61 Sometimes alternate-signed vertices we
generated in the heads.62 The jets@Fig. 7~d!# and the drops
can form as the result of the interaction of these vortices@see
Fig. 6 ~R520.999 99! and Refs. 61 and 62#. It was shown
experimentally56 and theoretically25 that water mushroom-
like waves, and jets~drops! can be generated due to vertic
harmonic excitation. Indeed, according to Figs. 5–7 the h
monic excitation can generate surprising, very compres
particle-like waves ifR'21. Apparently, these waves ar
Longuet-Higgins54 excited with the help of vertical harmoni
vibrations of a water layer.

Thus, in the trans-resonant regime the harmonic wa
may be compressed into particle-like standing oscillat
structures. The amount of these structures depends on
number of resonance~see Fig. 5!.

Cubic nonlinearity, ‘‘eddy’’ viscosity, and generation o
vortices.Following Ref. 44 we numerically solved Eq.~51!
~A15A250! for different s2. For small s2 the numerical
solution was similar to the analytical solution inside t
range 1.R.0. However, the numerical solution was diffe
ent from the analytical solutions inside the range21,R
,0 if s2 was large enough. Figure 8, where the multivalu
analytical and numerical solutions are compared, dem
strates this effect. On the other hand, Fig. 8 shows the
respondence of the close loops in Fig. 7 to the vortices. Is2

is slightly larger than some critical value, which depends
R, then the mushroom-like waves having the vortex~spiral!
pair appear in the trans-resonant band@see Fig. 8~a!, cases
R520.5, s250.26, andR520.9, s2520.031#. If s2 in-
creases further the spirals become tighter until they fo
nodal singularities@see Fig. 8~a! ~casesR520.5,s250.5 and
R520.9, s2520.1! and Ref. 44#. The singularities disap-
pear and the numerical solution is continuous whens2 is

n

he
cal

FIG. 7. A variety of wave structures which may be generated in the syst
vortex-like waves~a!, ~b!, breaking-like waves~c!, and saw- and jet-like
waves ~d!. They may be generated according to the analytic solution
equation (J8)31(3R/22/3)J81cosvat

21r50 if R'20.999 99.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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large enough. Let us consider the results of analytical s
tions @Figs. 6, 7, 8~b! and 8~c!#. The solutions qualitatively
describe the data of the numerical investigations, since
assumed that the loop pair corresponds to the vortex~spiral!
pair.

Effects of high nonlinearity. In Figs. 9–13 we presen
results of a numerical soliton of~51!. Let us consider case
when A15A25s250 @Fig. 9~a!# and A15s250, A2

520.11 @Figs. 9~b! and 9~c!# in Eq. ~51!. We assume tha
R50.03vr /a0 , wherevr /a0 varies from22 to 245 @Figs.
9~a! and 9~b!#, or R520.810.2 cos(vr/4a0) @Fig. 9~c!#. One
can see that the effect of high nonlinearity may be very
portant. The cubic nonlinearity generates loop-like structu
which bifurcate into three harmonic curves whenR'21 @see
Fig. 9~a! and Fig. 6#. These harmonic curves are tied b
vertical lines. The fifth-order nonlinearity defines the mo
interesting picture@Fig. 9~b!#. The mushroom-like forma-
tions generate the ellipsoid-like clouds whenR'21. The
fifth-order nonlinearity periodically generates these clou

FIG. 8. Waves generated by equation (J8)31(3R/22/3)J81s2*J8uJ8udr
1cosvat

21r50. Resonant and ‘‘eddy’’ viscosity effects on the tran
resonant evolutin of mushroom-like waves: numerical calculations~a! and
analytical simulations~b!, ~c!. HereR is the trans-resonant parameter ands2

is the ‘‘eddy’’ viscous parameter. If in the resonant bands2 is slightly larger
than some critical value then the mushroom-like waves transform into
vortex pair.

