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From microresonators to the early Universe

Sh. U. Galiev®
Department of Mechanical Engineering, The University of Auckland, Private Bag 92019,
Auckland 1, New Zealand

T. Sh. Galiyev
New Zealand Funds Management Limited, 23-29 Albert Street, Private Bag 92163, Auckland, New Zealand

(Received 2 January 2001; accepted 7 June 2001; published 31 Augu$t 2001

Perturbed wave equations are considered. Approximate general solutions of these equations are
constructed, which describe wave phenomena in different physical and chemical systems. Analogies
between surface waves, nonlinear and atom optics, field theories and acoustics of the early Universe
can be seen in the similarities between the general solutions that govern each system. With the help
of the general solutions and boundary conditions and/or resonant conditions we have derived the
basic highly nonlinear ordinary differential equation or the basic algebraic equation for traveling
waves. Then, approximate analytic resonant solutions are constructed, which describe the
trans-resonant transformation of harmonic waves into traveling shock-, jet-, or mushroom-like
waves. The mushroom-like waves can evolve into cloud-like and vortex-like structures. The motion
and oscillations of these waves and structures can be very complex. Under parametric excitation
these waves can vary their velocity, stop, and change the direction of their motion. Different
dynamic patterns are yielded by these resonant traveling waves i-thend x—y planes. They
simulate many patterns observed in liquid layers, optical systems, superconductors, Bose—Einstein
condensates, micro- and electron resonators. The harmonic excitation may be compressed and
transformed inside the resonant band into traveling or standing particle-like waves. The area of
application of these solutions and results may possibly vary from the generation of nuclear particles,
acoustical turbulence, and catastrophic seismic waves to the formation of galaxies and the Universe.
In particular, the formation of galaxies and galaxy clusters may be connected with nonlinear and
resonant phenomena in the early Universe. 2@1 American Institute of Physics.
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Perhaps, Da Vinci first understood that surface water of nonlinearities in the microresonators may open up new
waves, sound and light waves are all propagated accord- opportunities. In addition, highly nonlinear resonant ef-
ing to the same laws. This idea is valid both for linear and  fects can explain the amplification and the transforma-
nonlinear waves. Brilliant investigations of nonlinear tion of waves in large systemge.g., earthquake-induced
body and surface waves in different physical, chemical, mountains, valleys, islands, et¢.and very large systems
and biological systems have been made during the last (e.g., the early Universg. Thus, the nonlinear, trans-
two centuries. In particular, anomalous parametric sur-  resonant effects considered in this paper may be applied
face waves were observed in the last decade. We have to different technologies and systems ranging from the
found that similar waves may be in different physical, —atomic scale to the cosmos.

astrophysical, and chemical systems. The generation and
the evolution, form, and amplitudes of these waves de-
pend on the competition between nonlinear, dissipative,
dispersive, and spatial effects inside trans-resonant
bands. Due to this competition the waves in resonators
may be compressed into chains of jets and spots,
mushroom-like waves, vortices (Karman's “vortex
street”), ellipsoidal-, and spiral-like structures. The ve-
locity of the waves can depend on the parametric excita-

I. INTRODUCTION

The resonance is the classical problem with great prac-
tical impact in different natural, mechanical, physical, opti-
cal, electronic, and electrical systems. For simple mechanical
systems, the resonant amplification and trans-resonant oscil-
lations were considered beginning with Galileo Galilei.

X X , X These phenomena were usually studied with the help of one
tion. These effects are strlct-ly Iocallged in the resonant degree of freedom or a few degrees of freedom models. Ac-
band and depend on the cavity detuning from resonance. .o ing to the linear models the amplitude of the oscillations

They may be interesting for optoelectronics, quantum s infinite at the resonance. The amplitude is limited by non-

computing, telecommunication, etc. Further investigation  |inear and/or dissipative effects. Sometimes, one degree of
freedom or a few degrees of freedom models are too rough
dElectronic mail: s.galiyev@auckland.ac.nz an approximation and wave properties must be taken into
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account. The nonlinear resonant waves in infinite and finiteBasic equations for the resonant waves are deffised, e.g.,
mechanical systems have been studied for about 50 Y8ars.(32)]. Trans-resonant effects, waves, and patterns are studied
The analogous resonant phenomena in optical and condensiedSec. V. Analytical solutions are considered in Sec. IV A.
matter systems are more recent developments, facilitated bijhey describe many wave phenomena and wave patterns,
advances in information technology and nanofabricatidn. which have been observed recently in water and granular

The amplitude and the form of the resonant waves idayers. In Sec. IV B the trans-resonant evolution of harmonic
defined by nonlinear, dispersive, dissipative, and spatial efwaves into particle- and cloud-like waves is studied with the
fects. In the trans-resonant frequency band a balance béelp of the analytic solutions and numerical calculations. Ef-
tween these effects varies together with the frequency. Therdects of high nonlinearity and “eddy” viscosity are also
fore inside the band unexpected phenomena can begeated. It was found that harmonic waves can amplify and
generated. For example, the trans-resonant transformation efolve into mushroom-like waves and then into a cluster of
harmonic smooth waves into shock waves were observed ivortices. This cluster is reminiscent of Karman's “vortex
tubes? In mechanical systems, only the first resonances caftreet.” On the other hand, we believe that the last process
typically be observed, because of damping and the narrowingualitatively simulates the nonlinear formation and growth of
of the resonant band with increasing resonance nufmberlarge-scale structures in the early Univet8@he particular
However, in electronic, optic, crystal, and quantum systemsolution seci(esin{_) cos’_ [see(53) and(55)] is treated
the damping may be very small and different resonances can Sec. IVC. It is known that this solution describes trans-
occur. Electrons and atoms can form resonators. Interestirigsonant spherical wavésand some waves observed re-
elliptic standing wave patterns were recently observedently in surface layers:?**~?4We show that this solution
formed by a single atom and a two-dimensional free electroflescribes the wave patterns observed recently in different
gas’® It was found that the Bose—Einstein condensation canmicroresonators, in Bose—Einstein condensations, and in
have unprecedentedly large nonlinearity. As a result, th&lectron structures. The summary and a brief discussion of
resonantly tuned light pulses travel at a velocity of only 17the results may be found in Sec. V.
m/s and are strictly compressed in the condensation. This Thus, in this paper a wide spectrum of the resonant wave
effect might explain various anomalous observations, in parProblems are treated. However, stochastic resondhees
ticular, in the cosmos. Indeed, the varying-speed-of-lighthot studied in this paper.
theory of the cosmos was developed during recent y&ars.
The acoustic resonant and nonlinear effects may be impor-
tant for cosmology?~2°It has been discovered that the back- Il. GOVERNING EQUATIONS
ground radiation has large-size pedksfundamental mode
and smaller peakg&overtones”).? The early Universe rang .
like a spherical resonator after the big bang. Thus, recentpe foIIowmg._ . . . .
observations show that the acoustic model of the early Uni- 1D (one-dlmensmnal) waves in strings, Iat'qces and sur-
verse is correct. The rapid expansion of the Universe proiace 'ay‘?rs Th‘? f°”°W'_”9 é%‘ia“on may be valid for waves
duced nonlinear pressure and density waves, since the mat{grone—dmensmnal objects:
of the early Universe was highly nonlinear and very dense.  uy—a3uy,= — ghy+ BUgUyy+ B1UZUgy+ BoUUyy

One of the goals of this paper is to study highly nonlin- 4
ear wave phenomena in various dissipative-dispersive reso- + BaUxUxxt Ut Koot X+ BaTay,
nant systems. These systems are surface layers, microresona- (1)
tors, the early Universe, etc. We develop the theory of trans-
resonant wave phenomena in these systems. The perturbedhere u is the longitudinal displacemendg, is the sound
wave equations are studied. It is known that physical provelocity, h is the thickness of object$,andx are time and
cesses of generation and transformation of waves can diffaroordinate, respectively. Here and in the following letter sub-
dramatically, nevertheless equations and analytical solutionscripts denote differentiation with respect to the correspond-
describing these processes are often similar. For exampl&g value. The first term on the right-hand side(df takes
shock-, soliton- and cnoidal-like solutions are well known ininto account the variation of the thickness. Then there are
nonlinear dynamics. In particular, it has been found recenthyguadratic, cubic, fourth- and fifth-order terms with regard to
that similar solutions describe waves in sphericalu. The dissipative(uuy,) and dispersiveku,,,,) terms in
resonators and different anomalous wave phenomena, andl) follow behind the nonlinear termX is a known function
wave patterns observed in water and granulaf the coordinate and the time, which defines the amplitude,
layers?1:22:242521t has been shown that the perturbed Max-and the motion of sources or initial ripples. The last term in
well wave equation and the perturbed Klein—Gordon field(1) is defined by the surface friction. Coefficients(i) can
equation(¢* field) have similar solution&® Here we develop depend ont and x. This equation was derived for surface
the theory presented in Refs. 2 and 21-29. water, granular, and seismic wavé<! In particular, some of

The paper is organized as follows. In Sec. Il the per-Charles Darwin’s seismic observations were simulated with
turbed wave equations for different nonlinear systems ar¢he help of Eq(1).24?" Versions of Eq(1) can also describe
presented. It is shown in Sec. Ill that the same methods andonlinear waves propagating in bubbly liquids, molecular
assumptions enable us to obtain similar general approximagnd atomic lattice$>3! For further details the reader is re-
solutions of the perturbed wave equatidsse, e.g.(25].  ferred to Refs. 22, 24-27, and 31.

