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We discuss the application of the direct Monte Carlo method to the theory of cluster formation.
Fractal relationships for the kernels appearing in the Smoluchowski equation are implemented in
this method and the scaling behavior of the kernels is investigated using computer simulation. We
study the effects of cluster disintegrations and also investigate the effects of “magic” numbers in
cluster formation. ©1996 American Institute of PhysidsS0021-960606)51231-4

I. INTRODUCTION is a field of study, wherémoleculaj dynamics, statistical
thermodynamics and chemical reaction theory intersect.
The theory of homogeneous nucleation has recently at-  ynder some circumstances, clusters exhibit an electronic
tracted renewed interest. In classical homogeneous nuclgnell structure not unlike the atomic model of Thomson,
ation theory the onset of nucleation is characterized by th?eading to “magic numbers” in the occurrence of clusters of

formation of significant numbers  of thermodynamlcally a certain size. At the magic numbers there are shell closings
stable clusters of monomers. Such clusters are, in a SeNS€ R ihe electronic structure and the “closed shell” clusters
new phase of the material, which exhibit quite specific prop-

erties of their owrl:2 A good overview of the current re- displgy anomalpus s.tabili.ti@& The “open shell” clusters
search on clusters is given in the recent collection of paper&Xhibit geometrical distortions of a Jahn—Teller type, leading
edited by Haberland. to considerable changes in the overall shape of the cluster as
Cluster formation is of immediate scientific and techno-2 function of the number of monomers. These anomalies
logical importance. For instance in chemical vapor deposihave consequences for the size distribution of the clusters
tion processes, the properties of the surface can be affecteshd are known to be influential even for high cluster num-
by cluster formation and part of the deposition process ibers.
known to proceed via cluster formatiérin the dry etching Much of the work in the area of cluster formation de-
of silicon wafers cluster formation in the plasma can foul therjyes from the original treatment given by Gibbs, Thomson
surface, leading to manufacturing irregularifeShe phe-  ang Helmholt2° The process has been discussed in relation

nﬁmenon of qtéanttljlm ddtean alfso be \_mTwed asba gljusc;‘e_r to phase transitions by FishErTwo approaches to homoge-
phenomenon. Small quantities of material are embedde N Beous nucleation exist in the literature. Though there is con-

host material, and their “cluster” properties lead specifically . o
. . . siderable overlap between the two, historically one approach
to the electrical and optical properties of the quantum dot;

The theory of the processing of nanoscale materials is ofteﬂr,',g,m""tlezS in the .work by Zeldovitch and Becker and

based on homogeneous nucleation theory and the formatidg©ing.  the other in the work of SmoluchowsRion emul-

of soot and atmospheric pollutants often begins with formasSification. For the purpose of this paper, we will designate

tion of clusters. Furthermore, the role of clusters as catalystdie first approach as “classical nucleation theofCNT)

for chemical reactions is starting to be recognized. and the second, the “kinetic” approach. Though some as-
Theoretically, atomic clusters are interesting in their ownpects of the approaches are very similar, up to now they have

right. They represent a very special area in physics becaudsen used in different contexts and have generated rather

they bridge the gap between the microscopic and the macrafifferent lines of research. Part of this paper is devoted to a

scopic world. A monomer’s behavior is governed by atomicstudy of their similarities and differences.

and molecular mechanics while the behavior of the bulk ma- | the classical approach it is assumed that the cluster

terial is governed by the macroscopic qualities of the matetormation proceeds with one monomer at a time. In the ini-

rial. As clusters form and grow, their behavior develops fromtial stages of the aggregation process this leads to a barrier in

fche molecular .t(.) the bUIk. b_e_hawor in a‘l‘seml-(’:,ontmuqus_ faSh'Ehe free energy, which occurs at a certain critical cluster size
ion. The traditional definition of a “phase” has limited

| r _ _ * This criti : . . :
meaning with respect to clusters. Solids for instance are char- This critical size functions as a transition state: clusters

acterized by long range order and similarly liquids by Shortsmalle.r than the critical size are unstable with rt_e_spect_to
range order. However, with the nascent clusters, the charafsVersion to the vapor, clusters larger than the critical size
teristic dimensions are often very different from the characgrow irreversibly, ultimately forming the condensed phase.
teristic lengths for either long or short range order and theirhe critical size is the smallest number of monomers which
properties are often dominated by surface effects. The theogan form a thermodynamically stable cluster. This is typi-
of formation of clusters from monomefaucleation theory  cally on the order of 10 to 100 monomers. Below this size
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the clusters tend to spontaneously decompose. The clusters K (\i,\j)=A2K1(i,j), (1.3
Aj» thus serve as the “transition state” in the nucleation