FIG. 9. The transition of ripples into mushroom-like waves and cloud-l
structures calculated according to cubic equation (J8)31(3R/22/3)J8
1cosvat

21r50 ~a! or fifth order equation 20.11(J8)51(J8)3

1(3R/22/3)J81cosvat
21r50 @~b!, ~c!#.
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@see Fig. 9~c!#, if R oscillates nearR'21. More detailed
results of the numerical calculations can be seen in F
10–13. We assumed thatA25s250 ~Fig. 10! and A15s2

50 ~Fig. 11! in ~51!. Figure 10 demonstrates a variety
cloud-like structures. Some of them simulate the shape
liquid drops bouncing on a solid surface.63,64 There are dif-
ferent cloud-like structures in Fig. 11. One structure~R
520.81, A2520.1095! resembles the structure of Fig.
~R520.8!. One can see the transformation of the comp
structure~R520.81,A2520.1095! into the Karman vortex
street~R520.81,A2520.15! ~see also Fig. 7.10 in Ref. 61!.

e

FIG. 10. Mushroom-like waves~R520.708 andA1520.25! and the cloud-
like structures are yielded by the fourth-order algebraic equationA1(J8)4

1(J8)31(3R/22/3)J81cosvat
21r50 inside and near the resonant band.

FIG. 11. Effect of the fifth-order nonlinearity on mushroom- and cloud-li
structures calculated according to equationA2(J8)51(J8)31(3R/22/3)J8
1cosvat

21r50. The trans-resonant transformation of the mushroom-l
waves~R520.7 andA2520.1! into Karman’s ‘‘vortex street’’~R520.82
andA2520.15; R521.01, andA2520.1!.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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Then in Fig. 12 we show that the complex structure fro
Fig. 11 ~R520.81, A2520.1095! contains mushroom- an
break-like waves, and spiral structures.

Thus, under the simple harmonic excitation the syste
can manifest very complex behavior. Changing the excit
term in ~52! one can study an infinite variety25 of wave phe-
nomena in different systems.

We have considered the simple cases, when Eq.~32! is
simplified to ~51!. In particular, Figs. 5–7 and 9–12 wer
calculated according to the algebraic equation. This equa
does not take into account the influence of the dissipa
and the dispersion. However, these figures qualitatively
scribe the observed evolution of ripples in the mushroo
like waves, vortices, and clouds.65,66 Thus, it follows from
the calculations that the influence of dissipation and disp
sion on this evolution may be very small. It was also sho
that in highly nonlinear media the ripples can be smoot
transformed and amplified into mushroom-like wave
spiral-, and ellipsoidal-like structures.

Turbulence may be generated by mushroom-l
waves.65,66 Therefore, turbulence can be generated eve
the viscous effects are very small. We emphasize that
highly nonlinear spiral-like vortices in Fig. 12 are remini
cent of the vortices calculated for cubic nonlinear and
‘‘eddy’’ friction @Fig. 8~a!#. Thus, the high nonlinearity ca
qualitatively simulate ‘‘eddy’’ viscosity and, perhaps, d
scribe a generation of the wave turbulence. According to
theory this turbulence can weakly depend on the viscosi

It is known that the front of turbulence can propaga
like traveling waves.67 This front may be formed by the trav
eling mushroom-like waves. These waves can generate
vortices whenR'21. Indeed, ifs250, Eq. ~51! transforms
into the algebraic equation. One has many~up to 5! real roots
~see Figs. 9–11! if R'21. These roots are located very clo
to each other. Therefore any noise can provoke the cha
jumps and oscillations in the system ifR'21.68,69As the
result, the wave turbulence may be generated.

