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We discuss the application of the direct Monte Carlo method to the theory of cluster formation.
Fractal relationships for the kernels appearing in the Smoluchowski equation are implemented in
this method and the scaling behavior of the kernels is investigated using computer simulation. We
study the effects of cluster disintegrations and also investigate the effects of ‘‘magic’’ numbers in
cluster formation. ©1996 American Institute of Physics.@S0021-9606~96!51231-6#

I. INTRODUCTION

The theory of homogeneous nucleation has recently at-
tracted renewed interest. In classical homogeneous nucle-
ation theory the onset of nucleation is characterized by the
formation of significant numbers of thermodynamically
stable clusters of monomers. Such clusters are, in a sense, a
new phase of the material, which exhibit quite specific prop-
erties of their own.1,2 A good overview of the current re-
search on clusters is given in the recent collection of papers
edited by Haberland.3

Cluster formation is of immediate scientific and techno-
logical importance. For instance in chemical vapor deposi-
tion processes, the properties of the surface can be affected
by cluster formation and part of the deposition process is
known to proceed via cluster formation.4 In the dry etching
of silicon wafers cluster formation in the plasma can foul the
surface, leading to manufacturing irregularities.5 The phe-
nomenon of quantum dots6 can also be viewed as a cluster
phenomenon. Small quantities of material are embedded in a
host material, and their ‘‘cluster’’ properties lead specifically
to the electrical and optical properties of the quantum dot.
The theory of the processing of nanoscale materials is often
based on homogeneous nucleation theory and the formation
of soot and atmospheric pollutants often begins with forma-
tion of clusters. Furthermore, the role of clusters as catalysts
for chemical reactions is starting to be recognized.7

Theoretically, atomic clusters are interesting in their own
right. They represent a very special area in physics because
they bridge the gap between the microscopic and the macro-
scopic world. A monomer’s behavior is governed by atomic
and molecular mechanics while the behavior of the bulk ma-
terial is governed by the macroscopic qualities of the mate-
rial. As clusters form and grow, their behavior develops from
the molecular to the bulk behavior in a semi-continuous fash-
ion. The traditional definition of a ‘‘phase’’ has limited
meaning with respect to clusters. Solids for instance are char-
acterized by long range order and similarly liquids by short
range order. However, with the nascent clusters, the charac-
teristic dimensions are often very different from the charac-
teristic lengths for either long or short range order and their
properties are often dominated by surface effects. The theory
of formation of clusters from monomers~nucleation theory!

is a field of study, where~molecular! dynamics, statistical
thermodynamics and chemical reaction theory intersect.

Under some circumstances, clusters exhibit an electronic
shell structure not unlike the atomic model of Thomson,
leading to ‘‘magic numbers’’ in the occurrence of clusters of
a certain size. At the magic numbers there are shell closings
of the electronic structure and the ‘‘closed shell’’ clusters
display anomalous stabilities.8,9 The ‘‘open shell’’ clusters
exhibit geometrical distortions of a Jahn–Teller type, leading
to considerable changes in the overall shape of the cluster as
a function of the number of monomers. These anomalies
have consequences for the size distribution of the clusters
and are known to be influential even for high cluster num-
bers.

Much of the work in the area of cluster formation de-
rives from the original treatment given by Gibbs, Thomson
and Helmholtz.10 The process has been discussed in relation
to phase transitions by Fisher.11 Two approaches to homoge-
neous nucleation exist in the literature. Though there is con-
siderable overlap between the two, historically one approach
originates in the work by Zeldovitch and Becker and
Döring,12 the other in the work of Smoluchowski13 on emul-
sification. For the purpose of this paper, we will designate
the first approach as ‘‘classical nucleation theory’’~CNT!
and the second, the ‘‘kinetic’’ approach. Though some as-
pects of the approaches are very similar, up to now they have
been used in different contexts and have generated rather
different lines of research. Part of this paper is devoted to a
study of their similarities and differences.

In the classical approach it is assumed that the cluster
formation proceeds with one monomer at a time. In the ini-
tial stages of the aggregation process this leads to a barrier in
the free energy, which occurs at a certain critical cluster size
i * . This critical size functions as a transition state: clusters
smaller than the critical size are unstable with respect to
reversion to the vapor, clusters larger than the critical size
grow irreversibly, ultimately forming the condensed phase.
The critical size is the smallest number of monomers which
can form a thermodynamically stable cluster. This is typi-
cally on the order of 10 to 100 monomers. Below this size
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the clusters tend to spontaneously decompose. The clusters
Ai* thus serve as the ‘‘transition state’’ in the nucleation
process. A ‘‘rate constant’’ for cluster formation can then be
derived in terms of this transition state as14,15

Jcl5Cn1expF2DGi*
kT G . ~1.1!

