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The effects of inertia (involving a drag which is quadratic in the velocity) on convection in a fluid-
saturated porous medium are considered. It is shown that the effect of quadratic drag is physically
significant for natural convection, at realistic values of the Rayleigh number, in a thin layer of a
medium whose overall Prandtl number is small. The qualitative effect of quadratic drag on the

global stability of the conduction regime, and on bifurcation into the convection regime, is
reported. Convection in an inclined slab of material is also discussed.

In this brief communication we consider the effects of
inertia on convection in a fluid-saturated porous material. In
particular, we obtain estimates of the physical significance of
inertial effects in natural convection in horizontal and in-
clined slabs.

There has been a difference of opinion on what is the
appropriate form of the equation of motion. In most studies
of convection in porous media the authors have assumed
that the flow is governed by Darcy’s law, so that, if the flow is
steady and the Oberbeck—Boussinesq approximation is justi-
fied, the equation of motion takes the form

0= —VP—poag(T — To) — /KU, . (1)

We have adopted the notation used in Joseph’s book.! Here
P is the reduced pressure, T is the temperature, U,, is the
seepage velocity, p, is the density of the fluid at some stan-
dard temperature T, @ and . are the volume expansion coef-
ficient and the viscosity of the liquid, X is the permeability of
the medium, and g is the gravitational acceleration. There is
general agreement that Eq. (1) is appropriate if the motion is
sufficiently slow and the porosity 7 is not close to unity.

If the porosity is large, then it may be appropriate to use
a Brinkman equation in which a Laplacian term 2V?U,, is
added to the right-hand side of Eq. (1). The use of the Brink-
man equation has been discussed in detail by Nield.>* The
Laplacian term is in any case of importance only in bound-
ary layers whose thickness is of order X /2. In this paper we
will suppose that the Laplacian term may be neglected.

‘When the motion is not slow, it is necessary to consider
inertial effects. Several authors have included such effects by
adding to the left-hand side of Eq. (1) the terms

995 Phys. Fluids 28 (3), March 1985

0031-9171/85/030995-03%$01.90

1494,
n ot

The inclusion of the term in 3 U,,, /3¢ is not controversial, but
it has been realized that the inclusion of the term in
(U,,*V)U,, cannot be correct. Beck* pointed out that the or-
der of the differential equation (1) is raised by the inclusion of
(U,,*V)U,, and no additional boundary condition is avail-
able to keep the resulting boundary value problem determi-
nate (unless one includes a Laplacian term as well). A more
important objection is that (U,, -V)U,, vanishes identically if
the flow is unidirectional and hence cannot represent the
known effect (increase in drag) in that case. In some cases it is
possible to avoid this embarrassing situation by neglecting
the quadratic term (U,, *V)U,,, but in general this let-out is
not permissible.

For the sort of porous media which occur naturally, we
believe that the appropriate extension of Eq. (1) is

+ ';';—g(U,,, Vu,,.

1 dU
——"= —VP—pyagT — T
n Ot
— 22U, — oK ~U,, [U,,. 2)

This is a modification of an equation associated with the
names of Dupuit and Forchheimer. The effect of inertia is a
drag term which is quadratic in the velocity U, . The coeffi-
cient ¢, which we call the form drag constant, is independent
of the viscosity and other properties of the fluid, but is depen-
dent on the geometry of the medium. Experimental support
for this form of the quadratic drag is described by Ward® and
Beavers, Sparrow, and Rodenz,® while the many experimen-
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tal results summarized by Macdonald et al.” are consistent
with this form. Further discussion of quadratic drag is con-
tained in a paper by Joseph, Nield, and Papanicolaou,® who
made a determination of the form drag constant by means of
an analysis of a type which Brinkman calls self-consistent.

An equation similar to Eq. (2) has been used by Somer-
ton,” but in his paper the quadratic drag term is a vector
which is not parallel to the seepage velocity. (Indeed, his
term U %2, + V28, + W?¢, isdependent on the choice of co-
ordinate axes.) It seems to us that on a macroscopic scale, the
drag has to be in the direction opposite to the seepage veloc-
ity. [For the case of a viscous fluid, a term of the form (U-V)U
can produce a transfer of momentum across a shear flow, but
in the case of a porous medium this transfer mechanism is
upset by the randomness of the geometry.] However, this
deficiency does not affect Somerton’s major conclusion,
namely, that the dependence of the heat transfer on the na-
ture of the medium can be explained in terms of a depen-
dence on Prandtl number arising from a quadratic drag
term.