The equations under the consideration are presented in
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The perturbed Maxwell wave equatiddne-dimensional methods. In the early Universe the pressucominates over
propagation of the electromagnetic wa¥ess described b3~ gravity. A convenient relativistic equation of state s
=(v,— 1)a§p , Where y, =y, () or a constant ang is
density®® Usually, it was assumed thad, >1. At early times
+X+F, (2)  the speed of soundal, in the Universe was about the speed of

. . . " light. In the considered case, the fluid equations in expanding
wherecy is the velocity of light, coefficients,, a;, a,, az u, coordinates arep+3d1 dp+d V(p»=0 and »,

andl_< may depend orp a_ndx_. Linear phenomenological di_s— +d 'wVp+d dw=d 1Vp [see Eqs(9.15 and(9.17)
persive E,),, and dissipativeKE,,),, terms were added in - o Ref. 14, Hered=d(t) is a scale factor describing the
(2). The d|SS|pat[ve phenpmenol_ogmal no.nllnear t_h|rd—0_rder|_|ubb|e expansion of the Universe. We assume thé is
termF was also _mserteq ifd). This term will be defmed_m known. Then we introduce the velocity potential y=V -

Sec. Il B. Equatior(2) gives opportunities to study the light ag 5 result, after some algebra, the fluid equations are re-

propagation in spatially and temporally inhomogeneous meg ,~od to the following perturbed wave equation:
dia and microresonators. ¢f, is a function oft, then Eq.(2)

Ev— CoExx= (a1E +a,E?+ agE3+ uE +KEyy)

describes parametric excited waves. Nonlinear Stihger- Py —C2 V2= — (1+d HVyV iy —d 1V )2V 2y
type equations follow from the perturbed Maxwell equation *
(2).32 +3c2di+F+X—(dd™ Hpyp—dd iy

Perturbed Kleir-Gordon field equationWe shall con-
sider the following form of this equation:

bu— C3V2p=—CoBLIP () dp+ uV by X[t OBV ) +did ™y, “)

—dd"4(Vy)2—cid(c, 2d 1),

+KVAh+X+F. (3)  HerecZ=(vy,—1)ajd 2. We inserted in(4) the functionsX
andF. Equation(4) is complex. Let us assume ttdthas the

Here B is the Compton propagation constant. Different €X-gacond order anB =0. In this case we have froltd) that

pressions for the functiod can be found in Ref. 33. We

assumed in3) thatcy=cy(X,Y,t), wherex andy are rectan- Yu—C2 V2= —(1+d~Y)VyV s+ 3c2d,+ X. (5)
gular coordinates. The phenomenological dispersive

(uV?¢,) and dissipativékV*¢) terms were added i8). In e eliminate the third-order terms i3). Generally speak-
particle physics the Klein—Gordon equation represents theg, the equations of fluid dynamics can describe the evolu-
wave equation of a free relativistic particle. In this case wetjon of acoustic waves in the Univers&However, following
have B.=2mmc,/h*, wherem is the mass of the particle Hu et al®® we believe that wave-type equations provide a
and h* is Planck’s constant. The Klein—Gordon equationmore convenient way to study the nonlinear development of
also describes the motion of the field in very small structuresvaves in the early Universe.

and superconductor$-*° It is interesting that the Klein— Spherical wavesThe sphere is the simplest object where
Gordon equation may be reduced to the Sdimger equa- there is interaction of nonlinear and spatial effects. Here
tion in the small-momentum limi? On the other hand the some equations for spherical radial waves are considered.

Klein—Gordon equation can describe the waves in a cistal First we write an equation of radial oscillations of gas
(sine-Gordon equation and it is also known in gsphere®’

astrophysics’

Cosmological perturbed wave equatidome recent ob- Yu— (et 26 ) = — (y—D)ag “dhihy— 2 ciba
servations suggest that galaxies and galaxy clusters formed ,
when the Universe was less than a billion years*6ff As- T uag "t X, (6)

tronomers have trouble explaining how they formed so early is the radial di is the adiabati
on. It was assumed that the early Universe contained seeds‘l’flhereg is the radial coordinate anglis the adiabatic expo-

these structure¥ In particular, the rapid expansion of the NeNt. The equation for body waves propagating in a solid
Universe immediately after the big bang should have pro-bOdy is derived in Ref. 23,

duced waves traveling from pole to pole of the expanding
spherical Universe. These waves now show up as ripples ifftt
the amount of background radiatibh?® Some
astronomerS~° consider these waves as “seeds,” which where ¢ is the displacement potential. For the spherical
later evolved into the large-scale structures of the cosmosyaves the sine-Gordon equation yields

We need to study the evolution of these waves in order to

understand the generation of galaxies, the formation of gal- beet 25*19{)5_ C62¢n:§72 sin 24+ X. 8

axy clusters, and the evolution of the Universe.

Cosmic structures have formed as a result of complexEquation (8) describes some cosmological effetsThe
processes. During the last two decades, significant progregsrly Universe was spherically symmetrical. Only after the
has been made in the numerical simulation of these probreaking of the symmetry of the different cosmic structures,
cesses. At the same time analytical models have beestrings and sheets were formed.
developed!~8In this paper the nonlinear wave processes in ~ Two-dimensional waves in sheets, lattices, and surface
the early Universe are studied with the help of analyticallayers The following 2D equation generalizes H4):

aé(@g{" 2571%) =ay 2Py — Pepat pag 2@t X,
(7
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ou—agV2e=0g(ho—h)+B*(VZ)+ B} (Vie)® 4afud+a(uM+ul)=0, (13)
+ V2ot kVie+ X+ B} f Tdx.  (9) 4aufd= Ul —uf) (ufP—2ufd+ud). (14)
Here the integral takes into account a boundary friction oiLet the approximate localized solution of H4.3) be
sheet surfaces. In particular, all Charles Darwin’s seismic (1) — :

. . T ut’=J(r)+j(s). 15
observations were simulated with the help of E9).>” De- (N+1(s) 9
tails are given in Ref. 27. o ~ Solution (15) is valid only if a,[J'(r)+]’(s)]~0, where

_ Hyperllaohc reaction-diffusion equatiofhis equation is  the prime denotes the differentiation with respect to the ap-
written a$ propriate variablg ands. Thus, we shall consider the case
- _ whena;~0. For example, we can assume that const or
Ny—a2ny,=— 7, N+ 7, *F(nN)+ndF(n)/on,  (10) t P Bt

a(t) is proportional tot®, wherea<2 andt—c«. The other
example isa;=sin" wt, wheren >1. On the other hand, so-
lution (15) may be valid for wave’:?® oscillating inside of
some regionx andt, whereJ’'(a—x)~ —j’(a+x). Solu-
tion (15) is reminiscent of the d’Alembert-type solution, but
here the velocity of waved(r) andj(s) can be variable and
depends or.

Now substituting(15) into (14) and integrating, one can
find that

wheren is the density of particlesy;;l is the mean collision
time for chemical reactions?= 7, 'D (D is the diffusion
coefficien}, andF(n) is the source function corresponding to
the reactive process.

Nonlinear Schrdinger equation This equation may be
derived from the nonlinear Maxwell wave equation, or the
Klein—Gordon equation, or equations of gas dynarffics.
Therefore all results, which will be presented in the follow-
ing, are also valid for systems described by the Sdimger
equation.

We inserted in2)—(7), (9) phenomenological terms. For
SlmpIICIty we used the similar notations for these termS.WhereJZ(r) andjz(s) are some arbitrary functions of inte-
However, in the different equations they can have differengration, d, is a constant of integration, anb=J(r) and j
dimensions. Generally speaking, the above-mentioned model j(s). We assumed thata, °= const. Using(15) and (16)
equations with variable coefficients can have quite differentye can findu(®, and thenu® (i=4;5). This process is de-
intrinsic characteristics, coefficients, and different solutionsgcribed in Refs. 24 and 27, where surface waves were stud-

However, it will be shown in the following that all of the jed. The final expression of general approximate solution
above-mentioned equations also have a class of similar soly1?) is

tions, written with the help of two traveling waves. They are
periodic and nonperiodic resonant wave solutions conu=J+]+Js(r)+jo(S)+J3(r)+j3(S)+Ia(r)+ja(s)
structed without using the time—space separation method.
The solutions describe forced, parametric-excited and free i L —2

L : +s(r)+Js(s)—7 ay [9(hs—hy) = Ba731— X]
waves, and wave patterns, which have both classical and

guantum-mechanical features. xdr ds+d,— %,Bagz[s(J’)Z— r(j")2]+ %,uagl

U@ =3,(r) +ja(s)+Bag r(j")>—s(3')?]/8+dy,
(16)