process. A “rate constant” for cluster formation can then beWhere 2v is a non-integer number, and the subsciipefers
derived in terms of this transition statet4a® to the temperature dependence. The kinetics of cluster for-

mation can be studied as a function of the fractality of the
kernels. The Smoluchowski equation leads to a set of time-
—AG;« dependent coupled differential equations, that can be solved
Jd:Cnlex;{ kT numerically on a computefsee for instance Refs. 25 and
26). Alternatively, the cluster formation process may be
At equilibrium, J, is constant since the rate of formation is simulated using a suitable direct simulation method and the
matched by the rate of loss and we obtain the nucleation ratgame results should be obtained in principle.
for CNT*®~18 In this paper we will show that fractal scaling of kernels
can be implemented in thdirect Monte Carlo(DMC) simu-
lation method in a straightforward fashion. This method was
, (1.2  pioneered by Birdf and later used by Anders&in**in stud-
ies of chemical kinetics of model systems. The method is
comparatively fast, easy to implement and yields good re-
sults for model systems. The advantage of the DMC proce-
dure is that the kernels of the Smoluchowski equation can be
directly related to the quantitiesog (wherev is the relative
velocity andog the reactive cross sectipthat determine the
rgaction probabilities in the direct Monte Carlo method

(1.9

5 NBs; (©)2 4 03
73 \ =) THT270n92

where ©® = s, /kgT, o is the (bulk value of the surface

tension,s; is the surface of a monomekg is Boltzmann’s

constant,S is the monomer supersaturatigh,is the mono-

mer flux to the surface antlis the temperature in Kelvin. In

the original version of CNT, growth and depletion of the

clusters was assumed to proceed one monomer at

time 121918 This approximation, which does not allow for

agglom_eratio_n in the formation of critical sized clusters, has  K.(i j)~(v(i,j)or(i,j))7 (1.9

been investigatet, and was recently shown to be

justifiable?! It should also be noted that this line of researchThe DMC method is not specific to the functional form of

on cluster formation has led to a “kinetic” approathPrac-  the reaction cross sectionsz so that we may choose any

tical applications of the CNT equation for nucleation give reasonable way to treat the collision dynamics. This makes it

results which in general are qualitatively correct but require @0ssible to test some of the laws relating to cluster formation

multiplicative correction factor to predict quantitative behav-using numerical simulation.

ior. This correction factor(“replacement factor’, princi- The material in this paper is complementary to the ma-

pally accounts for the fact that the equation for the free enterial in the recent paper of Venkateshal,* in which the

ergy is not consistent as— 1. A number of researchers have thermal collision rate constants for small nickel clusters

proposed correction factors and functional (2—14 atomgswere calculated. The aim of their paper was to

correctiong’+18:22,23 investigate the validity of the simplifying assumptions that
As can be seen from E@L.1) the key aspect in the CNT are often used in models of cluster growth and provide ad-

approach is the free energy of the cluster and the concom#fitional information on the breakdown of their validity. Spe-

tant problem of finding an expression for the surface tensioifically, they distinguish four types of cluster reactions:

of the cluster as a function of cluster sfZeFor very small (i) Simple(elastig collisions, where the clusters remain un-

droplets, the value for the surface tension deviates signifialtered,

cantly, but in a largely unknown fashion, from the bulk

value?® Apart from the uncertainties in the properties of

small clusters used in this approach, another problem is that

the final expression yields only limited information about (ji) Stripping or rearrangement,

cluster formation and can be difficult to implement in prac-

tical cases. Also, on its own, the CNT expression gives no o

information on the cluster size distribution or structure. AitAj— At A where k+1=i+]. (1.9
In the second _app_roach to cIustgr folrmation, which Weiii) Fragmentation or dissociation,

refer to as the “kinetic” approach in this paper, “nucle-

ation” is viewed as a process of chemical aggregation. The

original equation for this approach is the Smoluchowski ~ Aj+A;—=A+A+AL+ ...