At equilibrium, Jcl is constant since the rate of formation is
matched by the rate of loss and we obtain the nucleation rate
for CNT16–18

J5
Nbs1
3 S Q

p D 1/2expF2
4

27

Q3

~ lnS!2G , ~1.2!

whereQ5ss1 /kBT, s is the ~bulk value of the! surface
tension,s1 is the surface of a monomer,kB is Boltzmann’s
constant,S is the monomer supersaturation,b is the mono-
mer flux to the surface andT is the temperature in Kelvin. In
the original version of CNT, growth and depletion of the
clusters was assumed to proceed one monomer at a
time.12,19,16 This approximation, which does not allow for
agglomeration in the formation of critical sized clusters, has
been investigated,20 and was recently shown to be
justifiable.21 It should also be noted that this line of research
on cluster formation has led to a ‘‘kinetic’’ approach.16 Prac-
tical applications of the CNT equation for nucleation give
results which in general are qualitatively correct but require a
multiplicative correction factor to predict quantitative behav-
ior. This correction factor~‘‘replacement factor’’!, princi-
pally accounts for the fact that the equation for the free en-
ergy is not consistent asi→1. A number of researchers have
proposed correction factors and functional
corrections.17,18,22,23

As can be seen from Eq.~1.1! the key aspect in the CNT
approach is the free energy of the cluster and the concomi-
tant problem of finding an expression for the surface tension
of the cluster as a function of cluster size.22 For very small
droplets, the value for the surface tension deviates signifi-
cantly, but in a largely unknown fashion, from the bulk
value.23 Apart from the uncertainties in the properties of
small clusters used in this approach, another problem is that
the final expression yields only limited information about
cluster formation and can be difficult to implement in prac-
tical cases. Also, on its own, the CNT expression gives no
information on the cluster size distribution or structure.

In the second approach to cluster formation, which we
refer to as the ‘‘kinetic’’ approach in this paper, ‘‘nucle-
ation’’ is viewed as a process of chemical aggregation. The
original equation for this approach is the Smoluchowski
equation.13,24–27This approach gives an insight into the dy-
namical aspects of cluster formation and has recently at-
tracted a lot of interest in the literature on fractals.28–30The
chemical reaction rate constantsKT( i , j ) used in the rate
equation~called the ‘‘kernels’’ in the fractal literature! are
assumed to have ‘‘fractal’’~non-integer! scaling properties
with cluster size

KT~l i ,l j !5l2vKT~ i , j !, ~1.3!

where 2v is a non-integer number, and the subscriptT refers
to the temperature dependence. The kinetics of cluster for-
mation can be studied as a function of the fractality of the
kernels. The Smoluchowski equation leads to a set of time-
dependent coupled differential equations, that can be solved
numerically on a computer~see for instance Refs. 25 and
26!. Alternatively, the cluster formation process may be
simulated using a suitable direct simulation method and the
same results should be obtained in principle.

In this paper we will show that fractal scaling of kernels
can be implemented in thedirect Monte Carlo~DMC! simu-
lation method in a straightforward fashion. This method was
pioneered by Bird31 and later used by Anderson32–34 in stud-
ies of chemical kinetics of model systems. The method is
comparatively fast, easy to implement and yields good re-
sults for model systems. The advantage of the DMC proce-
dure is that the kernels of the Smoluchowski equation can be
directly related to the quantitiesvsR ~wherev is the relative
velocity andsR the reactive cross section! that determine the
reaction probabilities in the direct Monte Carlo method

KT~ i , j !'^v rel~ i , j !sR~ i , j !&T . ~1.4!

The DMC method is not specific to the functional form of
the reaction cross sectionssR so that we may choose any
reasonable way to treat the collision dynamics. This makes it
possible to test some of the laws relating to cluster formation
using numerical simulation.

The material in this paper is complementary to the ma-
terial in the recent paper of Venkateshet al.,35 in which the
thermal collision rate constants for small nickel clusters
~2–14 atoms! were calculated. The aim of their paper was to
investigate the validity of the simplifying assumptions that
are often used in models of cluster growth and provide ad-
ditional information on the breakdown of their validity. Spe-
cifically, they distinguish four types of cluster reactions:
~i! Simple ~elastic! collisions, where the clusters remain un-
altered,

Ai1Aj→Ai1Aj . ~1.5!

~ii ! Stripping or rearrangement,

Ai1Aj→Ak1Al where k1 l5 i1 j . ~1.6!

~iii ! Fragmentation or dissociation,

Ai1Aj→Ak1Al1Am1 . . .

where i1 j5k1 l1m1 . . . ~1.7!

~iv! Sticking,

Ai1Aj→Ai1 j . ~1.8!

2817H. Hettema and J. S. McFeaters: Direct Monte Carlo method for homogeneous nucleation

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded¬25¬Aug¬2009¬to¬130.216.12.217.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



With the exception of~iii !, our DMC method incorpo-
rates all of these cluster processes.

II. THEORY

In this section, we discuss the application of Anderson’s
direct Monte Carlo~DMC! method to the process of homo-
geneous nucleation. We first summarize some aspects of two
kinetic theories of cluster formation: classical nucleation
theory and the Smoluchowski theory. Both theories are very
similar from a mathematical point of view, but different in
aim and scope. In the classical nucleation theory the aim is to
derive an expression for the nucleation rateJ, the rate with
which nuclei~clusters of the minimum stable size! form in a
condensing species. The concept of an ‘‘equilibrium state’’
plays a central role in CNT as the connection between free
energy and kinetics in the determination of the nucleation
rate. The Smoluchowski equation does not invoke the con-
cept of an ‘‘equilibrium state.’’ Rather it is a dynamical
equation that describes coagulation and clustering phenom-
ena. It is of interest because of the fractal scaling theory of
the kernels. It is this scaling behavior of the kernels that
leads to an immediate characterization of the clustering pro-
cess. In this section, we also discuss the central results of this
theory, and we then go on to discuss some central equations
from the distribution theory of cluster formation. At each
moment in time, we can characterize the nucleating system
by the parameters of its distribution of cluster sizes, typically
the log normal distribution.