Let us consider the transformation of harmonic ripp
into the cluster of clouds~vortices!. We assume in~51!
that A15s250, A2520.11, and R50.0025vr /a0

1tanh(0.025vr/a0), wherevr /a0 varies from 20 to2980.
Results of calculations are presented in Fig. 13. One can
that ellipsoid-like clouds ~vortices! are formed when

FIG. 12. Resonant mushroom- and breaking-like waves, and spiral
structures generated by the fifth-order nonlinearity ifR'21.
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R<21. The clouds reduce together withR. They disappear
when R'21.25. As a result, we have the finite cluster
clouds~vortices!.

It is possible to give a different interpretation of Fig
9–13. For example, we can assume that Figs. 9~b!, 9~c!, and
13 simulate the generation of the Karman vortex street61 ~a
sequence of alternate-signed traveling vortices arrange
two rows!. On the other hand, one can treat Figs. 9~b!, 9~c!,
and 13 as a sketch of the evolution of ripples of the den
to vortex-like structures, which transit into ellipsoid galaxie

Nonlinear and ‘‘eddy’’ effects in the early Universe. The
last results are applicable to problems of the formation
galaxies and clusters of galaxies. Let us consider the ordin
differential equation~34! for the early Universe. Inside
the resonant bandb2 and b3 in ~34! are very small. It has
been found for~33! and ~51! ~see Figs. 6–13! that the
mushroom-like waves and trans-resonant vortices can ap
from ripples in nonlinear and dense enough media, if
critical conditionR'21 holds. The early Universe was ver
dense and highly nonlinear. Therefore, the mushroom-
waves and trans-resonant vortices could form there. On
other hand, in natural systems the conditionR'21 can oc-
cur during finite time and inside finite space. Therefore,
natural cluster of vortices forming in the trans-resonant
gime cannot contain too many vortices. Indeed, the clus
of the Universe usually have hundreds of galaxies.17 Thus,
galaxies formed together with the cluster during sh
enough time and inside a rather small space. According
our theory the formation of a single galaxy is practica
impossible.

C. Wave patterns governed by analytic solution „41…

Solutions~46!–~50! describe an infinite variety of wave
and wave patterns which may be generated in nonlin
dispersive–dissipative spatiotemporally inhomogeneous
tems. Of course, it is impossible to study all of them. So
1D and 2D systems were considered in Refs. 24, 25, and
Here we continue the consideration of 2D patterns.

We shall consider the patterns generated by express
J8(r )1J8(s), where according to~49!

e

FIG. 13. Growth of ripples and the generation of mushroom-like waves,
a cluster of the clouds~vortices! are described by fifth-order algebraic equ
tion 20.11(J8)51(J8)31(3R/22/3)J81cosvat

21r50. Here parameterR
1R(t) varies from 0.4 to21.25. The harmonic wave grows and transform
into shock-like and the mushroom-like wave, whenR(r ) reduces from 0.4.
The solutions bifurcate whenR(r )'21. As a result two rows of clouds
~vortices! and the saw-like curve are generated. The vortices reduce
disappear whenR'21.2. Moreover, the saw-like curve transforms into th
harmonic curve. This evolution is valid for all Eqs.~1!–~10!. Perhaps, this
figure qualitatively describes the evolution of ripples, the generation of
axies and galaxy clusters in the early Universe.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 14. Complex patterns@~a!, ~b!, ~c!# are formed by resonant traveling waves inx-y plane. Resonant conditions~38! take place for these waves. Th
generation, the interaction, the transformation, and the disappearance of localized structures are shown. According to the theory these processesare described
by all equations~1!–~10!. Perhaps, this figure simulates qualitatively the interaction of localized microwaves and vortices in some quantum fields du
period of oscillations. In particular, in the Bose–Einstein condensate experiments~Refs. 6, 90–93! this interaction may take place.

FIG. 15. Evolution of the resonant traveling wave patterns inx-y plane during the period of oscillations.
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 16. The slow dynamics of oscillon-like structures formed by resonant traveling waves inx-y plane.
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, 8,
J8~r !5sech2~e sinz2!cos2 z2 ,
~52!