equation->24-2"This approach gives an insight into the dy-

namical aspects of cluster formation and has recently at- o

tracted a lot of interest in the literature on fract&s>° The where i+j=k+I+m+ ... 1.7

chemical reaction rate constaris:(i,j) used in the rate (iv) Sticking,

equation(called the “kernels” in the fractal literatuyeare

assumed to have “fractal'(non-integeyr scaling properties

with cluster size Ai+A—A L. 1.9
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With the exception ofliii), our DMC method incorpo- 2. Smoluchowski approach

rates all of these cluster processes. In the Smoluchowski approach the basic equation for the

kinetic theory(the Smoluchowski equatigns the equation
describing the rate of cluster formation and depletion
In this section, we discuss the application of Anderson’s q L "
direct Monte CarloDMC) method to the process of homo- N - .
. . . —_— == K(i,j)nin;—n K(i,k)n;, 2.1
geneous nucleation. We first summarize some aspects of two dt 2 H,-E:k (L iy =N 2‘1 ko, @3

kinetic theories of cluster formation: classical nucleation

theory and the Smoluchowski theory. Both theories are Ver)yvhere we have neglected dissociation of clusters into smaller
similar from a mathematical point of view, but different in clusters. The first terms represents the rate of creation of

aim and scope. In the classical nucleation theory the aim is t« through association with smaller clusters, the last term the
derive an expression for the nucleation rajehe rate with 0SS of clustersA, through chemical reactions with other

which nuclei(clusters of the minimum stable sizierm ina  clusters. The second term in E(.1) includes both rear-
condensing species. The concept of an “equilibrium statet@ngement and dissociatidrexpressions(1.6) and (1.7)].

plays a central role in CNT as the connection between fre&!oWeVer, in this paper we neglect the dissociation of clus-
energy and kinetics in the determination of the nucleatiorf€'s: This assumption implies that the results obtained apply

rate. The Smoluchowski equation does not invoke the cont® What Rao and McMurry refer to as the collision con-
cept of an “equilibrium state.” Rather it is a dynamical trolled regime where the rate of growth is limited by the

equation that describes coagulation and clustering phenorg!lision frequency rather than the balance between growth
ena. It is of interest because of the fractal scaling theory oftnd decay. The dissociation or fragmentation of clusters can
the kernels. It is this scaling behavior of the kernels that® included in the DMC method. However, an independent
leads to an immediate characterization of the clustering proc'iteria must be developed to parametrize the rates for the
cess. In this section, we also discuss the central results of thi§€Verse” step because this method does not include the
theory, and we then go on to discuss some central equatior‘?§su_mpt'°” of an equmbrlum_ state so that the principle of
from the distribution theory of cluster formation. At each detailed balance cannot be invoked to relate forward and
moment in time, we can characterize the nucleating Syster{;,]ackward rates. The relaxation of the equilibrium assump-

by the parameters of its distribution of cluster sizes, typicallylion is @lso one of the advantages of this method. However,
the log normal distribution. the implementation of these effects is beyond the scope of

Then we discuss the implementation of the homoge—this paper. The eﬁiqiency of the “chemical” reactions be-
neous nucleation process into the DMC method. It will betv_vee_n cl_usters and |nd|V|unaI atoms or clusters_ qf different
shown that the DMC method can easily incorporate mosfiZ€ IS given by the chemical reaction rate coefficigtitsn
aspects of the fractal theory of clusters in terms of a physicdin® fractal literature relating to this approach, & are
model. These results can furthermore be translated into ternj§feérred to as the “kernels” and the scaling behavior of the

of the kinetic models discussed earlier and thus serve as tedfels(as a function of cluster sizés investigated.
of these models. In the original Smoluchowski papét,all kernels were

o . . assumed to have a constant value Kgrwith this approxi-
A. Two kinetic theories of cluster formation mation, the equation can be solved exac¢tige Ref. 30 for

As with all approaches, we start with a system consistingnstance and the4number of clusters of sizeat timet,
of N monomers. We designate a cluster of “sizk’(cluster ~ Nk(t), is given by
with k monomerg by A, and the number of such clusters by N[(1/2)KNt]<

ne. The time variable is denoted lty n(t)= (14 (L2KNEFT

Il. THEORY

2.2

1. Classical nucleation theory

We include only a brief discussion of classical nucle—The total number of clusters at tinteNc(t) is given by

ation theory here. The theory is obtaif®® when aggrega-

tion is assumed to take place with one monomer at a time. Nc(t)= [T+ (KN 2.3
The rate of formation of clusters witk monomers is then
expressed in terms of a “forward” rate constdlik,t) and a The Smoluchowski equation as given above is still a

“backward” rate constanb(k+1). Then(see for instance simplification since it does not allow for the disintegration of
Refs. 16 and 1)7we introduce the concept of a “steady” or a clusterA; ,; into Aj+A; . Cluster disintegration is a special
“equilibrium state” and use detailed balance to express thease of fragmentation where one of the collision partners has
“backward” rate constanb(k+1) in terms of the equilib- its monomer number conserved. Costas, Moreau and
rium values of the forward rate constant and the cluster conVicente?® have discussed exact solutions to an extended ki-
centrations. Two further mathematical tricks, as explained imetic Smoluchowski equation which includes cluster disinte-
for instance Refs. 16 and 17, lead to the expressioiERQ. gration. They also considered the simple scaling of the ker-
The concept of the “equilibrium state,” where the nucle- nels for the case of constant and additive kernels. Since this
ation rate is constant and independent of cluster size is cels not of primary concern for us here, we refer to their paper
tral to all derivations of CNT. for a further discussion.
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B. Kernels of gas-phase nucleation. Fer>3 we obtain thegelation