X(SJ//+rj//)+%kaO—Z(SJr//_l_rjr//)+3i2182a64r52(‘]/)2‘]//

I1l. GENERAL APPROXIMATE SOLUTIONS +r2(j /)2]- "]"’ﬁ(ﬁlaaz_%,32364)["(3’)3"‘5(] ,)3]
A. Perturbation method and weakly nonlinear _ -, , , ., ,
solutions d + 1658280 1 (J')*=8(3) "1+ %5B3a0 1 (j)*+5(3")%],

In this section it is shown that Eq&l)—(10) have similar (17
approximate general solutions. whereJ;(r) andj;(s) are some arbitrary functions of inte-

1D wavesFirst we briefly consider a method of solving gation (i=3,4,5. For simplicity, the interaction of opposite
applicable to all the above-mentioned equations. A solutloqrave“ng waves was not taken into account16) and(17).

of (1) will 'be obtgined t.o den_wnstratfa the methpd. This interaction was considered in Refs. 22, 24, 25, and 27.
Equation(1) is rewritten, introducing the variables The solution(17) contains the coefficients, which grow
r=a(t)—x, s=a(t)+x, (11) |n_f|n!tely whent— oo, Followrng Refs. 23, 24, and 27 we can

eliminatet from these coefficients using the arbitrary func-
wherea(t)=a=a,. Then we assume that tions. For example, if we assume thatl,(r)
=Bay%r(3")%8, j.(s)=—pBagys(j')?/8 in (16), then the
u=uB+u@+yu® @4 yGl4 ... (120 solution(16) yields
whereu®s>u@s>u®su®su®), Following Refs. 24 and u@=gag2(r—s)[(j')2+(3')?]/8+d,. (18)

27 and using1) linear differential equations fan® (i=1,
2,...,.5 can be derived. For example, fofYandu‘® we have  After the elimination oft from the coefficients in17) we
that have the following solution ofl):
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1
u=J+j _ZJ f ay 2[g(hs—h,)— B474,— X]dr ds+d,
—#Bag X[(3)2+(i")?] - uae x(j"= ")
— 3kag 2x(j" = 3") +(B1ag °16— B?a, “116)x
X[(3")3=(j")31+ 8B%ag X I"(I)2+j"(j")?]
— 88220 X[(j)*+ (3]

~0.1833 X[ (j")*+(3")°]. (19

Solutions of Eqs(2)—(10) were obtained with the help of the

perturbation method. In the following some solutions are
presented. One can see that these solutions resemble the 5O-
lution (19). The expression for 1D weakly nonlinear electro-

magnetic fields in finite space is
E=J+]j+d;+0.5a;x(1+0.25,)(j’ —J")
—5uxX(3" = ") = 3Kx(I" = ")+ gadxP(I"+ ")
—%agx[(J3)'—(j3)']+o.25ffcgz(x+F)drds.

(20

For simplicity we puta,=0 in (2). The general case of Eq.

(2) was considered in Ref. 25.

Sh. U. Galiev and T. Sh. Galiyev

Some plane waves in sheets propagate according to the
following solutiorf’ of Eq. (9):

o=1J+]+di+3(B*)%ag Kigkix+kay) [ (3")3+(j")°]

+o.5(k1x+k2y){ﬁ*a02k§2U (J”)Zdr—f (j")?ds

+ pay kA J"— ") +kag K" = ")
+kiz[ﬂica62_%(ﬁ*)2aa4 J(‘J”)sdr_J (j")sds

*0-25‘1_2sz352 x+3j“ 310X

(22)—(24) we assumed thatl=J(r)=J[kpa(t) —k;x
—kayl,  j=i(8)=ilkpa(t) Tkixtkpyl,  ki=kE+KS,
wherek,, k,, andk;, are constants. We also assumed that
a?~cj in (22, a?~c2 in (23), anda’~a2 in (24). The
interaction of waves)(r) andj(s) was not taken into ac-
count in(16)—(20) and(22)—(24). This interaction was con-
sidered in Refs. 22, 24, 25, and 27.

Remark Thus, we have shown that the approximate
weakly nonlinear solutions of Eq§l)—(10) may be written
as

|

drds. (24

U=J+j+F*(J,j), (25

3D and 2D wavesThe perturbation method allows us to Whereu corresponds to unknown functions of E¢5l—(10)
. . ) .
construct expressions for 3D and 2D wave fields. In particu®"d F* is @& known nonlinear function of andj. The last

lar, Eq.(6) yields™
Y=¢E1I+])+d;+0.5a5 2 [(I+))%]

—0.25 y+ 1)a51§’1f f EYI+i

X (J"+]")drds+0.25ua, e (s +rj"), (21

whereJ=J(agt—¢) andj=j(apt+ £). A similar solution of
Eqg. (7) can be found in Ref. 23.

traveling wave functions are defined by boundary and initial
conditions of a problem. In the following we consider wave
problems for resonators.

B. Resonators and basic equation

Much research is devoted to nonlinear waves in
resonatoré® Quadratic and cubic nonlinear effects are
treated. In particular, Chesférstudied effects of the cubic
nonlinearity and quadratic nonlinear dissipati@ddy for-

The approximate solution of the Klein—Gordon equationmation on the resonant oscillations of gas in an open-ended

(3) was written for thegp? field (9®/d¢p = ¢ — ¢°):>°

¢:J+j+dl+o.5(k1x+k2y)[k;22;;§(fJdr—fjds
_J' J3dr+J' jsds)+1u“k1200l(J”_j”)_FkkiZCOz(‘]m

_jm)}_l_o_za(lzzf f Caz(x-i— F)drds. (22

The cosmological wave E@4) yields the following approxi-
mate solution:

g=3+]+d;— 3(kix+kay){c, tkad ()%= (j")%]
~ e - () r02sct [ [ e

X (X+F)drds. (23

tube. Here we shall briefly discuss boundary problems for
the spherical resonafor*®* and elongate periodical
Systemé',21,24,26,27

Spherical resonatorWe will study waves excited by a
simple-harmonic source of pressure, which has raliuand
is placed in a center of the sphere. It is assumed that a pres-
sure source region is very small with respect to the excited
wavelength. The other boundaf§=R,) of the sphere is
free. Therefore we have

P—Py=—Bcoswt (£=Ry); P—Py=0 (£=Ry),

(26)
where  P—Po=— po(ifs+0.507—0.585 2y/f) + wpodg “u
(see Ref. 2B Here ¢ is defined by(21) and P, andp, are
the undisturbed pressure and the density, respectively. Con-
sidering the linear problem we found the following resonant
frequencies)y= wmNay(R,—R;) ! (N=1,2,3,..). The lin-
ear solution is not valid inside of resonant bands, where

For simplicity we have assumed that the right-hand side=Qy\+b. Hereb is a trans-resonant parameter. Following
terms in(3 and(4) have the same order. It was assumed thaRefs. 23 and 43 one can obtain the basic equation valid in-

d=1in (4.

side the resonant band:
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a.oa)ilbf” - [aowizbz( R2_ Rl) + %M]f," + %(f ! )2/R1R2
=pg 'BRi(Ro—Ry) ~cos’ut, 27)

where f(apt—£&+R,)=J(apt—&). Equation (27) is the

Burgers—Korteweg—de Vries type equation writing for the
traveling wave. Different trans-resonant solutions of this
equation are presented in Refs. 22—-27. It can be seen that

From microresonators to the early Universe 691

1
JJ Fdrds=Z,84JJa52731drds

1 )
=Zﬁ4f f a5 %(ulul)dr ds

1
—5+| | 2 tcwlu+ wlubaiar as

the equation describes the strong amplification of waves in-

side resonant band if two first terms ii27) are

small enough. In particular, for the inviscid gas at the

exact resonance we have the algebraic problem #nd
=+ po 'BRRE(R,— R;) ~‘cosiwa, Y(agt— £+R,). Accord-

ing to this solution the spherical resonant periodical shock

waves may be excited in inviscid ga&*

1
~—Zﬁ4ag1 fbj’|bj’|ds+be’|bJ’|dr)

~—o.5/34a51b|b|J J'|J'|dr.

It is assumed thadg~const. It is emphasized th&t9) and

Thus, considering the spherical waves we have showipg), (29) were used here. Turbulence and the bottom friction
that the boundary resonant wave problem may be reduced t@e often described with the help of the “eddy” viscosity

an ordinary differential equation or algebraic equation.
Elongate periodical system&Ve shall consider waves

having period 2 and boundaries where an unknown func-

tion (or the space derivative of this functipaquals zero or
varies according to a harmonic law. We assume ftaj}

model® Sometimes this nonlinear dissipative mechanism is
strictly localized and may be introduced in boundary condi-
tions. For example, with the help of this model, van
Wijngaardef® and Chestéf described the generation of ed-

dies at the lip of the open end of the resonant tube. Perhaps,

=—J(r) in the solutions, if an unknown function equals the “friction” of vacuum®’*®and the generation of electro-
zero at the first boundary. If the space derivative equals zermagnetic and optic eddy-like wavés®>**may be simulated

at this boundary, it is assumed thgr)=J(r). Thus, we
have!~27

jr)=3(r) or j(r)y=—J(r). (28)

The resonance occurs if the reverberating waves are in phase

with each other. In this case, the functid(s) may be ex-
panded in Taylor’s series at the second boundaty?’

