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ABSTRACT

The Australian sheep blow fly Lucilia caprina is an economically important dipteran

pest whose circadian behavioural rhythms have been the subject of considerable

scrutiny. The underlying biochemical nature of these rhythms however, has remained

a mystery. The primary objective of this thesis was therefore to investigate the

molecular control of circadian rhythms in L. cuprina using an integrative approach.

To these ends, a dynamic molecular simulation model for L. cuprinawas formulated

using existing biochemical data on insect circadian clocks. The validity of this

simulation model was subsequently tested at both molecular and behavioural levels.

The basic molecular assumptions of the simulation model were tested by cloning a

full length L. cuprina per cDNA and analysing its mRNA and protein expression

levels. Isolation of the 4Kb L. cuprina per cDNA revealed the conservation of three

functional domains known to be important for circadian clock function; namely the

PAS dimerisation motif (with 92o/oidentity to D. melanogaster atthe amino acid

level), and the cytoplasmic and nuclear localisation domains (with 85% and 80%

identify respectively). A fourth domain, the threonine-glycine (TG) repeat region,

was also found to be conserved but severely tnrncated in L. cuprina. No length

variation was found in the TG repeat of flies collected from several different

latitudinal zones, and no conelation was detected between sequences flanking the

repeat and latitude of collection of flies. Thus, the contention that the TG repeat

region plays a role in temperature compensation of the circadian clock is cast in

doubt. Expression analyses (using quantitative RT-PCR) showedper mRNA lwels to

undergo diel oscillations with a period (24 h) and peak phase (Zt 12) consistent with

the Drosophila data. PER-immunoreactive protein oscillations were also

demonstrate4 with peak immunoreactivity laggrng approximately 3 h behind peak

mRNA levels.

The behavioural predictions of the model were tested by recording adult locomotor

activity under different light regimes. The simulation model successfully predicted

free-run, entrainment, the effect of short light pulses, and the effects of constant



lighting on behavioural rhythms. Disparities between the simulated and real phase

response cnrves for L. cuprina re hlpothesised to be indicative of an eadier nuclear

enty time of the PER-TM dimer in L. cuprina compared with D. melanogaster.

The three different approaches of simulation modellingo molecular analysis and

behavioural investigation are integrated in the discussion in order to help provide a

comprehensive explanation of circadian function inL. atprina. The benefits of an

integrated approach to the analysis of circadian function are discusse4 as is the

relevance of the present findings to the development of a clock-based control strategy

for this econornically important pest species.
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Nothing puzzles me more than time and space; and yet nothing troubles me less,
as I never think about them (Charles Lamb, Letter to Southy, 9 Aug. 1815).
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GLOSSARY OF CHRONOBIOLOGY TERMS

The terminology used here is based on that of Saunders (19g2) with modifications.

Active phase (a) The time during the sleep-wake cycle during which

an animal is active.

The period of the free-running oscillation (r) lengthens

on transfer from DD to LL in dark active animals, and

shortens for light active animals.

An endogenous oscillation with a natural period close

to, but seldom equal to 24 h.

Time scale covering one full period of an oscillation.

Ct 0 is defined arbiharily (in the present study Ct 6 is

defined as the midpoint of the active phase and

therefore Ct 0 occurs 6 hours prior to this point).

Loss of synchrony between two populations of
endogenous oscillators involved in the generation of a
rhythm.

A24h rhythm that has been measured only in natural or
artificial day-night cycles, and not yet known to persist

in constant conditions.

Active during the day (photophase)

A self-sustained rhythm which continues in the absence

of external ortraining factors (zeitgeber).

Aschof?s Rule

Circadian (rhythm)

Circadian time (Ct)

Desynchronisation

Diel rhythm

Diurnal

Endogenous rhythm



G lossar! of Chronobiolo*t rerms

Endogenous oscillator A self-sustained and temperature oompensated

oscillator responsible for endogenous

rhythmicity.

Entrainment The synchronisation of an endogenous oscillation to the

period of a zeitgeber.

Freerunning A rhythm in its unentrained state (isorated from

zeitgeber).

Free-running period (r) The period of a free-running rhythm.

oscillator rhe unseen 'driving' organ (the biorogicar crock)

whose in{luence from within the organism causes the

measurable changes seen as the overt rhythm.

The length of time between the same phase point on

two consecutive oscillations.

Phase (O) The instantaneous state of an oscillation within a
period. eg. onset of activity.

Phase advance (JLa) The shortening of the period of the rhythm in response

to a light or temperature perturbation.

Phase angle (ry). The relationship between two phase points on the same

or di fferent osci llations (phase relationship).

Phase delay $La) The lengthening of the period of the rhythm in response

to a light or temperature perturbation.

xvl



Glossary of Chronobiologr Terms

Phase response curve A plot ofphase shift (AO) caused by a single

perturbation at different phases.

A single displacement of an oscillation along the time

axis.

Phase shift (AZ)

Photoperiod

Photophase

Rhythm

Scotophase

Shattering

Skeleton photoperiod

Singularity (T*S*)

Subjective day

Subjective night

Transients

The daylength (period of light in the daily cycle).

The light portion of the day-night cycle.

A periodically occurring event.

The dark portion of the day-night cycle.

Loss of a single cohesive active phase into many shorter

active phases (usually with no observable rhythm).