J8~s!5sech2~e sinz1!cos2 z1 .

Herez25M 21(r 1c2) andz15M 21(s1c1), where

r 5a~ t !2sinw k1x1b* sinv k2y,
~53!

s5a~ t !1sinw k1x1sinv k2y.

This case corresponds to resonant conditions~38!. In this
section dimensionless valuesr, s, z2 , z1 anda(t) are used.
In ~53! a~t! is defined by parameters of the physical syste
At the same timea~t! defines the dynamics of wave pattern
Dynamic patterns are formed, ifa~t!.1 @see Figs. 14, 15
19~a!, and 20#. If a~t!!1, we have approximately the stan
ing wave patterns~see Figs. 16 and 17!.

Figure 14 demonstrates the complex dynamics of
patterns. Figure 14~a! was calculated forb* 521, w
54, v55, k15k253 in ~53! andc650.5, e530 in ~52!.
Figures 14~b! and 14~c! were calculated forw54, v
54, k15k252 in ~53! and c650.5, M 2153, e530 in
~52!. In the last two cases, we only changedb* @b* 51 for
Fig. 14~b! andb* 521 for Fig. 14~c!#. Then we recalculated
Fig. 14~a! assuming thatw54, v54, andb* 51. Results
are presented in Fig. 15. It is seen from Figs. 14~a! and 15
that the influence ofw, v, andb* on the wave patterns ma
be very strong.

Figures 14 and 15 manifest the traveling wave patte
One can consider periodic generation, interaction, trans
mation, and disappearance of the localized elements du
the dynamic process. Indeed, dynamical systems may ex
complex behavior in both space and time.70–73 In particular,
time evolution of 1D and 2D standing wave patterns in d
ferent mechanical, optical, physical, chemical, and biolog
systems during one period have been treated.53,55,74–76Re-
cently, highly dynamic patterns formed by traveling wav
have attracted some attention.21–27,77–79We think that they
can form in highly nonlinear, weakly dissipative media a
in cavities with special boundaries. These conditions may
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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realized in microresonators.80–83 On the other hand, the pat
terns in Figs. 14 and 15 recall the same patterns calcul
for oscillatory and excitable media.79,84 Very complex pat-
terns similar to Figs. 14 and 15 are excited due to the in
action of boundaries and nonlinearity.85 Circles and rings in
Figs. 14–16 may be considered as vortices. Complex
terns formed by chains of vortices were observed recent86

The weak dynamics of the pattern is shown in Fig. 16. W
used the parameters of Fig. 14~c! assuming additionally tha
c650, M 2151 anda~t!50.28 sinvt. A few sanding wave
patterns are given in Fig. 17.

One can see that both dynamic and standing w
patterns can be formed from rolls, spots, circles, rin
squares, and hexagons. These elements of patterns ar
served in the superconduction,35,87 surface waves,53,55,70,71

nonlinear optics,72,73,88 and molecular,76,89 Bose–Einstein
condensate,90–93 quantum6–8 and biological systems.70,74

Therefore Figs. 14–17 qualitatively describe many obser
patterns.

Simulation of holes (vortices) in the Bose–Einstein con-
densate (BEC). BEC is formed when the temperature of a
oms is very near absolute zero. In BEC all atoms lock
gether in one quantum mechanical state—as uniform
coherent as a single particle. In particular, they have the
related spins. Recent experiments6,90–93 show that a laser
beam bounced in a resonator creates holes in BEC. Using
universal wave functions~52! we can qualitatively simulate
these experiments. Results of calculations are presente
Fig. 18. We assumed thata~t!50, e530, M 2151, c650,
andw5v54 in ~52! and~53!. One can see in Fig. 18 that th
amount of holes~vortices! observed in Ref. 92 correspond
to numbersk151, k251 ~one hole!, k151, k252 ~two
holes!, k152, k252 ~four holes!. Many holes shown in Refs
6 and 90 were simulated byk154, k254 in ~53!.