Then we discuss the implementation of the homoge-
neous nucleation process into the DMC method. It will be
shown that the DMC method can easily incorporate most
aspects of the fractal theory of clusters in terms of a physical
model. These results can furthermore be translated into terms
of the kinetic models discussed earlier and thus serve as tests
of these models.

A. Two kinetic theories of cluster formation

As with all approaches, we start with a system consisting
of N monomers. We designate a cluster of ‘‘size’’k ~cluster
with k monomers! by Ak and the number of such clusters by
nk . The time variable is denoted byt.

1. Classical nucleation theory

We include only a brief discussion of classical nucle-
ation theory here. The theory is obtained16,20when aggrega-
tion is assumed to take place with one monomer at a time.
The rate of formation of clusters withk monomers is then
expressed in terms of a ‘‘forward’’ rate constantf (k,t) and a
‘‘backward’’ rate constantb(k11). Then~see for instance
Refs. 16 and 17! we introduce the concept of a ‘‘steady’’ or
‘‘equilibrium state’’ and use detailed balance to express the
‘‘backward’’ rate constantb(k11) in terms of the equilib-
rium values of the forward rate constant and the cluster con-
centrations. Two further mathematical tricks, as explained in
for instance Refs. 16 and 17, lead to the expression Eq.~1.2!.
The concept of the ‘‘equilibrium state,’’ where the nucle-
ation rate is constant and independent of cluster size is cen-
tral to all derivations of CNT.

2. Smoluchowski approach

In the Smoluchowski approach the basic equation for the
kinetic theory~the Smoluchowski equation! is the equation
describing the rate of cluster formation and depletion

dnk
dt

5
1

2 (
i1 j5k

K~ i , j !ninj2nk (
i51

`

K~ i ,k!ni , ~2.1!

where we have neglected dissociation of clusters into smaller
clusters. The first terms represents the rate of creation of
Ak through association with smaller clusters, the last term the
loss of clustersAk through chemical reactions with other
clusters. The second term in Eq.~2.1! includes both rear-
rangement and dissociation@expressions~1.6! and ~1.7!#.
However, in this paper we neglect the dissociation of clus-
ters. This assumption implies that the results obtained apply
to what Rao and McMurry36 refer to as the collision con-
trolled regime where the rate of growth is limited by the
collision frequency rather than the balance between growth
and decay. The dissociation or fragmentation of clusters can
be included in the DMC method. However, an independent
criteria must be developed to parametrize the rates for the
‘‘reverse’’ step because this method does not include the
assumption of an equilibrium state so that the principle of
detailed balance cannot be invoked to relate forward and
backward rates. The relaxation of the equilibrium assump-
tion is also one of the advantages of this method. However,
the implementation of these effects is beyond the scope of
this paper. The efficiency of the ‘‘chemical’’ reactions be-
tween clusters and individual atoms or clusters of different
size is given by the chemical reaction rate coefficientsK. In
the fractal literature relating to this approach, theK ’s are
referred to as the ‘‘kernels’’ and the scaling behavior of the
kernels~as a function of cluster size! is investigated.

In the original Smoluchowski paper,24 all kernels were
assumed to have a constant value forK; with this approxi-
mation, the equation can be solved exactly~see Ref. 30 for
instance! and the number of clusters of sizek at time t,
nk(t), is given by24

nk~ t !5
N@~1/2!KNt#k21

@11~1/2!KNt#k11 . ~2.2!

The total number of clusters at timet, NC(t) is given by

NC~ t !5
N

@11~KN/2!t#
. ~2.3!

The Smoluchowski equation as given above is still a
simplification since it does not allow for the disintegration of
a clusterAi1 j into Ai1Aj . Cluster disintegration is a special
case of fragmentation where one of the collision partners has
its monomer number conserved. Costas, Moreau and
Vicente26 have discussed exact solutions to an extended ki-
netic Smoluchowski equation which includes cluster disinte-
gration. They also considered the simple scaling of the ker-
nels for the case of constant and additive kernels. Since this
is not of primary concern for us here, we refer to their paper
for a further discussion.
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B. Kernels

In the previous subsection, we discussed the case where
the kernels are constant for each cluster size. In practical
cases the kernels will be different for each cluster size~and
geometry!, and each size will be in effect a different species.
The kernels entering the Smoluchowski equation have been
the subject of active research recently. It can be shown that
the scaling properties of the kernels differ for the two fami-
lies of kinetic models of cluster formation, theballistic
modeland thediffusion model~see Ref. 37 for a discussion
and comparison of these two models, as well as an overview
of the literature!.

Jullien30 has shown that the scaling properties of the
kernel for the diffusion model are given by

K~ i , j !}~ i a1 j a!~ i 1/D1 j 1/D!d22 ~2.4!

and for the ballistic model by

K~ i , j !}~ i 2a1 j 2a!1/2~ i 1/D1 j 1/D!d21. ~2.5!

Both expressions scale with cluster size according to the re-
lation

K~l i ,l j !}l2vK~ i , j !, ~2.6!

where the exponentv for both the diffusion and the ballistic
models is given by

2v5a1~d2dw!/D, ~2.7!

wheredw is the fractal dimension of the cluster trajectory,
d is the ‘‘true’’ or embedding dimension~three in this case!
andD is the fractal~Hausdorff! dimension of the cluster. For
the diffusion case,dw52 and for the ballistic case,dw51. In
the discussion of the Smoluchowski equation given above,
the kernels are constant andv50.