In the previous subsection, we discussed the case whefégime, where an infinite cluster appears after a certain char-
the kernels are constant for each cluster size. In practicaiCteristic timet, .
cases the kernels will be different for each cluster $ared It is interesting to consider the number of clustegs
geometry, and each size will be in effect a different species.with k>1. Initially, n, must be increasing in time but for
The kernels entering the Smoluchowski equation have beeldrge times, then, must decrease as the clusters coalesce to
the subject of active research recently. It can be shown thderm larger clusters. The timg at which the maximum in
the scaling properties of the kernels differ for the two fami-the cluster numben, appears has been determined by Vil-
lies of kinetic models of cluster formation, theallistic  laricaet al®® and is found to scale wit as
modeland thediffusion modelsee Ref. 37 for a discussion 2_ 24\ 201

tk“( ) :

and comparison of these two models, as well as an overview
of the literature.
Jullier® has shown that the scaling properties of thewhich is consistent with the partition into the regimes given

(2.12

kernel for the diffusion model are given by above. Forw> 3 the timest, are decreasing for increasing
. l_ . . - - .

K(ij)or (19 %) (10 + jLUDyd-2 2.4) cluster size, forw<3 it is an increasing function df.
and for the ballistic model by C. Moments and distributions

K(i,j)oe(i2+j2) Y2(i P 4 j1Dyd-1, (2.9 It is convenient to discuss the characteristics of a cluster
Both expressions scale with cluster size according to the re3ize distribution over time in terms of itsomentswhich are
lation given by

- . ) 2&) . - ®

KO A oMK, 2.6 8022 n;=N¢c (Number of clusters (2.133
where the exponen for both the diffusion and the ballistic =1
models is given by w

20=a+(d—d,)/D, 2.7) Sl=i21 inj=N (Number of atomg (2.13bh

whered,, is the fractal dimension of the cluster trajectory, i
d is the “true” or embedding dimensiofthree in this case S,=> i%n;, (2.139
andD is the fractalHausdorfj dimension of the cluster. For i=1
the di_ffusion casel,, =2 and for the bgllistic c_aselw_= 1.In ondin general
the discussion of the Smoluchowski equation given above,
the kernels are constant and=0. B _k
We have to determine how the cluster size distribution Sk_izl LR (2.130
evolves in time. Jullieret al?*3% and Villaricaet al®® have _
shown that for long times the cluster size distribution can!he equalityS; =N follows from the fact that the total num-

generally be written as ber of atoms is conserved and can be used as a check on the
o bk programming. In terms of these moments, we can express the
n,=Akde POk (2.8 average cluster sizg(t), as a function of time by
whereA, a are constants aru(t) is a function of time. From Sy(t) N
this assumption it follows th&t the scaling behavior of ,ul(t)=8—(t)= Ne(D) (2.19
b(t) is given by 0 €
boctU20—1) 2.9 and the characteristic moments as
. _ Si
so that the average cluster sia¢t) scales with time as wi(t)= N_' (2.15
1-2w

n(t)= Ne ™~ b(D o (tH/2o- D)~ l=¢~U2e=D (210 It is convenient to study the time behavior of the cluster

c formation in terms of the evolution of the log normal distri-
The value ofw can thus be determined from a fit to the time bution of the cluster sizesee for instance Ref. 38In this
dependence qf. From this result and the last equality in Eq. distribution, we assume that is a normal(Gaussiah dis-
(2.14 it is immediately seen that the total number of clusterstribution of the logarithm of cluster size (Ink).