Simulation of patterns in electron resonators (Refs. 7
94, 95) and photonic crystals (Refs. 72, 73, 88, 96–100!. We
assume thatJ8(s)50, e55, and
FIG. 17. Examples of simple resonant wave patterns inx-y plane calculated according to~52! and ~53! for a(t)50.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 18. Standing resonant wave patterns simulating holes and vortices observed in the Bose–Einstein condensate~Ref. 92!. In the experiments~Refs. 6,
90–93! the amount of the vortices depended on the microwaves generated in the condensate. According to the theory this amount depended on the
k1 andk2 of the universal function~52!.
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J8~r !5sech2~e sinr !cos2 r ,
~54!

r 512a~ t !2sech~e* R* !sinN~k1w* !20.75 sinN~k2R* !

in ~53!. Here R* 5(p/L)(x210.6y2)0.521, w*
5argtan(x/y), ande* is a constant. Expression~54! satisfies
resonant conditions~38!. First we studied the Kondo
resonance.7,8 Figures 19~a!–19~c! demonstrate that expres
sion ~54! qualitatively describes the resonant standing wa
patterns of a Kondo corral.7 The dynamics of the quantum
mirage observed in Ref. 7 is presented in Fig. 19~a!. For the
last case we assumede 530, k1516, k2512, N54 in ~54!.
*

ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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The form of the corral depends one* @see Fig. 19~b! calcu-
lated for k158, k254, N54#. One can see that Figs. 19~a!
and 19~b! also resemble the nonlinear optical phenome
and the photoelectron diffraction data publish
recently.72,73,76,88,96–99 Assuming r 511sech(e* R* )
3sinN(k1w* )10.75 sinN(k2R* ) in ~54! and k158, e* 52 we
simulated the last experimental data. The results of the
culations are presented in Fig. 19~c! for differentk2. One can
see that Fig. 19~c! qualitatively simulates the optical pattern
in cavities72,73 and Kerr or resonant media.96 Moreover, Fig.
19~c! describes qualitatively the mirages of atomic structu
observed in Refs. 94, 95, and 98.
Refs.
FIG. 19. Dynamical~a! and statistical properties~b!, ~c! of the universal wave function, and the qualitative simulation of quantum mirages observed in
7 and 8 and holograms of atoms~Refs. 94, 95, and 98!. ~a! A Kondo corral~Refs. 7 and 8! and the evolution of peaks and rings there during the period.~b!
Form of a Kondo corral depends on the parametere* . ~c! The dependence of 3D holographic images of some atoms~Refs. 94, 95, and 98! from eigenvalue
k2 of the universal function~52!. Some features of the diffraction patterns~Ref. 99! are simulated.
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 20. Simulation of electron orbits in atoms~Refs. 97, 100, and 101! with the help of the universal wave function~52!. The universal atomic electron’s
radial wave function varies during the period.
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The dynamics of the orbit-like structures
shown in Fig. 20. We assumed in~54! that r
52a(t)20.75 sech(R1)sinN(k1R* ), where R15(p/L)(1.2x2

10.8y2)0.5 and k2510. The orbits resemble the structur
observed in different optical resonators.97,100,101

Thus, Figs. 18–20 simulate the different structures t
are observed on the scale of atoms and electrons. In par
lar, Fig. 18 qualitatively describes holes and vortices in
perconductors and BEC. Figures 19 and 20 demonstrate
wave functions of quantum particles. In one combinat
~Fig. 20! the electrons are smeared out in rings around
atom. In another~Fig. 19!, they are localized and orbi
around the atom like a planet around the sun. The elect
with high energy can occupy a large number of quant
states~Fig. 20!. Moreover, Fig. 20 is a time sequence sho
ing dynamics of the target patterns observed recently in
cillated granular layers.102

We recall that all states in Figs. 18–20 are described
the same wave function. This function also describes
liquid and granular waves in layers, seismic waves, a
spherical waves. Therefore we consider function~49! as the
universal function.25,26

V. CONCLUSIONS AND OPEN QUESTIONS

There are two main goals of this research. The first is
demonstrate the analogies between trans-resonant wave
cesses in different nonlinear, dispersive–dissipative syste
In particular, the analogies between surface waves, nonli
and atom optics, field theories and acoustics of the e
Universe are demonstrated. Second, it is the investigatio
trans-resonant wave phenomena in these systems.