J(s)=J(r)+bJ'(r)+0.523"(r)+0.1333"(r)+... .
(29)

For example, let the unknown functidh=0 at boundaries.
In this case using25) and (28), (29) we may reduce the
boundary problem to the following ordinary differential
equation: bJ’(r)+0.523"(r)+0.1333"(r)=F*[J(r)].

This equation is similar t427). Thus, the general approxi-
mate solutions of Eqs(1)—(10) allow us to reduce the

with the help of the above-mentioned strictly nonlinear fric-
tion law. We shall assume that the following expression is
valid for all perturbed wave equations presented in Sec. Il

ff FdrdSZSZJJ’lJWdr.

In particular, for the 1D layer we have thas,
=—0.584a, 'b|b|. As the result,(30) yields the following
basic equation:

D7‘]W+ D4\]H+ DZ‘], —|—D1(J,)2+ D3(J,)3+D5(J,)4

(31)

+D6(J’)5+D*J’J”+szf J|Jdr=X*+d,. (32

One can see that the “eddy” viscosity effect dependsbon
Thus, this effect varies in the trans-resonant band together

boundary problems for trans-resonant processes to ordinaMith the frequency, and it can amplify for some valuebof

differential equations with respect tir). These equations
were written recently for waves in tub&s, surface
waves?2?4~2’spherical wave&>*® and electromagnetic and

The ordinary integral-differential equatio(32) approxi-
mately simulates resonant properties of Ed$—(10) in the
case of weakly nonlinear waves a(gl). Different particular

field waves?® Following Refs. 2, 21-27, 43, 44, and 46 we cases of Eq(32) were considered in Refs 24, 25, and 44. In
can write the general expression for these ordinary differenParticular, Chestéf wrote

tial equations:

D7J"+ D5 +D4Jd"+D4(3")?+D5(3')3+Ds(3")*
+D6(J’)5+D*J’J"+J’J'Fdrds=x*+d*, (30

whered, is a constant. The coefficien; (i=1,2,...,9 and
X* can depend on the time, coordinates, andrhere is

—cog wr/ag)=apw *d[(J")3+3RJ/2%%)/dr+s,J'|J'],
(33

which follows from(32). Equation(32) is complex but sim-
pler than Eqs(1)—(10).

Coefficients in(32) are defined by a considered equa-
tion. One can find these coefficients usitip) or (20), or
(21), or (22), or (23), or (24) and(28), (29). For example, for

functionF in (30). It is assumed that this function is defined the gas sphere the coefficierils (i=1,2,...,7),D,, X*,

by so-called “eddy” viscosity*~*® Let for the 1D surface

andd, may be defined by a comparison of E¢32) and

waves(19) F be a nonlinear function of the velocity and the (27), and we haveD,=a,w b, D7=—[aw *b*(R;

displacement. We assume that=(u|u|);. As a result we
have

—Ry)+3ul, Di=R; 'Ry ", X* =pg 'BRy(R;~Ry) ~'cos}
><wa51r, D,=D3=Dg=s,=d, =0 in (32.
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Ordinary differential equation for the early Universe
Let us transform the 2D solutiof23) into Eq. (32). We as-

sume the following boundary conditions for the potential of

velocity : =0 if kyx+k,y=0 or L. Solution (23) is in-
serted at the boundary conditions. Then, usi2®), (29), and

(31), one can obtain the following equation for some plane

waves propagating in the early Universe:

bJ’ +0.5023"+0.13%%3" + ¢, %ki,L(J')3+ szf J'|3'|dr

=0.25k1’22f f c, 2Xdrds (34)
This equation is a particular case of £§2).

Remark We emphasize that inside the resonant band th
coefficientD, (or b) is small orD,=0 (b=0), which ex-

plains the amplification of the waves inside the resonant

Sh. U. Galiev and T. Sh. Galiyev

s~ @~ ps~0, a~ kl,x"N’ k2,y~ K12,x"N’ KlZ,y~ 0.

(39)
If the above-mentioned resonant conditions occur, then Eq.
(36) reduces to the following form:

g(h—ho)=B*(V2¢)?+ BT (V2¢)+ u* Ve,

+k*ay 2V2py+ X+ B j T310X. (39
We note that the valu&?¢ is proportional to the surface
elevation?” Equation(39) is the ordinary differentiateso-
nantequation forV2¢. Thus, at the resonance, the problem
again reduces to E¢32). If effects of the dissipation and the
dispersion are very small, then we have theonantalge-

Braic equation folv2¢: g(h—hg) = 8* (V20)2+ B (V20)3

The perturbed KleirGordon field equation Let

band. Thus, we found that the investigation of weakly non-ﬁ¢(¢)/a¢:%¢5_2¢3+¢ in (3% As a result, in the

linear resonant waves described (iy—(10) may be reduced
to analysis of Eq(32).

C. 2D resonant localized nonlinear waves

above-mentioned casél) or (2), or (3) Eq. (3) yields
CoBE(30° 24+ d) = ey * b kg “huu + X+, since
Pu~coV2e.

Cosmological perturbed wave equation.(B)one of the

The perturbation method was based on the assumptiohPove-mentioned gasé(i),z(z), or (3)] takes place we have
that the nonlinear terms are smaller than the linear termdrom (5) that (V¢)“=f(3c; d;+X)dt. It was assumed that
This restriction is often not important if a considered equa-d=1 in (5).

tion is derived for weakly nonlinear waves. However, some-

Thus, it was shown in Secs. |l B and IIl C that the cen-

times we must consider strongly nonlinear waves. Generalljral problem of this paper is reduced to studying Bp). In
speaking, the velocity of these waves depends on the ampﬁhe following we shall consider solutions, waves, vertices,
tude and the weak dispersion, and it may be different fronfnd patterns yielded b§B2).

the velocity of the linear waves. Let us consider these waves We emphasize that coefficients in the above-mentioned

using the following variables:
r=a(t)ki;—ky(x) —ka(y) =KaaX,y),

35

s=a(t)kyz ks(x) +ka(y) +Kis(x,y). (39

Here k1(X), ky(y), and Ki5(x,y) are unknown functions,
which will be defined latefsee(54) and(55)].

2D surface wavesAs an example, Eq9) will be con-
sidered. Let us rewrit€9) using (35):

K128t @ + @s) + a5(Ky xut Kot Koyyt Kizyy)
X (= @s) +{kiaf —agl (kyx+Kiz0)?
+ (Koy+ K12,y)2]}(<Prr + @59
+ ZaS[(kl,er K12x)?+ (koy+ K12,y)2]<Prs

—g(h—ho)+B*(VZe)?+ BT (VZe)®

+ u*V2p+ k*aazvz(ptt-l-X-I—,BZJ Ta70X. (36

ordinary differential and algebraic equations may be func-
tions ofr, s, x y, ort.

IV. TRANS-RESONANT WAVES, VERTICES, AND
PATTERNS

A. Analytic research of waves generated by Eq. (32)

Let us consider a case wh@n, Dg, S,, X* in (32) are
zero andD,=1. In this case we have the following cubic
nonlinear equation:

J"+D,d +DyJ"+D4(3)*+D3(J3")3+D,J' I =d, .
(40)
According to Refs. 24, 25, and 27 we shall seek the approxi-
mate solution of the last equation as a sum of traveling pe-
riodical waves

J'(r)=Btanhesin{_)cos {_

+Asecl(esin{_)cos{_+Ccos¢_, (41

We treat three cases of the resonant amplification of thevhere/_ ==L M Y(r+c_), A B, C, eare unknown con-

waves.
(1) Let ,s~0, ¢,~ps~0, then we have resonance if

k37— adl (kixt Kion) 2+ (koy+Kipy)21=0.  (37)

(2) Let ¢;s~0 anday =0, Ky x=0, Ky y=0, K15,,~0,
K12yy=0, then we again have the resonant conditidn.

stantsk, K, andz are integers and_ is an arbitrary constant.
Expression41) describes the interaction and the competition
between the nonlinear, dissipative, and dispersive effects. In
the limit cases(41) simulates shock-, soliton-, cnoidal-, and
harmonic-type waves. Thus, expressi@fl) describes all
well-studied waves. Therefore, we shall consi@Ey asuni-

(3) In this case, we assume a set of the following resoversalwave functions. They define infinite spectra of waves

nant conditions:

becauseM 1=1,2,3.... In(41) r is defined by35) [or (11)].
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FIG. 1. Simulation of parametrically excited surface water wafRsf. 50 with the help of solution(49): oscillations and the interaction of a pair of
soliton-like waves ¢.=L/2, k;,=2, andM =1) (a); the interaction of a soliton and a boundao. & L/4, ki,=2, andM =2) (b); the localization of the
parametric harmonic excitatiort (=L/2, ki,=1/3, andM=1) (c).