Nc(t) scales with time as The momentsy; can be written in terms of the param-
eters of the log normal distribution ¥s
Ng(t)sctU2o=1), (2.1 9T
The value ofw is thus an important system parameter, #1=exf (Ink) +0.50(Ink) ] (2.169
since it characterizes th? clusteripg process aI'most com- Mz:equ(m)—FZa’(mk)] (2.16b
pletely. In the regimew<; we obtain theflocculation re- e
gime, which we will restrict ourselves to in our simulations u3=exd 3(Ink) +4.50(Ink) ] (2.160
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so that we can fit the time development of the characteristics We introduce a critical cluster sid&, which is an arbi-
of the log normal distribution from the moments. trary input to our program to determine the course of action
Villarica et al® have investigated the relation between if there is no sticking between the clusters. If both cluster
the size distribution in Eg2.8) and the log normal distribu- andj have less than* monomers, we consider a rearrange-
tion and shown that the log normal distribution is a goodment, if at least one of them is larger than the critical cluster
approximation over a large range of cluster size distributionssize we let them undergo an elastic collision, with a redistri-
bution of the kinetic energy. This is an efficient, albeit some-
D. The direct Monte Carlo method what artificial way to introduce the critical cluster size in our
simulations: clusters larger that do not break up, on col-
The direct Monte Carlo method was initiated by the ision they either stick or undergo elastic collisions, whereas
work of Bird®! on fluid structure, and has been used to studys|,sters smaller thaii* may, on reaction, rearrange their

model chemical reactions by Anderstn=* cluster sizes. We neglect breakups into three or more par-
The central assumption of the DMC method is that thejjcles.
collisions in the gas or fluid are completely random. There- | the Appendix we discuss the energetics of the colli-
fore we do not have to keep track of the positions of thesions, for the types we wish to consider in this paper. We
particles, only their velocities. In contrast to the molecularmake the assumption that the clusters do not have internal
dynamics methods, we pick colliding pairs randomly. Weenergy modes, hence we neglect energy distributions into
can simulate a physically sensible numgypically on the  yotational and vibrational modes. Though this is a consider-
order of 16°) of particles by a much smaller amount of apje restriction, it is important to note that it is not essential
particles(on the order of 1) if we introduce a simultaneous o our model that we make this restriction. The DMC method
scaling of their collision cross section. The total Knudsenpas sufficient flexibility to include any modes of internal
number remains the same. The main trick of the direct simuanergy distribution if they are known. The binding energy

lation method, as devised by Bird, is that the sampled molg (k) of the clusteik is given in terms of a “volume” term
ecules also serve to evaluate the time-step advance in th ang a “surface” termag*®*!

simulation. Thus, it is not necessary to evaluate the relative s
velocities for all possible pairs of molecules. The elimination ~ En(K)=k(ay—agk™ "), (2.20

of the need to track position and the reduction in the numbejyherea,, andag are constants dependent on the material and
of sample size greatly reduces the computation time rey s the number of monomers in the cluster. In our present

quired. _ o . implementation the binding energy is only used to assess the
The scaling procedure is implemented as follows\ s (energetit feasibility of a process.

the number of physically present particl&the volume of
the cell andN’ the number of particles in the simulation,

then the scaling of the cross section is given by
E. Scaling behavior

U’(i,j,v)=0'(i,j,v)H. (2.17 We can now discuss the use of the DMC method to
simulate the Smoluchowski equation. The random choice of
For every collision, the time advance is givertby the reacting particles accounts for concentration dependence
oV 1 in the rate equation. The produgfy(i,j)og(i,j) is related
At=—— — (2.18§ to the reaction rate constarfand hence to the kernel
N'(N"=1) (vijo(i,j))c K(i,j)) in the usual fashioft

where (. .. ). designates the quantity for the colliding pair. S _ o -
The cross section for a colliding pair of hard spheres is given K(0,1)=k(Tij = (vrell ) or(i.D)) - 2.21
aso(i,j)=nri(n’P+ njl’D). The averaging is over the velocity distribution at temperature
We define a “sticking probability”p(i,j) for the pair of ~ T. This gives an interesting relation between the kernels and
clusters (,j), which gives the probability that they will stick the reactive cross section. Assuming a Boltzmann distribu-
together. The total reactive cross section can then be writtetion, the expression for the average velocity of the cluster is

in the “Arrhenius” form [see Ref. 15, Eq4.17)] T
E* Vi“\ —/— (223
aR<i,j>=p<i,j>o<i,j>(1—E—), (2.19 !
T wherem; is the mass of a monomer and we find that the

for E;>E*. Here E* represents the activation enerdy;  velocity of the cluster scales with,; = A ~*%; . The relative
the relative translational energy of the cluster pair. Whenyeocity also scales withh =12

Er<E* the reaction probability is zero. The sticking prob- o T
ability is analogous to the steric factor. We can adapt the V(AN )@\ (0 i)re
sticking probabilityp(i,j) to the situation at hand. Particu- gnd the reduced mass scales with
larly, the sticking probabilities can be made dependent on the
cluster sizes according to a power law; we will discuss this in
the next subsection.

w(hi,\j)= aAu(i,j)