We will now complete the system of governing equa-
tions and put them in nondimensionless form, and briefly
report on some qualitative effects of quadratic drag on bifur-
cation of the conduction solution and the energy-stability
criterion for a horizontal layer (the Bénard-Darcy problem).
Later we estimate the magnitude of the quadratic drag term
for the Bénard-Darcy problem, and demonstrate that it is
physically significant, in thin layers of a medium for which
the overall Prandt! number is small, at realistic values of the
Rayleigh number. This is in accord with Somerton’s expla-
nation of the results of some heat transfer experiments per-
formed by Combarnous.!® The corresponding problem of
convection in an inclined layer will also be discussed briefly.
We find that the range of parameter values for which the
quadratic drag is physically significant is rather larger for
the inclined layer than for the horizontal layer.

For the convection problem, we have in addition to Eq.
(2) the equation of continuity

v-U, =0, (3)

and the energy transport equation
ar
(PoColm ot (oColfUpm VT = Velk,, VT), (4)

where T'is the temperature, C,, is the specific heat at constant
pressure, the subscripts m and frefer to the fluid—solid mix-
ture and the fluid, respectively, and &,,, is the overall thermal
conductivity. We take scales / for length, / %/« for time, AT
for temperature, «// for velocity and ux/K for pressure,
where k = k,,, /(pyCo);. Equations (2)~(4) can be written as

B, _ —VP+Re,( —E)
n ot AT
—u, —-JU,U,, 5)
49T Ly vT=vT, (6)
at
V.U, =0. (7)

We have confined ourselves to the case where there is no
internal heating, and the viscosity is independent of tem-
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perature. The more general situation is discussed in Ref. 1.
The nondimensional parameters are

1/2
agATIK J= C(K) K

—_— A = (,JOCO)m
’ ]

oColy
ool

’

Kk
B=— R=

I*v vK v

The quantity R is the Rayleigh-Darcy number. In terms of
the Prandtl number Pr=v/k and the length-scale ratio
8 =K'?/l, we have B = 8§ %/Pr and J = ¢6/Pr. In normal
circumstances, & will be very small and B may be set equal to
zero.

The following remarks concern modifications, caused
by the effect of quadratic drag, to the theory given in Secs. 71
and 72 of Ref. 1. It is obvious that the quadratic drag will
have no effect on the linearized stability problem for the
onset of convection, and it follows that the loss of stability of
the conduction solution can be framed in terms of the theory
of bifurcation at a real simple eigenvalue. With the introduc-
tion of quadratic drag, the analytic theory of bifurcation at a
simple eigenvalue does not apply because the nonlinearity
|U., |U,, is not analytic. However, first derivatives with re-
spect to the amplitude € of the bifurcating solution do make
sense, and proceeding as in Sec. 72 of Ref. 1, we may calcu-

late # ,=d#/de at € = 0, where # = R . It is found that
%, is no longer zero. The bifurcation curve in the (#,€)
plane s still symmetric with respect to €, but it has a vertex at
the bifurcation point; the discontinuity in slope reflects the
nonanalyticity of the solution. It is also found that the effect
of quadratic drag is to increase the domain of global stability.
The global stability criterion % < %, where Z, is inde-
pendent of ¢, is replaced by # < # 5, where #y = R
when € = 0, but Z > # when €£0.

The quadratic drag term in Eq. (5) will be negligible if
and only if

J|U,, |<1. 9)

We recall that, by definition, J = c(«x/v)(K '/2/1). In the Bén-
ard-Darcy problem, / is the layer depth. For an estimate for
[U,, |, we can take the root-mean-square average of (U, |,
denoted by U. From equations (5.13) and (5.14) of the paper
by Palm, Weber, and Kvernvold,'! we deduce that Uis given
by

U=[R(N-1)]'?, (10)

where N is the Nusselt number. From their Fig. 3, giving the
dependence on N on R (based on several experiments), we
obtain Table 1.