We have to determine how the cluster size distribution
evolves in time. Jullienet al.29,30 and Villaricaet al.25 have
shown that for long times the cluster size distribution can
generally be written as

nk5Akae2b~ t !k, ~2.8!

whereA, a are constants andb(t) is a function of time. From
this assumption it follows that25 the scaling behavior of
b(t) is given by

b}t1/~2v21! ~2.9!

so that the average cluster sizem(t) scales with time as

m~ t !5
N

NC
5
122v

b~ t !
}~ t1/~2v21!!215t21/~2v21!. ~2.10!

The value ofv can thus be determined from a fit to the time
dependence ofm. From this result and the last equality in Eq.
~2.14! it is immediately seen that the total number of clusters
NC(t) scales with time as

NC~ t !}t1/~2v21!. ~2.11!

The value ofv is thus an important system parameter,
since it characterizes the clustering process almost com-
pletely. In the regimev, 1

2 we obtain theflocculation re-
gime, which we will restrict ourselves to in our simulations

of gas-phase nucleation. Forv. 1
2 we obtain thegelation

regime, where an infinite cluster appears after a certain char-
acteristic timetg .

It is interesting to consider the number of clustersnk
with k.1. Initially, nk must be increasing in time but for
large times, thenk must decrease as the clusters coalesce to
form larger clusters. The timetk at which the maximum in
the cluster numbernk appears has been determined by Vil-
laricaet al.25 and is found to scale withv as

tk}S 222v

k D 2v21

, ~2.12!

which is consistent with the partition into the regimes given
above. Forv. 1

2 the timestk are decreasing for increasing
cluster size, forv, 1

2 it is an increasing function ofk.

C. Moments and distributions

It is convenient to discuss the characteristics of a cluster
size distribution over time in terms of itsmoments, which are
given by

S05(
i51

`

ni5NC ~Number of clusters!, ~2.13a!

S15(
i51

`

ini5N ~Number of atoms!, ~2.13b!

S25(
i51

`

i 2ni , ~2.13c!

and in general

Sk5(
i51

`

i kni . ~2.13d!

The equalityS15N follows from the fact that the total num-
ber of atoms is conserved and can be used as a check on the
programming. In terms of these moments, we can express the
average cluster size,m(t), as a function of time by

m1~ t !5
S1~ t !
S0~ t !

5
N

NC~ t !
~2.14!

and the characteristic moments as

m i~ t !5
Si
NC

. ~2.15!

It is convenient to study the time behavior of the cluster
formation in terms of the evolution of the log normal distri-
bution of the cluster sizes~see for instance Ref. 38!. In this
distribution, we assume thatnk is a normal~Gaussian! dis-
tribution of the logarithm of cluster sizek (lnk).

The momentsm i can be written in terms of the param-
eters of the log normal distribution as39

m15exp@~ lnk!10.5s~ lnk!# ~2.16a!

m25exp@2~ lnk!12s~ lnk!# ~2.16b!

m35exp@3~ lnk!14.5s~ lnk!# ~2.16c!
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so that we can fit the time development of the characteristics
of the log normal distribution from the moments.

Villarica et al.25 have investigated the relation between
the size distribution in Eq.~2.8! and the log normal distribu-
tion and shown that the log normal distribution is a good
approximation over a large range of cluster size distributions.

D. The direct Monte Carlo method

The direct Monte Carlo method was initiated by the
work of Bird31 on fluid structure, and has been used to study
model chemical reactions by Anderson.32–34

The central assumption of the DMC method is that the
collisions in the gas or fluid are completely random. There-
fore we do not have to keep track of the positions of the
particles, only their velocities. In contrast to the molecular
dynamics methods, we pick colliding pairs randomly. We
can simulate a physically sensible number~typically on the
order of 1023) of particles by a much smaller amount of
particles~on the order of 104) if we introduce a simultaneous
scaling of their collision cross section. The total Knudsen
number remains the same. The main trick of the direct simu-
lation method, as devised by Bird, is that the sampled mol-
ecules also serve to evaluate the time-step advance in the
simulation. Thus, it is not necessary to evaluate the relative
velocities for all possible pairs of molecules. The elimination
of the need to track position and the reduction in the number
of sample size greatly reduces the computation time re-
quired.

The scaling procedure is implemented as follows. IfN is
the number of physically present particles,V the volume of
the cell andN8 the number of particles in the simulation,
then the scaling of the cross section is given by

s8~ i , j ,v !5s~ i , j ,v !
N21

N821
. ~2.17!

For every collision, the time advance is given by32

Dt5
2V

N8~N821!

1

~v i js~ i , j !!c
, ~2.18!

where (. . . )c designates the quantity for the colliding pair.
The cross section for a colliding pair of hard spheres is given
ass( i , j )5pr 1

2(ni
1/D1nj

1/D).
We define a ‘‘sticking probability’’p( i , j ) for the pair of

clusters (i , j ), which gives the probability that they will stick
together. The total reactive cross section can then be written
in the ‘‘Arrhenius’’ form @see Ref. 15, Eq.~4.17!#

sR~ i , j !5p~ i , j !s~ i , j !S 12
E*

ET
D , ~2.19!

for ET.E* . HereE* represents the activation energy,ET

the relative translational energy of the cluster pair. When
ET,E* the reaction probability is zero. The sticking prob-
ability is analogous to the steric factor. We can adapt the
sticking probabilityp( i , j ) to the situation at hand. Particu-
larly, the sticking probabilities can be made dependent on the
cluster sizes according to a power law; we will discuss this in
the next subsection.