NiNj
XERY
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so that the total relative kinetic ener@;=uv? therefore  two monomers, compute their relative velocity and cross sec-
scales as tion and take the producbtf(i,j)o(i,j)). We take the ratio
- O /i : R of this to the “maximum product’v o o. We compare
Er(MLA ) AE (1)) R to a random number in tEe sgd,1] aﬂ?ﬂx if R is grelzaiter
The cross sectiow(i,j) scales asr(\i,\j) = A*30(i,j).  than the random number the pair is accepted for a collision.
The total scaling of the kernel with cluster size is thus givenin this way, we preferentially select pairs with a high
by 2w=—1/2+2/3=1/6. This result has been obtained (v (i,j)o(i,j)). In Anderson’s work, the maximum value
earlier®>3%*2for ballistic models. of vo is chosen as 9/10th of the value obtained in an ex-
Also of interest is the scaling behavior with temperature.tended simulation. We have made the following choice. Ini-
Since v;(A\T) = \Y2,(T), we have a kernel scaling tially we put the maximum factor to zero. Every computed
Kat(i,j) = NY%K1(i,j). These relationships describe e  factor v(i,j)o(i,j) is compared to the current factor
namicalscaling effects. Deviations from these scalings givey o,,. If (ve(i,j)a(i,])) is less thew o .4, We proceed in
specific information about the scaling properties of thethe fashion sketched above. If{(i,j)o(i,j)) is greater
nucleating species. thanv o4 for the current pair, we put
In our model, this is given by the scaling behavior of the S
sticking probability. Suppose that the sticking probability (VT madNew= 2 X (U rel(i,]) o (i,]))
does not scale with the cluster numbérand j, but has a and we compare the ratio (1/2 in this cage a random
constant valugp, (for instance where, is related to the number. If this raticR is larger than the random number, the
density of the reactive sites on the surface of the clustar  pair is accepted for a collision. The pair thus serves to en-
a valuepo=1 and zero activation enerdll collisions re- large the value of o, and still has a probability of 1/2 to
sulting in a reactionthe reaction kernel is completely deter- lead to a collision. When the pair collides, we advance the
mined by the collision number and we obtain an upper boundime step and compute the effects of the chemical reaction
to k(T). Conversely, for a low or zero sticking probability between the clusters.
where we have a large number of non-reactive collisions, For every cluster, we only have to keep track of the total
k(T) will be concomitantly lower in this case. However, the number of monomers in the cluster and its velocity. The
same value fow can be expected, since the scaling behaviorcluster cross section can be computed using
essentially remains the same.

o o O'(l '):W(i1/D+'1/D)d—l
We can also make the sticking probabilfiyi,j) depen- 2 ] '
dent on the cluster numbersand j. One possibility, which  whereD is the(fracta) dimension of the cluster ardiis the
we use in the present paper, is to set real space dimension. The relative velocity can be computed
p(i,j)=pox (i) %, (2.23 from the velocities of the individual clusters and the relative

_ _ o ~~ translational energ§y from the relative velocity. After a
so that the scaling behavior of the sticking probability isfixed number of collisions, we write out the values for the
given by time, the averageg and S(t) and the number of molecules

NN =N "2 of each cluster species, as well as the moments of the cluster
P(NILN]) p(i.j). A, . .

) ) size distribution for later analysis. When a reaction takes
We expect a linear dependencywfon x. The previous case place, the numbeN’ is updated. To speed up the program,
wherepy is constant corresponds xe=0. We can also simu- e also “shrink” the size of the arrays to the current number
late the case of a constant kernel. For the ballistic model Wgf clysters after a fixed number of time steps. The total num-
have a scaling behavior as above and with the previous &ger of particles decreases very rapidly, and the shrinking is
pression for the sticking probability we obtain peeded to avoid too many “misses” in the random selection
2w~1/6—2x. In the discussion, we will examine a simula- of colliding monomers.

tion of the Smoluchowski equation withx2=1/6, so that Our program employs the following units: all distances
results can then be fitted to E@.2) and putinto Eq(2.3)t0 (k) and mass in. The implementation of the method is not
predict the number of clusters as a function of time. computation intensive. All calculations were performed on

We can obtainw from the simulation results through the an Apple Macintosh LC 475 with a Motorola 68040 micro-
scaling behavior ofx andt, with . In this way, we can  processor using the Macintosh Programmer's Workshop
relate the very general fractal scaling behavior of the kernelg/ersion 3.3.3 and the Absoft FORTRAN compiler Version
to the underlying physical processes. 3.4. Computation times were on the order of minutes.