As an example, suppose we take the values ¢ =0.1,
K =107 cm? ! = 1 cm, which are appropriate for a 1 cm
thick layer of a medium composed of metallic fibers, and the
value R = 300, which is easily attained and which is of inter-
est because of the Hopf bifurcation that appears to occur
near that value (see, for example, Horne and Caltagirone'?).
Then the inequality (9) is satisfied if the Prandt] number sat-
isfies Pr»0.1. Thus in this situation the quadratic drag term
will be significant so long as the Prandtl number is of order
0.1 or smaller. It should be noted that here the Prandtl num-
ber is not that of the fluid but is characteristic of the fluid/
solid medium, so this criterion does not restrict the signifi-
cance to liquid metals. (The Prandtl number is the ratio of
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the kinematic viscosity of the fluid to the thermal diffusivity
of the medium.) The criterion indicates that quadratic drag
should be significant in Combarnous’s'® experiments with a
lead—water system, for which the value of Pr was 0.18 and
the layer depth about 1 cm. This is in accord with Somer-
ton’s® explanation of the heat-transfer results of those ex-
periments; the heat transfer is comparatively small if the
Prandtl number is small.

More generally, for media with larger Pr, the effect of
quadratic drag will become significant at rather larger values
of the Rayleigh number. On analogy with the situation for
convection in fluids, one might expect that at sufficiently
large R there would be a transition to a regime involving
some sort of “inertial convection” which could be evident in
a medium of low Prandtl number; see, for example, Clever
and Busse'® and Fauve and Libchaber.**

For the case of convection in an inclined slab, we again
choose / to be the layer thickness over which a temperature
difference A T is imposed. In terms of nondimensional quan-
tities we suppose that the bounding plates z = + ] are held
at temperatures (T, + AT /2)/AT, the y axis is horizontal
and the x axis makes an angle §, — 90°<6<90°, with the
upwards vertical. Thus & is positive if the slab is heated on its
lower side and negative if heated on the upper side. The gov-
erning equations are (5)—(7) with e, replaced by e, cos §

+ e, sin §. For the case B = 0 we have

U, +J|U,|U,, = —VP+R(T— T,/AT)

X(e, cos b + e, sin ), (11)
4 %+U,,,-VT= Ve, (12)
V.U, —0. (13)

We suppose that there are no imposed temperature or pres-
sure gradients parallel to the bounding plates. We examine
the steady-state flow given by U,, = Ul(z)e, where
U(—z) = — U(z) so that the net mass flux across any plane
x = const is zero and T'= (T,/AT) — z. This is a unicellular
flow with streamlines in a vertical plane. From Eq. (11) we
deducethat 3P /dx is a constant and, hence, zero. Hence U (z)
is given by

JIU|U+ U+ Rz cos 8 =0. (14)

The fiuid rises along the hotter plate. Hence when z cos <0,
then U>0, and hence

U=[—1+4(1 —4JRzcos 5)"/?)/2J. (15)
When z cos § >0, then U<0 and
U=[1—(1+ 4JRzcos 5)/?)/2J. (16)

We note that U and its derivative U’ are continuous, but U "
changes sign discontinuously at z = 0.
Equations (15) and (16} can be combined in the form

|U|=[—1+(1+4JR |zcos§|)"/?]/2J. (17)
When JR is small, we have approximately
|U|=R|zcos8|—JR |zcosb |2 (18)

As we should expect, the effect of increasing J is to reduce
the speed of the steady motion.
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TABLE L. Approximate values showing the dependence of Nusselt number
N and root-mean-square velocity U on the Rayleigh-Darcy number R,
based on Fig. 3 and Eqgs. (5.13) and (5.14) of Ref. 11.

R N U
10 3 15
3% 10 6 40
10° 10 100
Ix10® 14 200
10* 20 450

From Eq. (14) we see that the quadratic drag becomes
significant whenJ |U |>~O (R ) and thusJ |U | ~O ((RJ)*/?).
We conclude that the quadratic drag has negligible effect if

JR«I,
e, if
cagATK 3?2 /v*«1. (19)

It is noteworthy that this inequality does not depend on the
overall thermal diffusivity «. For the slab used as an example
before, this inequality says that the quadratic drag is negligi-
ble if Pr» 1. Alternatively, it says that if Pr = 0.1, then the
quadratic drag is significant when R is as low as 30.

We have shown that quadratic drag plays a significant
role in natural convection in thin layers of media of small
Prandtl number.

It is obvious that in forced convection (or in mixed con-
vection), quadratic drag must play an important role since,
no matter how small J may be, the product J |U,, | will be-
come significant as soon as the mean velocity is forced to a
sufficiently high value.
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