We introduce a critical cluster sizei * , which is an arbi-
trary input to our program to determine the course of action
if there is no sticking between the clusters. If both clusteri
and j have less thani * monomers, we consider a rearrange-
ment, if at least one of them is larger than the critical cluster
size we let them undergo an elastic collision, with a redistri-
bution of the kinetic energy. This is an efficient, albeit some-
what artificial way to introduce the critical cluster size in our
simulations: clusters larger thani * do not break up, on col-
lision they either stick or undergo elastic collisions, whereas
clusters smaller thani * may, on reaction, rearrange their
cluster sizes. We neglect breakups into three or more par-
ticles.

In the Appendix we discuss the energetics of the colli-
sions, for the types we wish to consider in this paper. We
make the assumption that the clusters do not have internal
energy modes, hence we neglect energy distributions into
rotational and vibrational modes. Though this is a consider-
able restriction, it is important to note that it is not essential
to our model that we make this restriction. The DMC method
has sufficient flexibility to include any modes of internal
energy distribution if they are known. The binding energy
Eb(k) of the clusterk is given in terms of a ‘‘volume’’ term
aV and a ‘‘surface’’ termaS

40,41

Eb~k!5k~aV2aSk
21/3!, ~2.20!

whereaV andaS are constants dependent on the material and
k is the number of monomers in the cluster. In our present
implementation the binding energy is only used to assess the
~energetic! feasibility of a process.

E. Scaling behavior

We can now discuss the use of the DMC method to
simulate the Smoluchowski equation. The random choice of
the reacting particles accounts for concentration dependence
in the rate equation. The productv rel( i , j )sR( i , j ) is related
to the reaction rate constant~and hence to the kernel
K( i , j )) in the usual fashion15

K~ i , j !5k~T! i j5^v rel~ i , j !sR~ i , j !&T . ~2.21!

The averaging is over the velocity distribution at temperature
T. This gives an interesting relation between the kernels and
the reactive cross section. Assuming a Boltzmann distribu-
tion, the expression for the average velocity of the cluster is

v i}A3kT

m1i
, ~2.22!

wherem1 is the mass of a monomer and we find that the
velocity of the cluster scales withvl i } l21/2v i . The relative
velocity also scales withl21/2

v~l i ,l j !rel}l21/2v~ i , j !rel

and the reduced mass scales withl

m~l i ,l j !5
l il j

l i1l j
}lm~ i , j !
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so that the total relative kinetic energyET5 1
2mv

2 therefore
scales as

ET~l i ,l j !}l0ET~ i , j !.

The cross sections( i , j ) scales ass(l i ,l j ) } l2/3s( i , j ).
The total scaling of the kernel with cluster size is thus given
by 2v521/212/351/6. This result has been obtained
earlier25,30,42for ballistic models.

Also of interest is the scaling behavior with temperature.
Since v i(lT) } l1/2v i(T), we have a kernel scaling
KlT( i , j ) } l1/2KT( i , j ). These relationships describe thedy-
namicalscaling effects. Deviations from these scalings give
specific information about the scaling properties of the
nucleating species.

In our model, this is given by the scaling behavior of the
sticking probability. Suppose that the sticking probability
does not scale with the cluster numbersi and j , but has a
constant valuep0 ~for instance wherep0 is related to the
density of the reactive sites on the surface of the cluster!. For
a valuep051 and zero activation energy~all collisions re-
sulting in a reaction! the reaction kernel is completely deter-
mined by the collision number and we obtain an upper bound
to k(T). Conversely, for a low or zero sticking probability
where we have a large number of non-reactive collisions,
k(T) will be concomitantly lower in this case. However, the
same value forv can be expected, since the scaling behavior
essentially remains the same.

We can also make the sticking probabilityp( i , j ) depen-
dent on the cluster numbersi and j . One possibility, which
we use in the present paper, is to set

p~ i , j !5p03~ i j !2x, ~2.23!

so that the scaling behavior of the sticking probability is
given by

p~l i ,l j !5l22xp~ i , j !.

We expect a linear dependency ofv on x. The previous case
wherep0 is constant corresponds tox50. We can also simu-
late the case of a constant kernel. For the ballistic model we
have a scaling behavior as above and with the previous ex-
pression for the sticking probability we obtain
2v'1/622x. In the discussion, we will examine a simula-
tion of the Smoluchowski equation with 2x51/6, so that
2v is zero which is the constant kernel case. The simulation
results can then be fitted to Eq.~2.2! and put into Eq.~2.3! to
predict the number of clusters as a function of time.

We can obtainv from the simulation results through the
scaling behavior ofm and tk with v. In this way, we can
relate the very general fractal scaling behavior of the kernels
to the underlying physical processes.

III. IMPLEMENTATION

The implementation of the above into a computer pro-
gram closely follows the initial work of Piersall and
Anderson.32 Initially, we let the system consist of only
monomers, and we assign velocities to the monomers ac-
cording to a Maxwell distribution. We then randomly pick

two monomers, compute their relative velocity and cross sec-
tion and take the product (v rel( i , j )s( i , j )). We take the ratio
R of this to the ‘‘maximum product’’vsmax. We compare
R to a random number in the set@0,1# and if R is greater
than the random number the pair is accepted for a collision.
In this way, we preferentially select pairs with a high
(v rel( i , j )s( i , j )). In Anderson’s work, the maximum value
of vs is chosen as 9/10th of the value obtained in an ex-
tended simulation. We have made the following choice. Ini-
tially we put the maximum factor to zero. Every computed
factor v( i , j )s( i , j ) is compared to the current factor
vsmax. If ( v rel( i , j )s( i , j )) is less thenvsmax, we proceed in
the fashion sketched above. If (v rel( i , j )s( i , j )) is greater
thanvsmax for the current pair, we put

~vsmax!New523~v rel~ i , j !s~ i , j !!

and we compare the ratio (1/2 in this case! to a random
number. If this ratioR is larger than the random number, the
pair is accepted for a collision. The pair thus serves to en-
large the value ofvsmax and still has a probability of 1/2 to
lead to a collision. When the pair collides, we advance the
time step and compute the effects of the chemical reaction
between the clusters.