Therefore the wave functiongtl) are not the d’Alembert- surface elevationy is defined byu, (1D case or VZ¢ (2D
type wave functions, and for any cases the solutil) de-  case.

scribes a new kind of wave. It will be shown th@tl) de- Following Ref. 25 we consider a few cases when coef-
scribes many interesting results of recent physicaficients in(41) may be easily found.
experiments. (I) Let A=C=0, k=1, andd, =D;B?2. In this case

Expression(41) is substituted intq40). Next, equating B2=4(w’L 2M ~?—D,)/3D; ande=BMLD,/wD,. Thus,
to zero nonlocalized terms, and terms containingquadratic nonlinear and viscous effects are taken into ac-
sech(esin/_), or sech(esin/_) or tanhesin/_) we obtain  count. If D= (7L~ 2M ~2—D,)/3, then we have

C(D,—zm’L 2M ~?)cos ¢{_+D;B%cos*_
n=2h[tanHesin{_)cos{_+tanhesin{,)cos., ].
+D;C?cos?{_+3D3CB?cos*"?¢_+D3C3cos?(_ ' ' (46)

=d, , (42
Here /., =wL M Y(s+c,) andc, is an arbitrary con-
A(D,—Km?L™2M " ?)cos £ stant.
_ 2 —2np—2 2. 2 K (II) Let A=0, k=0, z=1, andD;~D,~0, d,=0. In
2AE*T L "M cos " {_~ D, B cos*{_ this case one can find thBf= (372L "2M ~2—2D,)/8D3,
+2D;ACco™?¢_+DyBerl M tcostls C%=—(2D,+ 7w?’L " 2M "~ ?)/4D,; and e=3BCMLD;/#D,.
If D3=(3m?L " 2M~2-2D,)/32, thenB=*2 and we have

_ 2 k+z 2 +2z
3D3CB?cos™ ™ #{_ +3DAC cos " # L the next expression fom:

+D,BCerL M tcogtktls =0, (43
DA% cosK £ +3D,CA2cogK 27 +D,A%Co2K £ n=h[2 taniesin{_)+Ccos{_+2taniesin,)
+D, ABerL~IM~lcodktk+1ys =, (44) +Ccosg. ] (47
B(D,—ka?L~2M~2+2D;Ccos {_)cos { (1) Let B=0, K=z=2, andd, =0. In this case one can
1+ D4B%cosk ¢ +3D4BC?cog? k¢ =0. (45) find A =-3C —6D,/5D; and e’=x 2M?L%(2D,/3

—47*M 2L "2/3+D,C+5D4C?/4), whereC=0 or C is
For fixedk, K, andz one can obtain algebraic equations defined by the equation: [3C?+6D,;C+8D,

for A, B, C, ande from (42) to (45). We emphasize again that —1672M ~2L~2=0. Now we can write

the ordinary differential equatio®0) and solution(41) de-

fine_ solutions for all equ_ation(i)—(lO). These solutions de- n=h[AsecR(esin¢ )+Clcod ¢
scribe forced, parametric, and free waves. Here, as an ex-
ample, parametric surface waves will be considered. The +h[Asecl(esin{,)+Clcog . . (48)

FIG. 2. Parametrically excited waves calculated according to soluti@®)s (47) and (50) for c.=3L/4, k,=2, andM=1 [(a), (c), and(d)] andc_
=3L/4, c,=L/4, k;=2, andM =1 (b). Caseqa) and(b) describe oscillations and the interaction of surface water solitons observed in Ref. 51.
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We simulated experimental datawith the help of the
perturbed wave equatiofsee also Refs. 24 and R8t is
important for our theory that these data are described also by
the nonlinear Schdinger equation!

Let us consider experimental datdor parametric ex-
cited suspension layers. We assumed (#l) that r
=apw sint/2)—k.x, M=1, andc_=L/2, c,=—L/2.

FIG. 3. Simulation of step-like standing surface oscillons excited in suspenSolution (47) (C=0 andk;=1) and Fig. 3a) describe the
sion (Ref. 53: single oscillon(a) and oscillon triadb). single oscillon presented in Figsial and 1b) from Ref. 53.
The oscillon triad observed in Ref. 53 is simulated in Fig.
3(b). We used solutior(46), wherek,;=3. The reader can
find further comparisons of observed anomalous liquid and
granular waves and the solutions in Refs. 22 and 24-27.

Figures 1-3 were calculated using the experimental data.
n=hAsecl(esin{_)cog {_ The opposite traveling waves form Figs. 1[sge(46), (47),

. (49), and(50)]. These waves form waves oscillati(fgigs. 1
+sectf(esing,)cos ¢, ]. 49 and 2 or fixed (Fig. 3) with respect to space points.
For liquid layers we havé\~2 in (49). Thus, the parametric excitation allows us to keep the

(IV) LetD;=0,B=0,K =z=1, andd, =0. In this case Wave(in other words the informatigrinside the resonators.
one can findA =—3C, e2=2-27"2M2L2D,, and C2 In particular, the harmonic excitation may be compressed

Let us consider a case whé&0 ande—«. Then the wave
transforms into a particlget) and we have approximately

=2(7?M~2L"2-D,)D3 ’. Now we can write into the particle-like waves. These waves can oscill&igs.
_ 1 and 2 or stand(Fig. 3) inside of the resonator.
n=—hC[3 secR(esin{_)—1]cos{_ Radial symmetrical wavedt the resonance, 1D local-
_her3 secRiesing.)—11coss . . 50 |z.ed excitations may pe excited in thg systems according to
[ ( £+)=1]cose, (50 Figs. 1-3. Let us consider the 3Bpherical resonant waves.
For liquid layers we foun® thatC=1.7(0/L)*'® in (50). We used the following expression for the pressure:

Simulation of some experimental data by solutions (46), P~ - I ey 77
(47), (49) and (50) It was found*?® that solution(48) de- P=Po~=pot==podot I (r)=J'(s)].
scribes parametrically excited water and granular wavedierer ands are defined by11) and(41). We considered the
Here we additionally consider some recently observedXactresonance and assunagt) =apt, B=0, A=-3,C=1,
anomalous surface waves. Following Refs. 24 and 25 w&=2=2, andc.=0 in (11) and (41). Strictly localized

calculated these waves using(#6), (47), (49), and(50) the ~ Waves may be excited in spherical resonators according to
expressiong41) and (11). the calculationgsee Fig. 4 These waves are defined by both

Some results of calculations according to solutid8) number of the resonan¢hl) and number of the subharmonic
are presented in Figs.(d-1(c). It was assumed tha(t) mode(M). There is a strong amplification of the waves near
=B, kyJ sin(wt/ky,) —0.333 sif(wt/k;)]. Here B, is con- r=R;. One can see that the long harmonic wave radiated by
stant corresponding to experimental parameters. It can b&e sourcesee(26)] strictly compresses and amplifies at the
seen that49) describes all solitons observed in Ref. 50.  feésonance.

Figures 2 and 3 were calculated for(t) B Effects of high nonlinearity and “eddy” viscosity
=agw ™ Ky, Sin(wt/2). Pairs of positive and negative vibrating ) ] )
solitons observed in Ref. 51 on the water surface are simu- W& shall consider the following particular case of Eg.
lated by solution(50) [Figs. 4a) and Zb)]. Figures 2c) and ~ (32)

2(d) were calculated according to solutiofé7) and (46),

correspondingly. It is interesting that Fig(d? resembles Az(J')5+A1(J')4+(J,)3+(3R/22/3)J,+52f J'[3"|dr
some results obtained recently for radiation-damped spin

Systemé? + COSwaf ll’ = O, (51)

FIG. 4. Diverging and converging localized resonant pressure waves excited by a simple-harmonic source in the sphere. These waves are defined by both
number of the resonand®l) and number of the subharmonic modé).
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R=-0.99999991, N=3

R=-0.001, N=3

FIG. 5. The trans-resonant transformation of the shock-like waves into jet- and pyramid-like #Raiesrans-resonant parametéf,is number of the
resonanceand the simulation of experimental ddfefs. 53 and 54

whereR is a trans-resonant parametsr?’ We have at the observed*~>8 The shock- and/or step-like surface waves
exact resonance th@=0. This equation generalizes the (Fig. 5 were excited in Ref. 53. The strip-like wav¥s,
Chester equatior{33). Equation(51) has one solution or plumes, and mushroom-like waves with large heads were
three analytical solutions, &;=A,=s,=0. Using the three also studied®®! Sometimes alternate-signed vertices were
analytical solutions we can construct discontinuous and mulgenerated in the heafsThe jets[Fig. 7(d)] and the drops
tivalued solutions. These solutions were used in Refs. 24 ancian form as the result of the interaction of these vortjses
27 for studying the trans-resonant earthquake-induced osciFig. 6 (R=—0.999 99 and Refs. 61 and §2It was shown
lations of surface topographies. Here we shall use both an@xperimentally® and theoreticall§® that water mushroom-
lytical and numerical methods for studying waves and patlike waves, and jetédropg can be generated due to vertical
terns generated bgb1). Solutions of the Chester equation harmonic excitation. Indeed, according to Figs. 5—7 the har-
(33), and solutions of Eq(51) rewritten for the inviscid me- monic excitation can generate surprising, very compressed,
dium (s,=0) are compared. It will be shown that high non- particle-like waves ifR~—1. Apparently, these waves are
linearity can qualitatively describe the generation of vorticesLonguet-Higgind* excited with the help of vertical harmonic