Some cases were found when the perturbed wave e
tions may be reduced to the basic highly nonlinear ordin
differential equation or the basic algebraic equation for tr
eling waves. The analytic solutions of these equations h
been constructed. With the help of these solutions and
numerical calculations the 1D and 2D trans-resonant wa
were studied. It is known21–27 that in the trans-resonant fre
quency band the balance between the nonlinear, disper
dissipative, and spatial effects varies with the frequency.
found here that the harmonic waves can evolve into sho
jet-, or mushroom-like waves, and then into cloud-like a
vortex-like structures. Sometimes the motion of these wa
and structures in thex–t andx–y planes may be very com
plex. They can form different traveling wave patterns.
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We have shown that the above-mentioned trans-reso
waves and patterns qualitatively describe many recent ob
vations. On the one hand, they simulate vertically exci
surface waves in liquid and granular layers~the Faraday ex-
periment!. On the other hand, they describe nonlinear wa
effects in optics. Moreover, we found that the analytic so
tions ~52! and ~54! qualitatively describe wave patterns
Bose–Einstein condensates~Fig. 18!, and the Kondo corrals
observed recently in atom–electron structures~Fig. 19!.

The results may be interpreted for different resonat
and media. For example, according to Figs. 8–13, when
trans-resonant parameterR varies from11 to 21, the har-
monic ripples amplify and transform into the spiral and
lipsoidal structures, and the clusters of these structures.
haps this evolution describes the generation of galaxies,
the formation of galaxy clusters during the early Univer
evolution. We believe that the conditionR'21 qualitatively
characterizes moments of time and points of space in
early Universe, where galaxies and the clusters were form
According to the presented analytic theory galaxies and
lactic clusters were formed at the same time.

Figures 1–5 and 7 show the resonant localization and
compression of the forced harmonic excitation inside of
resonant band. Due to the parametric excitation the w
may be trapped. The wave can change the velocity and
direction of the motion~Figs. 1 and 2!. The compression of
the waves is maximal whenR'21. The resonant compres
sion of harmonic waves, the localization of the waves, a
the manipulation of the wave velocity realized in the m
croresonators~nanocrystals, molecules and atoms! may be
used in quantum computing. The generation and the trans
mation of mushroom-like waves were studied. It is know
that turbulence may be generated by mushroom-
waves.65,66 We found that the mushroom-like waves and t
spiral-like vortices can be generated by the fifth-order n
linearity or the cubic nonlinearity together with the ‘‘eddy
viscosity~Figs. 8–13!. Thus, the high nonlinearity can qual
tatively simulate ‘‘eddy’’ viscosity and, perhaps, describes
generation of the wave turbulence. According to the the
the wave turbulence can weakly depend on the viscosity

The standing wave patterns were intensively studied d
ing the last decades.55,70–74,76,103,104We have considered th
dynamic wave patterns. In particular, the analytic theory
patterns, which are formed by the trans-resonant trave
waves, have been developed. As a result, we simulated
ense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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patterns which were observed recently in different quantu
electron, and atom systems.6,7,90–100

A detailed study of different trans-resonant wave ph
nomena can greatly clarify dynamic aspects of nonlinea
and the role they play in effects ranging from physics
biology. In particular, waves generated in nonlinear reson
bands105,106 are weakly studied. Passing through resona
can strictly depend on noise. This problem was conside
with the help of ordinary differential equations.107 Appar-
ently, stochastic trans-resonant nonlinear waves are the p
lem of the future. Subharmonic and high-harmonic wav
may be generated in the resonant bands.24,25,56,104,108Further
open questions are as follows.