IIl. IMPLEMENTATION

. . . IV. RESULTS AND DISCUSSION
The implementation of the above into a computer pro-

gram closely follows the initial work of Piersall and In this section, we discuss the simulation results. First,
Andersor? Initially, we let the system consist of only we examine the simulation of the Smoluchowski equation
monomers, and we assign velocities to the monomers aavith a constant kernel. We should be able to reproduce the
cording to a Maxwell distribution. We then randomly pick behavior of Eq(2.2). This will also provide a framework in
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FIG. 1. Immediate simulation of the Smoluchowski equation at temperatures of 500 K, 1000 K and 2(#)0réfresents average cluster size. Since

=0 these curves should be straight lings.represents the decrease in the total number of clusters for the three temperatures studied in this section. As can
be expected, the decrease is the fastest at the highest tempei@tahmws the decrease in the monomer concentrafrpresents the dimer concentration

as a function of time for the three temperatures. It is seen that the peak appears later and is somewhat lower with decreasing temperature.

which we can discuss simulations with more complex ker{m=28u, andr=1.17 A). We obtained the values fag
nels. Furthermore, we look at simulations with two kinds ofanda,, from a fit to PM3 calculations on the minimum struc-
models. In the first model, which we call model |, we assumeures of clusters of silicof® We employed values of
that cluster formation is homogeneous in the kernels. In thig,= —7.7048 eV anchs= —7.6012 eV. The total number of
model, we also study the possibility that the clusters disintemolecules that were simulated whis=1x10'°, V=1 cn?,
grate when they are smaller than the critical cluster size. IWith a “real” simulated numberN’=10000. We used
the second kind, designated model Il, we assume anomd& =d=3 for the dimensions.
lously high binding energies and zero sticking probability for . i i
clusters of a certain size. A. Simulation of exact solution

We have adhered to values for the monomer sizes and It is possible to simulate the exact solution of the Smolu-
atomic mass that are consistent with silicon clusterschowski equation, Eg2.2) with our program. To this end
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2000 —— e e perature the decrease proceeds most rapidly. Similarly, in
l — - Figs. Xc) and Xd) we present the time dependence of the
4" e monomer and dimer concentrations.
\ - e -n=3] | In Fig. 2 we present fits to Eq2.2) for 1000 K to the
1500 ‘, Toen=d values ofk and (1/2KN. The simulation results are repre-
il % IR sented as dots, the curves represent the fits to the exact equa-
ﬁ 1\ - tion. The fit is quite good. The fits should reproduce integer
B
§

the fits for various temperatures are given in Table | where
] this is seen to be the case to within 10% generally. It can be
b ] further noted that the averages of ({2 obey the scaling

\ . behavior of K with temperature, as described before: for
temperatures twice as large, the valuekoshould increase
with 22, which is approximately the case.

As well as providing a test of the program, fits to the
exact result in Eq(2.2) provide a useful way to discuss the
deviations from the “average” behavior of the clustering
s 20 25 process and investigate the effects of various alterations that
we can make to the reactive cross sections to make the model
more realistic.

1000

b 1 values fork and constant values for (1&N. The results of
i ]

\

1

Number of clusters

Time (microseconds)

FIG. 2. Display of the time dependence of the cluster concentrations for the
first six cluster sizes fitted to exact solutions of the Smoluchowski equatio .
at T=1000 K. Here, we have pub2=1/6 to obtain a constant kernel and rB Model I: Monotonous cluster growth and

i*=0 to obtain elastic collisions throughout. Points represent simulateodlsmtegratIOn

results, the curves represent the fits. The numerical fit data are given in We now consider the monotonous cluster gl’OWth model
Table. 1.

with binding energies dependent on cluster size. The model

is simplified in that the effects of internal rotation and vibra-

tion are not taken into account.
we set the variablea,, andag to zero and we furthermore We choose a parametrization that mimicks the results
neglect the possibility of cluster disintegration. We also sebbtained by Venkateskt al,*® especially their Figures 11
the critical cluster size to zero so that all non-sticking colli-and 18, where they present the steric fagtsticking prob-
sions are elastic and do not lead to breakups. As noted bability” ) as a function of cluster size and impact parameter.
fore, we set =1/6 (x=1/12) to obtain a kernel that is The sticking probabilities are very small for the small clus-
independent of the cluster size. The results form a test of theers and increase with cluster size until they reach unity for
program and also allow us to assess the precision of thelusters of size 12—14. We model this behavior by choosing
simulation. x=—0.4 andp,=0.1. This leads to a reasonable fit for the

In Fig. 1(a) we present the time dependence of the avercluster monomer sticking probabilities but is only a rough

age cluster size as a function of time. A fit to the power lawdescription of the cluster—cluster sticking probabilities. The
Eq. (2.10 yields values in the range 0.91-0.92 for the expo-process is thus characterized by 2 1/6+0.8. Though this
nential dependence, whereas the theoretical valuenfod parametrization is the one most consistent with the data pro-
is 1. In Fig. 1b) we present the total number of clusters as avided by Venkateslet al® it leads us to a value ab that is
function of time for three temperatures. At the highest tem-ery close to the gelation regimévhich appears as a

TABLE |. Simulations of the exact Smoluchowski equation at various temperatures. The results for the first 10
cluster sizes, £k=<6 of the simulations with 2= 1/6 fitted to Eq.(2.2). Bothk and (1/2KN were used as fit
parameters. The last line contains the averaged values for(ll/2ZAvg.).