For every cluster, we only have to keep track of the total
number of monomers in the cluster and its velocity. The
cluster cross section can be computed using

s~ i , j !5p~ i 1/D1 j 1/D!d21,

whereD is the~fractal! dimension of the cluster andd is the
real space dimension. The relative velocity can be computed
from the velocities of the individual clusters and the relative
translational energyET from the relative velocity. After a
fixed number of collisions, we write out the values for the
time, the averagesm andS(t) and the number of molecules
of each cluster species, as well as the moments of the cluster
size distribution for later analysis. When a reaction takes
place, the numberN8 is updated. To speed up the program,
we also ‘‘shrink’’ the size of the arrays to the current number
of clusters after a fixed number of time steps. The total num-
ber of particles decreases very rapidly, and the shrinking is
needed to avoid too many ‘‘misses’’ in the random selection
of colliding monomers.

Our program employs the following units: all distances
are expressed in cm, all times inms, temperature in Kelvin
~K! and mass inu. The implementation of the method is not
computation intensive. All calculations were performed on
an Apple MacIntosh LC 475 with a Motorola 68040 micro-
processor using the MacIntosh Programmer’s Workshop
Version 3.3.3 and the Absoft FORTRAN compiler Version
3.4. Computation times were on the order of minutes.

IV. RESULTS AND DISCUSSION

In this section, we discuss the simulation results. First,
we examine the simulation of the Smoluchowski equation
with a constant kernel. We should be able to reproduce the
behavior of Eq.~2.2!. This will also provide a framework in
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which we can discuss simulations with more complex ker-
nels. Furthermore, we look at simulations with two kinds of
models. In the first model, which we call model I, we assume
that cluster formation is homogeneous in the kernels. In this
model, we also study the possibility that the clusters disinte-
grate when they are smaller than the critical cluster size. In
the second kind, designated model II, we assume anoma-
lously high binding energies and zero sticking probability for
clusters of a certain size.

We have adhered to values for the monomer sizes and
atomic mass that are consistent with silicon clusters

(m528u, and r51.17 Å!. We obtained the values foraB
andaV from a fit to PM3 calculations on the minimum struc-
tures of clusters of silicon.43 We employed values of
aV527.7048 eV andaS527.6012 eV. The total number of
molecules that were simulated wasN5131016, V51 cm3,
with a ‘‘real’’ simulated numberN8510000. We used
D5d53 for the dimensions.

A. Simulation of exact solution

It is possible to simulate the exact solution of the Smolu-
chowski equation, Eq.~2.2! with our program. To this end

FIG. 1. Immediate simulation of the Smoluchowski equation at temperatures of 500 K, 1000 K and 2000 K.~a! represents average cluster size. Since
v50 these curves should be straight lines.~b! represents the decrease in the total number of clusters for the three temperatures studied in this section. As can
be expected, the decrease is the fastest at the highest temperature.~c! shows the decrease in the monomer concentration.~d! presents the dimer concentration
as a function of time for the three temperatures. It is seen that the peak appears later and is somewhat lower with decreasing temperature.
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we set the variablesaV andaS to zero and we furthermore
neglect the possibility of cluster disintegration. We also set
the critical cluster size to zero so that all non-sticking colli-
sions are elastic and do not lead to breakups. As noted be-
fore, we set 2x51/6 (x51/12) to obtain a kernel that is
independent of the cluster size. The results form a test of the
program and also allow us to assess the precision of the
simulation.

In Fig. 1~a! we present the time dependence of the aver-
age cluster size as a function of time. A fit to the power law
Eq. ~2.10! yields values in the range 0.91–0.92 for the expo-
nential dependence, whereas the theoretical value forv50
is 1. In Fig. 1~b! we present the total number of clusters as a
function of time for three temperatures. At the highest tem-

perature the decrease proceeds most rapidly. Similarly, in
Figs. 1~c! and 1~d! we present the time dependence of the
monomer and dimer concentrations.

In Fig. 2 we present fits to Eq.~2.2! for 1000 K to the
values ofk and (1/2)KN. The simulation results are repre-
sented as dots, the curves represent the fits to the exact equa-
tion. The fit is quite good. The fits should reproduce integer
values fork and constant values for (1/2)KN. The results of
the fits for various temperatures are given in Table I where
this is seen to be the case to within 10% generally. It can be
further noted that the averages of (1/2)KN obey the scaling
behavior ofK with temperature, as described before: for
temperatures twice as large, the value ofK should increase
with 21/2, which is approximately the case.

As well as providing a test of the program, fits to the
exact result in Eq.~2.2! provide a useful way to discuss the
deviations from the ‘‘average’’ behavior of the clustering
process and investigate the effects of various alterations that
we can make to the reactive cross sections to make the model
more realistic.

B. Model I: Monotonous cluster growth and
disintegration

We now consider the monotonous cluster growth model
with binding energies dependent on cluster size. The model
is simplified in that the effects of internal rotation and vibra-
tion are not taken into account.