~1! We took into account nonlinear, dispersive, dissipati
and spatial effects. Are they enough to describe
physical phenomena in resonant systems? Can they
scribe effects of the virtual particles and the Casim
force109 in microelectromechanical resonant system

~2! One can see that waves in Figs. 14, 15, 19~a!, and 20
can periodically disappear and generate. This proc
was observed in water53,78 and granular layers.55 Can
this physical process correspond to the generation
resonant particles by fields? IfR'1 then the
mushroom-like waves can generate the jets, and
cloud-like structures. In particular, we have connec
this process with the formation of galaxy clusters. C
this process describe qualitatively the generation of
virtual particles in fields?

~3! It follows from the theory that highly nonlinear reso
nant fields may form vortices. The highly nonline
fields and materials were found recently.5,83 Is it pos-
sible that there the wave fields are formed by the v
tices? Can this possibility explain properties of sup
conductors and the Bose–Einstein condensate?

~4! Figure 20 resembles the well known, in quantum m
chanics, Wigner function.101 Is function ~54! some
analog of the Wigner function?

~5! It is known that the versions68,69 of Eq. ~40! describe
the chaotic oscillations in the resonant band. Indeed
R'21, then the strictly different roots locate ver
close to each other~see Figs. 9–11 and 13!. In this
case nonzero fluctuations can provoke the highly
predictable bifurcations and jumps in the system
These high nonlinear phenomena may be extrem
important. Have we considered the systems stable
very small fluctuations? Can very small fluctuations
the parameters move the resonant systems from st
to unstable state and vice versa, ifR'21? Is it pos-
sible that the spatiotemporally determinist
mushroom-like waves,65,66,110 spiral, and ellipsoidal
vortices pass to turbulence without the abov
mentioned linear process?

~6! It is known that large vortex structures may be cons
ered as weakly viscous.111 We qualitatively showed
that the fifth-order nonlinearity@Eq. ~1!# yields the
vortex structures. Is it possible to use highly nonline
ownloaded 25 Aug 2009 to 130.216.69.9. Redistribution subject to AIP lic
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wave equations and weakly viscous models@e.g.,~1!#
for studying of the large scale wave turbulence inste
of the Navier–Stokes equations?

~7! Equation ~1! was derived for highly elastic objects
According to the resonant solutions the vortices m
be generated there. Can these solutions describe
called ‘‘elastic’’ turbulence?112,113

~8! Is it possible to find in the theory of turbulen
flow47,61,114 or wave turbulence115 some value which
resembles the trans-resonant parameterR?

~9! Generally speaking in Sec. IV C we considered on
one analytic solution of Eq.~40!. Do solutions~46!,
~47!, ~48!, and~50! describe some resonant properti
of fields and microresonators?

~10! We showed that harmonic waves, shock-like wav
jets, mushroom-like waves and vortices can evo
into each other during the trans-resonant process.
similar evolution was observed in water and g
layers.65,66,116,117Perhaps, this process may be co
nected with a formation of quantum shock waves an
nucleation of vortices in BEC.118 It follows from the
theory and the observations that wave phenomen
the different media and the quantum effects in BE
may be similar. On the other hand, further analysis
the trans-resonant evolution of waves may be imp
tant the inflationary theory. This theory predicts th
gravitational waves in the early Universe would ha
produced a vortex-like component.119 Perhaps, this
component might be generated due to the nonlin
trans-resonant evolution of harmonic gravitation
waves. Might the nonlinear trans-resonant theory
gravitational waves tell whether inflation is right o
not? Can the resonant waves and the nonlinear tra
resonant evolution of ripples into vortices illustra
properties of quantum waves, oscillating BEC120 and
the Universe?
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