Waves and wave patterns described by analytical soluvibrations of a water layer.
tions The trans-resonant transformation of the shock-like  Thus, in the trans-resonant regime the harmonic waves
waves into pyramid-like waves is shown in Fig. 5. We usemay be compressed into particle-like standing oscillating
both the single-valued and multivalued analytical solutionsstructures. The amount of these structures depends on the
whenR was near—1 or 0. Between these critical values®f number of resonancee Fig. 5.
there is only the multivalued solution @&1). Curves of Figs. Cubic nonlinearity, “eddy” viscosity, and generation of
6, 7, §b) and &c) demonstrate the evolution of the analytical vortices.Following Ref. 44 we numerically solved E¢1)
solutions and the waves at the sectionl. It is possible to  (A;=A,=0) for different s,. For smalls, the numerical
give different interpretations of the curves. In particular, wesolution was similar to the analytical solution inside the
shall treat the closed loops in the curves as vortex formarange I>R>0. However, the numerical solution was differ-
tions. In this case, Fig. 6 displays the generaiiBF—0.4)  ent from the analytical solutions inside the rangd <R
and the trans-resonant evolution of a mushroom-like wave. 1t 0 if s, was large enough. Figure 8, where the multivalued
bifurcates into three surfaces whBr=—1. Let us focus our analytical and numerical solutions are compared, demon-
attention on the last case. In Fig. 7 we qualitatively show thastrates this effect. On the other hand, Fig. 8 shows the cor-
one structure of Fig. GR=-0.99999 can bifurcate into respondence of the close loops in Fig. 7 to the vortices; If
loop- and vortex-like structurg&igs. 7a) and 1b)] or stable s slightly larger than some critical value, which depends on
break-like wave$Fig. 7(c)], or pyramid- and jet-like waves. R, then the mushroom-like waves having the vortspiral

One can see that Figs. 5—7 describe experimental datpair appear in the trans-resonant bdede Fig. &), cases
The vertically excited pyramid- and jet-like waviesee Figs. R=-0.5, s,=0.26, andR=-0.9, s,=-0.031. If s, in-
5 and 7d)] on liquid and granular surfaces have beencreases further the spirals become tighter until they form

nodal singularitie$see Fig. &) (casedR=-0.5,s,=0.5 and
R=04-- R=0.38- - Re-0.99999 | |
T\ /.. ns ; ..‘_\.
AVA SR ~

R=-0.9, s,=-0.1) and Ref. 44. The singularities disap-
pear and the numerical solution is continuous wisgnis

FIG. 6. Curves calculated acording to the analytical solution of equation X /{v“)( \_' [ \/,{ \l I <~./! \\J ! VN W J

=—0.4), the trans-resonant evolutiqikR=—0.8; —0.999 99, and bifurca- - A )

(3")3+(3RI2%%)J' + coswa, 'r=0 demonstrating the generatiorR t g

tion (R=—1.01) of ripples. The cnoidal-type and saw-tyfggyramid-type FIG. 7. Avariety of wave structures which may be generated in the system:
waves may be generated as a result of the bifurcation. Three types of theortex-like waves(a), (b), breaking-like wavegc), and saw- and jet-like
harmonic waves may be generated in the system according to the analyticalaves (d). They may be generated according to the analytic solution of
solutions outside of the resonant baii=—1.2). equation (')3+ (3R/223)J" + coswa, 'r=0 if R~—0.999 99.
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R="0.706, A\=0.25
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FIG. 8. Waves generated by equatiod’ )¢+ (3R/22/%)3" +s,J'|J’|dr 1"‘“ -"-"F-"a (L J R=11,A=025
+coswa, r=0. Resonant and “eddy” viscosity effects on the trans- ~ --D — > L1
resonant evolutin of mushroom-like waves: numerical calculatiahgnd
analytical simulationgb), (c). HereR is the trans-resonant parameter apd
is the “eddy” viscous parameter. If in the resonant baads slightly larger
than some critical value then the mushroom-like waves transform into th
vortex pair.

FIG. 10. Mushroom-like wavedR=—0.708 andA; = — 0.25 and the cloud-
éike structures are yielded by the fourth-order algebraic equaigd’)*
+(3")%+ (3R/22/%)J' + coswa, 'r=0 inside and near the resonant band.

large enough. Let us consider the results of analytical solu[—See Fig. &), If R oscillates neaR~—1. More detailed

ors P 5 7, ) a1 S0, Th sokmons aualiavel 1515 3% D, AT 7 e Foe
describe the data of the numerical investigations, since we:0 (Fi.g 10 in (51) Figurze 16 demonétrates . V;I’ietil of
g::rumed that the loop pair corresponds to the vaepia) cloud-like structures. Some of them simulate the shape of
Effects of high nonlinearityln Figs. 9—-13 we present liquid drops E:)'ouncmg on a Sphd §urfa  There are dif
i ; . ferent cloud-like structures in Fig. 11. One structufe
results of a numerical soliton ¢b1). Let us consider cases — _0.81, A,——0.1095 resembles the structure of Fig, 6
when A;=A,=s,=0 [Fig. 9a@] and A;=s,=0, A, 05 A2 : g.

o ) . (R=-0.8). One can see the transformation of the complex
e B S anc 0] 150 (1) e S M Svuctur(R——0.81, 4, ~0.1099 o he Kaman o
9(a) and 9b)], or R= —0.8+0.2 cos(r/4a,) [Fig. Ac)]. One street(R=—-0.81,A,=—0.15 (see also Fig. 7.10 in Ref. f1
can see that the effect of high nonlinearity may be very im-

portant. The cubic nonlinearity generates loop-like structures R=-0.7, A;=-0.1
which bifurcate into three harmonic curves wHes —1[see
Fig. 9a and Fig. §. These harmonic curves are tied by
vertical lines. The fifth-order nonlinearity defines the more
interesting picturg Fig. 9b)]. The mushroom-like forma- .
tions generate the ellipsoid-like clouds wh&a=—1. The [R=-0.81, A,=-0.

\/
‘/\/

. . . . ) [><]
fifth-order nonlinearity periodically generates these clouds 4 ><%
] P
SalnCal j‘ <11
A T F;QI,AFO.IOQSM' "]
§ L D

R ! |

FIG. 11. Effect of the fifth-order nonlinearity on mushroom- and cloud-like
FIG. 9. The transition of ripples into mushroom-like waves and cloud-like structures calculated according to equatiss(Jd’)%+(3")3+ (3R/2%/3)J’

=

structures calculated according to cubic equatiaH)Y+ (3R/2%/3)J’ +coswa{lr=0. The trans-resonant transformation of the mushroom-like
+coswa; r=0 (a) or fifth order equation —0.11Q")%+(J')3 waves(R=—0.7 andA,=—0.1) into Karman’s “vortex street’(R=—0.82
+(3R/2%%)J" + coswa; 'r=0[(b), (¢)]. andA,=—0.15; R=—1.01, andA,=—0.1).
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FIG. 13. Growth of ripples and the generation of mushroom-like waves, and
a cluster of the cloudévortice9 are described by fifth-order algebraic equa-
tion —0.11Q")%+ (3")%+ (3R/2%%)J" + coswa, 'r=0. Here parameteR
+R(t) varies from 0.4 to-1.25. The harmonic wave grows and transforms
into shock-like and the mushroom-like wave, wHefr) reduces from 0.4.
The solutions bifurcate wheR(r)~—1. As a result two rows of clouds
(vortices and the saw-like curve are generated. The vortices reduce and
dlsappear wheR~ —1.2. Moreover, the saw-like curve transforms into the
harmonic curve. This evolution is valid for all Eq4)—(10). Perhaps, this
figure qualitatively describes the evolution of ripples, the generation of gal-
axies and galaxy clusters in the early Universe.

Then in Fig. 12 we show that the complex structure from

Fig. 11 (R=-0.81,A,=-0.1095 contains mushroom- and
break-like waves, and spiral structures. R<—1. The clouds reduce together with They disappear

Thus, under the simple harmonic excitation the systemsvhen R~—1.25. As a result, we have the finite cluster of
can manifest very complex behavior. Changing the excitinglouds(vortices.
term in (52) one can study an infinite variéfyof wave phe- It is possible to give a different interpretation of Figs.
nomena in different systems. 9-13. For example, we can assume that Figs), ®(c), and

We have considered the simple cases, when(82).is 13 simulate the generation of the Karman vortex stle@
simplified to (51). In particular, Figs. 5-7 and 9-12 were sequence of alternate-signed traveling vortices arranged in
calculated according to the algebraic equation. This equatiotwo rows. On the other hand, one can treat Fig&)99(c),
does not take into account the influence of the dissipatiomnd 13 as a sketch of the evolution of ripples of the density
and the dispersion. However, these figures qualitatively deto vortex-like structures, which transit into ellipsoid galaxies.
scribe the observed evolution of ripples in the mushroom-  Nonlinear and “eddy” effects in the early Universéhe
like waves, vortices, and cloud8® Thus, it follows from last results are applicable to problems of the formation of
the calculations that the influence of dissipation and dispergalaxies and clusters of galaxies. Let us consider the ordinary
sion on this evolution may be very small. It was also showndifferential equation(34) for the early Universe. Inside
that in highly nonlinear media the ripples can be smoothlythe resonant banti?> and b® in (34) are very small. It has
transformed and amplified into mushroom-like waves,been found for(33) and (51) (see Figs. 6—13that the
spiral-, and ellipsoidal-like structures. mushroom-like waves and trans-resonant vortices can appear