We choose a parametrization that mimicks the results
obtained by Venkateshet al.,35 especially their Figures 11
and 18, where they present the steric factor~‘‘sticking prob-
ability’’ ! as a function of cluster size and impact parameter.
The sticking probabilities are very small for the small clus-
ters and increase with cluster size until they reach unity for
clusters of size 12–14. We model this behavior by choosing
x520.4 andp050.1. This leads to a reasonable fit for the
cluster monomer sticking probabilities but is only a rough
description of the cluster–cluster sticking probabilities. The
process is thus characterized by 2v51/610.8. Though this
parametrization is the one most consistent with the data pro-
vided by Venkateshet al.35 it leads us to a value ofv that is
very close to the gelation regime~which appears as a

FIG. 2. Display of the time dependence of the cluster concentrations for the
first six cluster sizes fitted to exact solutions of the Smoluchowski equation
at T51000 K. Here, we have put 2x51/6 to obtain a constant kernel and
i *50 to obtain elastic collisions throughout. Points represent simulated
results, the curves represent the fits. The numerical fit data are given in
Table. I.

TABLE I. Simulations of the exact Smoluchowski equation at various temperatures. The results for the first 10
cluster sizes, 1<k<6 of the simulations with 2x51/6 fitted to Eq.~2.2!. Both k and (1/2)KN were used as fit
parameters. The last line contains the averaged values for (1/2)KN ~Avg.!.

T5500 K T51000 K T52000 K

k kfit (1/2)KN kfit (1/2)KN kfit (1/2)KN

1 1.0031 0.7159 1.0029 1.0237 1.0013 1.4176
2 2.0111 0.7426 1.9904 0.9973 2.0389 1.5032
3 2.9904 0.7307 3.0546 1.1097 3.0369 1.5536
4 3.9928 0.7409 3.9952 1.0448 3.9516 1.5389
5 4.9872 0.7220 5.0291 0.9906 4.9277 1.3698
6 5.9270 0.6589 5.7968 1.0299 5.8829 1.2562

Avg. 0.7185 1.0327 1.4399
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‘‘bumping together’’ of the maxima in the cluster concentra-
tions! and it is furthermore a value not compatible with the
data provided by Villaricaet al. who have negative values
for v of most materials.25 This suggests that the process of
metal cluster formation is not homogeneous in the kernels, at
least not with the simple homogeneity suggested by our
sticking probability formula.

The results for several temperatures are presented in
Figs. 3 and 4. Figure 3 is the counterpart of Fig. 1 and Fig. 4
is the counterpart of Fig. 2. The similarities between the two
figures are immediately apparent, so the characterization in
terms of the exact Smoluchowski equation is quite accurate
in this case. The numerical values of the fits to the size

distributions exhibit large deviations, so the exact solution is
only approximately correct in this case. This is no surprise,
since the kernel still scales in a homogeneous fashion in this
simulation.

We now introduce a critical cluster size, where clusters
smaller than the critical cluster size are allowed to disinte-
grate. We use a distribution which favors splitting a clusters
of k monomers into a monomer and ak21 cluster, though
other distributions are possible as well. The results of such a
calculation are presented in Fig. 5. They are strongly depen-
dent on energetic effects. Line A represents the case of mo-
notonous growth, without disintegration at 1000 K. Line B
shows the case where we disintegrate clusters of total size

FIG. 3. Average cluster size~a!, decrease in the total number of clusters~b!, decrease in the monomer concentration~c! and dimer concentrations~d! as a
function of time and temperature.
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smaller than 10 monomers and all difference in binding en-
ergy ~the chemical energy released in the system! is released
as kinetic energy of the parts by a scaling of the velocity.
Due to the shape of the curve of the binding energy, there is,
on average, a small velocity increase with disintegration: at
1000 K, disintegrations that lead to release of energy out-

number disintegrations that cost energy by about 7 to 1. This
leads to an increase in the temperature and hence the speed
of cluster formation. Line C shows the case where we do not
correct for release of binding energy. If energy is released, it
is assumed to disperse into the ‘‘internal’’ modes of the clus-
ter completely. Since we do not know whether the energy
release is kinetic or internal, we expect the physical curve to
lie between curve B and C. In real cases, the presence of a
dilutant gas and the relative effectiveness of heat transfer by
different gases would affect the overall temperature and en-
ergy distribution in the system.

C. Model II: Supershell clusters

In the formation of clusters, we obtain ‘‘anomalous’’
stabilities for clusters of a certain size. These sizes corre-
spond to ‘‘shell closings’’ in the sense of a ‘‘superatom’’
model. The fact that such clusters are anomalously stable
leads to a non-homogeneity in the kernels. We study this
effect by arbitrarily making cluster number 6 anomalously
stable and chemically inert. Thus the cluster with 6 mono-
mers acts as a ‘‘sink’’ in this simulation. Of special interest
are the cluster size distributions.

We present these for a simulation at 1000 K in Figs. 6
and 7. In Fig. 6 we present the average cluster size with the
sink cluster~drawn curve! and without the sink cluster~dot-
ted line!. The fact that the cluster with six monomers cannot
disintegrate, makes the onset of the average cluster size
steeper in this case. The fact that it is chemically inert is
responsible for the considerable levelling off seen at later
times. The fact that the shape of the curve is different in the

FIG. 4. Concentrations of then52–n56 clusters at 1000 K as a function
of time.