A light regime using two shorterperiods of light to

simulate dawn and dusk effects of a longer, complete

photoperiod.

A pulse of critical duration, intensity and timing, which
results in the damping of a rhythm (ie. stops the clock).

First proposed by Winfree (1970).

The first half of the circadian cycle (Ct 0 to Ct 12).

The second half of the circadian cycle (Ct 12 to Ct 24).

One of the more temporary oscillatory states between

two steady states caused, for instance, by light or

xvii



Illtradian (rhyrhm)

Zo-iQeber

Zeiseber time (Ze

te nporatme perturbations.

An qdogpnolu osoillation wdth a period many limes

shorter than the sols daf md uruelated to,annl

gtnphyeieal cyeler

Th-.e forcing geonhysi.al osoi[afion whiotr ontainu a
biologieal oseillation.

T[me (in hours) relaxlve b the zeitge.ber" (a io IJ)
lL:lTEt 0 is defiusd as rtte L-D fiarrsition 

'mdZt 
lZ as

dre D-L fra$ition).
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GLOSSARY OF MOLECULAR TERMS

Base pair (bp)

cDNA clone

cDNA library

Cloning

r{

Dimer

DNAse

DNA polymerase

A single pair of complementary nucleotides from

opposite shands of the DNA double helix. The number

ofbase pairs is used as a measure of a length of double

stranded DNA.

A DNA clone derived from a complementary DNA

(cDNA) hanscript of a mRNA.

A collection of phage ssnlaining complementary DNA

(oDNA) clones of all of the mRNA species represented

in a particular tissue at a particular developmental

stage.

The isolation and multiplication of a particular gene by

incorporating it into specifically modified phage or

plasmid and introducing it into a bacterial cell where

the DNA of interest is replicated along with the phage

or plasmid DNA and can subsequently be recovered

from bacterial culture in large amounts.

A protein made up of trvo subunits.

Deoxyribonuclease: An enzyme which degrades DNA.

Any of several enzrymes which catalyse DNA synthesis

by addition of deoxyribonucleotide units to a DNA

chain using DNA or (in the case of refiovinrses) RNA

as a template.

xix



Glossarv of Molecular Terms

Electrophoresis

Kilobase (Kb)

Kilodalton (kD)

Northern Blotting

Phage @acteriophage)

Plasmid

A technique for separating molecules such as proteins

or nucleic acid fragments on the basis of their net

charge and mass, by their differential migration through

apaper, polyacrylamide or agarose gel in an electric

field.

Unit of length used for nucleic acids and

polynucleotides conesponding to 1000 base bairs or

bases.

Unit of mass equal to 1000 daltons. One dalton is the

unit of mass almost equal to the weight of a hydrogen

atom and is used interchangeably with molecular

weight.

A technique in which RNAs (usually separated by

electrophoresis) are hansferred to a suitable medium for

subsequent hybridisation with radioactive probes for the

identification and isolation of RNAs of interest.

A virus infecting bacteria" such as lambda (which

infects E. coli).

Small self-replicating circular DNA independent of the

chromosome in bacteria and unicellular eucaryotes such

as yeast, which is maintained at a characteristic stable

number from generation to generation. Plasmids

typically carry genes for antibiotic resistance and are

widely used in genetic engineering as vectors into

which foreign genes are inserted for subsequent cloning

or expression in bacterial cells.

xx



Glossary of Molecular Terms

Poly (A) tail A stretch of polyadenylic acid residues found at the 3'

ends of many eucaryotic messenger RNAs which is

added in the nucleus by the enzyme poly (A)

polymerase after transcription.

Reverse transcriptase A DNA polymerase found in retroviruses which

synthesises DNA on an RNA template.

Reverse transcription The synthesis of DNA on an RNA template, catalysed

by the enzyme reverse transcriptase.

RI\Ase Ribonuclease: an enzyme which degrades RNA or

cleaves it into shorter oligonucleotides.

RNA polymerase Any of several enzymes which catalyse the synthesis of

RNA from a DNA template by the process of

transcription

Southern Blotting A technique in which DNA fragments separated by gel

electrophoresis in an agarose gel are transferred by

blotting to a nylon or nitrocellulose filter for

subsequent hybridisation with radioactively labelled

nucleic acid probes for the identification and isolation

of sequences of interest.

Transcription Copying of a DNA strand to an RNA strand by an

RNA polymerase.

Translation Process by which RNA directs the synthesis of specific

proteins.

Specifically modified plasmid or phage into whichVector
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LIST OF ABBREVIATIONS

ct

bp
Ct
oc

DD
h
Kb
KD
L
LL
LD

ng
g
per
PER
pers. comm.
pg
PCR
PRC
RT

pg
pL
pM
M
mg
min
mM

sec

T
tim
TIM
T

Zt
@

alpha (active phase)

base pairs
circadian time
degrees Celsius
constant dark
hour
kilobase
kilodalton
lihe
constant light
light-dark cycle (numbers following
indicate hours occupied by each)
microgram
microlitre
micromolar
molar
milligram
minute
millimolar
nanogram

Sram
period ge,ne (italicised)
period protein (uppercase, plain face)
personal communication
picogram
polymerase chain reaction
phase response curve
reverse transcription
second
period of the zeitgeber
timeless gene (italicised)
timeless protein (uppercase, plain face)
tau (free-running period)
zeitgeber time
phase
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