Turbulence may be generated by mushroom-likefrom ripples in nonlinear and dense enough media, if the
waves®>® Therefore, turbulence can be generated even itritical conditionR~—1 holds. The early Universe was very
the viscous effects are very small. We emphasize that thdense and highly nonlinear. Therefore, the mushroom-like
highly nonlinear spiral-like vortices in Fig. 12 are reminis- waves and trans-resonant vortices could form there. On the
cent of the vortices calculated for cubic nonlinear and theother hand, in natural systems the conditR®—1 can oc-
“eddy” friction [Fig. 8@]. Thus, the high nonlinearity can cur during finite time and inside finite space. Therefore, the
qualitatively simulate “eddy” viscosity and, perhaps, de- natural cluster of vortices forming in the trans-resonant re-
scribe a generation of the wave turbulence. According to thgime cannot contain too many vortices. Indeed, the clusters
theory this turbulence can weakly depend on the viscosity. of the Universe usually have hundreds of galatfeShus,

It is known that the front of turbulence can propagategalaxies formed together with the cluster during short
like traveling wave$’ This front may be formed by the trav- enough time and inside a rather small space. According to
eling mushroom-like waves. These waves can generate tr®ur theory the formation of a single galaxy is practically
vortices wherR~—1. Indeed, ifs,=0, Eqg.(51) transforms impossible.
into the algebraic equation. One has mamy to 5 real roots
(see Figs. 9-11if R~—1. These roots are located very close C. Wave patterns governed by analytic solution (41)
to each other. Therefore any noise can provoke the chaotic
jumps and oscillations in the system R~—158%s the Solutions(46)—(50) describe an infinite variety of waves
result, the wave turbulence may be generated. and wave patterns which may be generated in nonlinear,

Let us consider the transformation of harmonic ripplesdispersive—dissipative spatiotemporally inhomogeneous sys-
into the cluster of cloudgvortices. We assume in(51) tems. Of course, it is impossible to study all of them. Some
that A;=s,=0, A,=-0.11, and R=0.0025%r/a, 1D and 2D systems were considered in Refs. 24, 25, and 27.
+tanh(0.02or/ag), where wr/ay varies from 20 to—980.  Here we continue the consideration of 2D patterns.

Results of calculations are presented in Fig. 13. One can see We shall consider the patterns generated by expressions
that ellipsoid-like clouds (vorticeg are formed when J'(r)+J’(s), where according t¢49)

FIG. 12. Resonant mushroom- and breaking-like waves, and spiral-like
structures generated by the fifth-order nonlinearitR4 — 1.
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FIG. 14. Complex patternga), (b), (c)] are formed by resonant traveling wavesxity plane. Resonant conditiori88) take place for these waves. The
generation, the interaction, the transformation, and the disappearance of localized structures are shown. According to the theory theseepdesesbes!

by all equationg1)—(10). Perhaps, this figure simulates qualitatively the interaction of localized microwaves and vortices in some quantum fields during the
period of oscillations. In particular, in the Bose—Einstein condensate experiffgefss 6, 90—98this interaction may take place.

FIG. 15. Evolution of the resonant traveling wave patterng-i plane during the period of oscillations.
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FIG. 16. The slow dynamics of oscillon-like structures formed by resonant traveling waxeg jpiane.

J'(r)=sech(esin¢ )cod ¢, realized in microresonatof$-830n the other hand, the pat-
N . (52)  ternsin Figs. 14 and 15 recall the same patterns calculated
J'(s)=secfi(esin{,)cos ¢ . for oscillatory and excitable medid®* Very complex pat-
Here/_=M"Y(r+c_) and¢, =M Y(s+c.), where terns similar to Figs. 14 and 15 are excited due to the inter-

action of boundaries and nonlineafffyCircles and rings in
Figs. 14-16 may be considered as vortices. Complex pat-
terns formed by chains of vortices were observed recéhtly.
The weak dynamics of the pattern is shown in Fig. 16. We

Th'?. ca(sj(_a corrgspionds tlo resonant com(:l;h(?& In thlz used the parameters of Fig.(t#assuming additionally that
section dimensionless valuess, £, £, anda(t) are used. c.=0, M~ 1=1 anda(t)=0.28 sinwt. A few sanding wave

In (53) a(t) is defined by parameters of the physical system. atterns are qiven in Fig. 17
At the same timea(t) defines the dynamics of wave patterns. P One cang see thatgi)oth. dvnamic and standing wave
Dynamic patterns are formed, #(t)>1 [see Figs. 14, 15, y 9

19(a), and 20. If a(t)<1, we have approximately the stand- patterns can be formed from rolls, spots, circles, rings,
: : squares, and hexagons. These elements of patterns are ob-
ing wave patterngsee Figs. 16 and 17

Figure 14 demonstrates the complex dynamics of theservgd N the' suzgtsargcéonductlé " S“r;‘g‘i,’ge Wavegs’%’?s’m’?.l
patterns. Figure 14) was calculated forb*=-1, w nonlinear oetlcg,' ’ anfj molecu_la o Bose—Einstein
"4 =5 Ki—k.,—3 i _ P condensaté’~* quantuni—® and biological system®:"*
=4, v=5, k;=k,=3 in (53) andc.=0.5,e=30 in (52). : o :

Figures 14b) and 14c) were calculated forw=4, v Therefore Figs. 14—17 qualitatively describe many observed
=4, k;=k,=2 in (53 andc.=0.5 M *=3, e=30 in Patterns.

(52). In the last two cases, we only changet! [b* =1 for Simulation of holes (vortices) in the Bed&instein con-
Fig. 14b) andb* =—1 for Fig. 14c)]. Then we recalculated densate (BEC)BEC is formed when the temperature of at-
Fig. 14a) assuming thatv=4, v=4, andb*=1. Results O0ms is very near absolute zero. In BEC all atoms lock to-
are presented in Fig. 15. It is seen from Figs(al4nd 15 gether in one quantum mechanical state—as uniform and
that the influence ofv, v, andb* on the wave patterns may coherent as a single particle. In particular, they have the cor-
be very strong. related spins. Recent experimés® show that a laser

Figures 14 and 15 manifest the traveling wave patternsheam bounced in a resonator creates holes in BEC. Using the
One can consider periodic generation, interaction, transfordniversal wave functiong52) we can qualitatively simulate
mation, and disappearance of the localized elements duririfiese experiments. Results of calculations are presented in
the dynamic process. Indeed, dynamical systems may exhibfig. 18. We assumed thait)=0, e=30, M '=1, c¢. =0,
complex behavior in both space and tifle’3In particular, andw=v =4 in (52) and(53). One can see in Fig. 18 that the
time evolution of 1D and 2D standing wave patterns in dif-amount of holegvorticeg observed in Ref. 92 corresponds
ferent mechanical, optical, physical, chemical, and biologicato numbersk;=1, k,=1 (one holg, k;=1, k,=2 (two
systems during one period have been treatéd’*~"®Re-  holeg, k;=2, k,=2 (four holes. Many holes shown in Refs.
cently, highly dynamic patterns formed by traveling waves6 and 90 were simulated by, =4, k,=4 in (53).
have attracted some attenti®n?’’’~"*We think that they Simulation of patterns in electron resonators (Refs. 7, 8,
can form in highly nonlinear, weakly dissipative media and94, 95) and photonic crystals (Refs. 72, 73, 88;-8@0). We
in cavities with special boundaries. These conditions may bassume thai’(s)=0, e=5, and

r=a(t)—sin" kyx+b* sir’ k,y,

s=a(t)+sin" kyx+sin’ kyy. (53

FIG. 17. Examples of simple resonant wave patterns-inplane calculated according t62) and(53) for a(t)=0.
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FIG. 18. Standing resonant wave patterns simulating holes and vortices observed in the Bose—Einstein c¢Reéén83ateln the experiment$Refs. 6,
90-93 the amount of the vortices depended on the microwaves generated in the condensate. According to the theory this amount depended on the eigenvalues
k, andk, of the universal functiort52).

J'(r)=secH(esinr)cogr, The form of the corral depends @) [see Fig. 1) calcu-
(54) lated fgr)kl=8, k,=4, N=4]. One can see that Figs. &

_ . . and 19b) also resemble the nonlinear optical phenomena
r=1-a(t)—secle,R,)si'(k;p,) ~0.75 sirf (kzR,) and the photoelectron diffraction data published
in  (53. Here R,=(m/L)(x*+0.6y9)%°~1, ¢,  recently/>73768896-99  Agquming r=1+sechg,R,)
=argtank/y), ande,, is a constant. Expressidb4) satisfies  x sifN(k; ¢, )+0.75sif(k,R, ) in (54) andk,;=8, e, =2 we
resonant conditions(38). First we studied the Kondo simulated the last experimental data. The results of the cal-
resonancé?® Figures 19a)-19c) demonstrate that expres- culations are presented in Fig.(&9for differentk,. One can
sion (54) qualitatively describes the resonant standing wavesee that Fig. 1@) qualitatively simulates the optical patterns
patterns of a Kondo corrdlThe dynamics of the quantum in cavities?’3and Kerr or resonant med?& Moreover, Fig.
mirage observed in Ref. 7 is presented in Figal9For the  19(c) describes qualitatively the mirages of atomic structures
last case we assumeq =30, k; =16, k,=12,N=4 in (54). observed in Refs. 94, 95, and 98.