FIG. 5. Average cluster size for cluster formation with various varieties of
disintegration of the cluster when the total cluster size is smaller than the
critical cluster size. Line A represents the average cluster size without dis-
integration, line B shows the case where excess binding energy is put into
translation, line C the average cluster size with disintegration and ‘‘shed-
ding’’ of the kinetic energy. The ‘‘real’’ average cluster size is somewhere
in between lines B and C.

FIG. 6. Average cluster size for cluster formation with anomalously stable
clusters~dotted curves! and without such clusters~drawn line!. The 0/6
model has an anomalously stable cluster forn56, the 10/6 model adds the
effects of cluster disintegration, with shedding of the released binding en-
ergy.
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case of supershell clusters indicates that supershell behavior
can significantly distort the homogeneity of the cluster for-
mation process.

In Fig. 7 we present the cluster size distributions for
n52 to n56. It is immediately apparent that the different
chemical behavior of the cluster with 6 monomers com-
pletely breaks the cluster size distributions which follow
from the continuity of the kernels. It is worth while to note
that the clusters which do not possess anomalous stability are
not affected, a conclusion also drawn by Villaricaet al.25

The shape of the curve for the stable cluster bears no resem-
blance to the exact Smoluchowski curve at all.

Anomalous stability for metallic clusters is the rule
rather than the exception. We can therefore expect a break-
down of the formulas derived assuming homogeneous ker-
nels in these cases. This questions the use of the single pa-
rameterv for the characterization of metal clustering.

V. CONCLUSIONS

We have initiated the use of the direct Monte Carlo
~DMC! method in the study of~metal! cluster formation and
have discussed some examples.

We have found the direct Monte Carlo method easy to
implement and modify for a host of different physical mod-
els that describe cluster chemistry. The method can be easily
adapted to incorporate the special effects, such as supershells
and anomalous stabilities, which accompany the formation
of clusters in the gas phase. Its attractive feature is that the
DMC method allows us to focus immediately on the physical
aspects of cluster formation, rather than having to make as-
sumptions about the chemical reaction rate constants appear-
ing in the Smoluchowski equation.

The calculations can be easily performed on a personal
computer, and in cases where the kernels are homogeneous,
the results can be explained in terms of the exact solutions to
an approximate Smoluchowski equation. Deviations from
this behavior, such as the non-equilibrium properties, the
binding energy release when the disintegration is added and
the existence of anomalously stable clusters can be easily
added to the program. This yields valuable insight into the
mechanisms of cluster formation and the possible conse-
quences for applications of this process.

Considerable deviations from idealized behavior appear
in the case of an anomalously stable and chemically inert
cluster. The appearance of such anomalously stable clusters
is very common in the chemistry of metal clusters; consid-
erations such as those of Villaricaet al.25 which lead to one
v value for every substance should therefore be treated with
care.

The DMC method is very well suited to serve as a tool in
the study of cluster formation. There is virtually no limit to
the detail of the input for example, use of the results from
elaborate molecular dynamics and electronic structure calcu-
lations.

ACKNOWLEDGMENT

This work was supported by the University of Auckland
Research Committee.

APPENDIX: COLLISION TYPES AND ENERGY
DISTRIBUTIONS

In this Appendix we discuss the types of collisions and
the distribution of the kinetic energies among the particles.
We discuss the types of cluster formation mentioned in the
introduction to this paper:~i! Simple ~elastic! collisions,~ii !
stripping or rearrangement,~iii ! fragmentation, and~iv!
sticking. We neglect three particle breakups, hence~iii !.

For the elastic collisions~i!, we know the initial veloci-
ties and masses of the colliding particles, the other param-
eters of the collision, notably the impact parameter and the
orientation of the closest approach are determined randomly.
We use Mintzer’s formulas44 where the new velocities are
related to the centre of mass velocityG and the new relative
velocity g8 by

v815G2S m2

m11m2
Dg8, ~A1a!

v825G1S m1

m11m2
Dg8. ~A1b!

The new relative velocityg8 is given in the laboratory frame
by

FIG. 7. Cluster size distributions for cluster formation wit an anomalously
stable clusteratn56. It is seen that the cluster concentration for the anoma-
lous cluster steadily grows to a plateau.
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g85gS sinucosccosx1cosucoscsinxsine2sincsinxcose

sinusinccosx1cosusincsinxsine1coscsinxcose

cosucosx2sinusinxsine
D , ~A2!

where (u,c) represent the spherical coordinates of the rela-
tive velocity g in the lab frame,x is the angle between the
incoming and outgoing velocity vector. We choosex ran-
domly in the interval@0,p# and choose a random value for
e in the interval@0,2p#.

The other processes have to be treated less deterministi-
cally. For a rearrangement~iii ! we compute the total of the
kinetic and potential energies of the two colliding clusters
and distribute the atoms at random in the new clusters. We
distribute the fraction of the kinetic energy assigned to the
two new clusters in equal portions, and compute new random
velocities.

For a reactive sticking collision~iv! we compute the sum
of the kinetic energies of the clusters and the excess of bind-
ing energy, we form a new cluster and give the velocity of
the center of mass of the two initial clusters. We assume that
the remainder of the kinetic energy is shed. In fact, this is a
simplification, since the new cluster retains its excess energy
in rotation or vibration. We furthermore assume that the par-
ticle rearranges itself immediately after reaction~on a time
scale short in comparison to that of the reaction dynamics!
into approximately spherical shape, but retains its excess ro-
tational and vibrational energy.

At present, we do not distinguish between different
structures and internal modes of the particles; however, these
simplifications are not essential to the method and can be
remedied in a more detailed version of the program.
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