FIG. 19. Dynamicala) and statistical propertig®), (c) of the universal wave function, and the qualitative simulation of quantum mirages observed in Refs.
7 and 8 and holograms of atorfRefs. 94, 95, and 98(a) A Kondo corral(Refs. 7 and Band the evolution of peaks and rings there during the peftnd.

Form of a Kondo corral depends on the paramefer(c) The dependence of 3D holographic images of some at&efs. 94, 95, and 98rom eigenvalue

k, of the universal functiort52). Some features of the diffraction patter(#®ef. 99 are simulated.
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FIG. 20. Simulation of electron orbits in atorfRefs. 97, 100, and 1Qdwith the help of the universal wave functigf2). The universal atomic electron’s
radial wave function varies during the period.

The dynamics of the orbit-like structures is We have shown that the above-mentioned trans-resonant
shown in Fig. 20. We assumed in54) that r waves and patterns qualitatively describe many recent obser-
=—a(t)—0.75 sechRy)siM(k;R, ), where R;=(m/L)(1.2x*>  vations. On the one hand, they simulate vertically excited
+0.8y%)%° and k,= 10. The orbits resemble the structures surface waves in liquid and granular layétise Faraday ex-
observed in different optical resonatdfs. %% perimenj. On the other hand, they describe nonlinear wave

Thus, Figs. 18-20 simulate the different structures thakffects in optics. Moreover, we found that the analytic solu-
are observed on the scale of atoms and electrons. In partictpns (52) and (54) qualitatively describe wave patterns in
lar, Fig. 18 qualitatively describes holes and vortices in suggse—Einstein condensatég. 18, and the Kondo corrals
perconductors and BEC. Figures 19 and 20 demonstrate thg)served recently in atom—electron structuiéis. 19.
wave functions of quantum particles. In one combination  The results may be interpreted for different resonators
(Fig. 20 the electrons are smeared out in rings around the 4 media. For example, according to Figs. 8—13, when the
atom. In another(_Fig. 19, they are localized and orbit trans-resonant parametBrvaries from+1 to —1, the har-
arounq the atom like a planet around the sun. The electrormonic ripples amplify and transform into the spiral and el-
with h|g_h energy can occupy a !arge- number of quanturr]ipsoidal structures, and the clusters of these structures. Per-
;tates(Flg. .20)' Moreover, Fig. 20 is a time sequence Show'haps this evolution describes the generation of galaxies, and
ing dynamics of the target patterns observed recently in OSie formation of aal | . .

galaxy clusters during the early Universe

cillated granular layer”? . . - s
We recall that all states in Figs. 18—20 are described b)? volutlon.. We believe that thg Cond'tlw. ! qualltatlvely
haracterizes moments of time and points of space in the

the same wave function. This function also describes the I Uni h i d the clust ; q
liquid and granular waves in layers, seismic waves, angary Cniverse, where galaxies and the clusters were formed.

spherical waves. Therefore we consider functiof) as the #‘ccording to the presented analytic theory galaxies and ga-
universal functiort®:26 lactic clusters were formed at the same time.
Figures 1-5 and 7 show the resonant localization and the
compression of the forced harmonic excitation inside of the
V. CONCLUSIONS AND OPEN QUESTIONS resonant band. Due to the parametric excitation the wave
There are two main goals of this research. The first is tg Y be trapped. The wave can change the velocity and the

; direction of the motion(Figs. 1 and 2 The compression of
demonstrate the analogies between trans-resonant wave prp- . )
e waves is maximal wheR~—1. The resonant compres-

cesses in different nonlinear, dispersive—dissipative systems, . o
jon of harmonic waves, the localization of the waves, and

In particular, the analogies between surface waves, nonline ioulati £ th loci lized in th .
and atom optics, field theories and acoustics of the earl{'® Manipulation of the wave velocity realized in the mi-

Universe are demonstrated. Second, it is the investigation dfforesonatorénanocrystals, molecules and atonmsay be

trans-resonant wave phenomena in these systems. used in quantum computing. The generation and the transfor-
Some cases were found when the perturbed wave equgpation of mushroom-like waves were studied. It is known

tions may be reduced to the basic highly nonlinear ordinanfh@t turbulence may be generated by mushroom-like

65,66 i
differential equation or the basic algebraic equation for tray\Waves:>*We found that the mushroom-like waves and the

eling waves. The analytic solutions of these equations havaPiral-like vortices can be generated by the fifth-order non-
been constructed. With the help of these solutions and thénearity or the cubic nonlinearity together with the “eddy”
numerical calculations the 1D and 2D trans-resonant wavescosity (Figs. 8—13. Thus, the high nonlinearity can quali-
were studied. It is knowtt 2" that in the trans-resonant fre- tatively simulate “eddy” viscosity and, perhaps, describes a
quency band the balance between the nonlinear, dispersiv@eneration of the wave turbulence. According to the theory
dissipative, and spatial effects varies with the frequency. Wéhe wave turbulence can weakly depend on the viscosity.
found here that the harmonic waves can evolve into shock-, The standing wave patterns were intensively studied dur-
jet-, or mushroom-like waves, and then into cloud-like anding the last decades.’®~"4761931%ye have considered the
vortex-like structures. Sometimes the motion of these wavedynamic wave patterns. In particular, the analytic theory of
and structures in the—t and x—y planes may be very com- patterns, which are formed by the trans-resonant traveling
plex. They can form different traveling wave patterns. waves, have been developed. As a result, we simulated the
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patterns which were observed recently in different quantum,
electron, and atom systerfi§20-100

A detailed study of different trans-resonant wave phe-
nomena can greatly clarify dynamic aspects of nonlinearity(7)
and the role they play in effects ranging from physics to
biology. In particular, waves generated in nonlinear resonant
band3®®1% are weakly studied. Passing through resonance
can strictly depend on noise. This problem was considere&B)
with the help of ordinary differential equatioh®. Appar-
ently, stochastic trans-resonant nonlinear waves are the proPg)
lem of the future. Subharmonic and high-harmonic waves
may be generated in the resonant baf{ds:56141%yrther
open questions are as follows.

(1) We took into account nonlinear, dispersive, dissipative,(lo)

and spatial effects. Are they enough to describe all
physical phenomena in resonant systems? Can they de-
scribe effects of the virtual particles and the Casimir
force'® in microelectromechanical resonant systems?

(2) One can see that waves in Figs. 14, 15aL%nd 20
can periodically disappear and generate. This process
was observed in watet’® and granular layer® Can
this physical process correspond to the generation of
resonant particles by fields? IR~1 then the
mushroom-like waves can generate the jets, and the
cloud-like structures. In particular, we have connected
this process with the formation of galaxy clusters. Can
this process describe qualitatively the generation of the
virtual particles in fields?

(3) It follows from the theory that highly nonlinear reso-
nant fields may form vortices. The highly nonlinear
fields and materials were found recertf? Is it pos-
sible that there the wave fields are formed by the vor-
tices? Can this possibility explain properties of super-
conductors and the Bose—Einstein condensate?

Sh. U. Galiev and T. Sh. Galiyev

wave equations and weakly viscous mode&lg., (1)]

for studying of the large scale wave turbulence instead
of the Navier—Stokes equations?

Equation (1) was derived for highly elastic objects.
According to the resonant solutions the vortices may
be generated there. Can these solutions describe so-
called “elastic” turbulence®?%113

Is it possible to find in the theory of turbulent
flow*” 6114 or wave turbulencdé® some value which
resembles the trans-resonant paramBfer

Generally speaking in Sec. IV C we considered only
one analytic solution of Eq(40). Do solutions(46),
(47), (48), and(50) describe some resonant properties
of fields and microresonators?

We showed that harmonic waves, shock-like waves,
jets, mushroom-like waves and vortices can evolve
into each other during the trans-resonant process. The
similar evolution was observed in water and gas
layers®®66:116.17parhaps, this process may be con-
nected with a formation of quantum shock waves and a
nucleation of vortices in BE&'® It follows from the
theory and the observations that wave phenomena in
the different media and the quantum effects in BEC
may be similar. On the other hand, further analysis of
the trans-resonant evolution of waves may be impor-
tant the inflationary theory. This theory predicts that
gravitational waves in the early Universe would have
produced a vortex-like componett Perhaps, this
component might be generated due to the nonlinear
trans-resonant evolution of harmonic gravitational
waves. Might the nonlinear trans-resonant theory of
gravitational waves tell whether inflation is right or
not? Can the resonant waves and the nonlinear trans-
resonant evolution of ripples into vortices illustrate
properties of quantum waves, oscillating BEEand

the Universe?

(4) Figure 20 resembles the well known, in quantum Me-A CKNOWLEDGMENTS

chanics, Wigner functiot®® Is function (54) some
analog of the Wigner function?

(5) It is known that the versiofi&®° of Eq. (40) describe
the chaotic oscillations in the resonant band. Indeed,

We are thankful to Professor A. V. Shanin for his cri-
tique. We appreciate useful comments from Professor D. Ab-
iPOtt and the anonymous reviewers.
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