T=500 K T=1000 K T=2000 K
k et (L/2)KN i (L/2)KN e (L2)KN
1 1.0031 0.7159 1.0029 1.0237 1.0013 1.4176
2 2.0111 0.7426 1.9904 0.9973 2.0389 1.5032
3 2.9904 0.7307 3.0546 1.1097 3.0369 1.5536
4 3.9928 0.7409 3.9952 1.0448 3.9516 1.5389
5 4.9872 0.7220 5.0291 0.9906 4.9277 1.3698
6 5.9270 0.6589 5.7968 1.0299 5.8829 1.2562
Avg. 0.7185 1.0327 1.4399
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FIG. 3. Average cluster siz@), decrease in the total number of clustésy decrease in the monomer concentrationand dimer concentrationsl) as a
function of time and temperature.

“bumping together” of the maxima in the cluster concentra- distributions exhibit large deviations, so the exact solution is
tions) and it is furthermore a value not compatible with the only approximately correct in this case. This is no surprise,
data provided by Villariceet al. who have negative values since the kernel still scales in a homogeneous fashion in this
for o of most material$® This suggests that the process of simulation.

metal cluster formation is not homogeneous in the kernels, at We now introduce a critical cluster size, where clusters
least not with the simple homogeneity suggested by ousmaller than the critical cluster size are allowed to disinte-
sticking probability formula. grate. We use a distribution which favors splitting a clusters

The results for several temperatures are presented iof K monomers into a monomer andka- 1 cluster, though

Figs. 3 and 4. Figure 3 is the counterpart of Fig. 1 and Fig. dbther distributions are possible as well. The results of such a
is the counterpart of Fig. 2. The similarities between the twacalculation are presented in Fig. 5. They are strongly depen-
figures are immediately apparent, so the characterization ident on energetic effects. Line A represents the case of mo-
terms of the exact Smoluchowski equation is quite accurateotonous growth, without disintegration at 1000 K. Line B
in this case. The numerical values of the fits to the sizeshows the case where we disintegrate clusters of total size

J. Chem. Phys., Vol. 105, No. 7, 15 August 1996

Downloaded-25-Aug-2009-t0-130.216.12.217.=Redistribution-subject-to-~AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



H. Hettema and J. S. McFeaters: Direct Monte Carlo method for homogeneous nucleation 2825

2000 —— — — . — — — .
i ] ]
n=1 14 f
— -n=2
- — -n=3 /
----- n=4
rrrrr n=5 12 /
1800 Lo o] eate /
4 10 /
g 3 / / -
é 7N g / -7
g —
o / g 8 -
8 1000 3 / s
L [
£ / ™ g / o
E I g 8
3 / < B
2 N | [ // e
I 4 L,l.2 — ]
500 L / Model I
N~
L ~ ~ J L -
I 4 R - ~ | L % —— -0/6 model
j g T~ ~ - A 5N S S——— R - N
// e T~ T / = = -10/6 model
S S G R BN bbb R F
0 i R T R . R R ) P — L P S .
o 5 10 15 20 25 0 20 40 60 80 100

Time (microseconds)
Time (microseconds)

FIG. 4. Concentrations of the=2-n=6 clusters at 1000 K as a function

of time. FIG. 6. Average cluster size for cluster formation with anomalously stable
clusters(dotted curves and without such cluster&rawn line. The 0/6
model has an anomalously stable clusterrfer6, the 10/6 model adds the

smaller than 10 monomers and all difference in binding ené&ffects of cluster disintegration, with shedding of the released binding en-
ergy (the chemical energy released in the systeameleased '
as kinetic energy of the parts by a scaling of the velocity.

Due to the shape of the curve of the binding energy, there ISFumber disintegrations that cost energy by about 7 to 1. This

230%V(zag?s’iri:;a?:ilo\;ilciﬁg :ggge?serg;':gsg'sc')?tgg;?g;nc')uat_eads to an incrc_ease i.n the temperature and hence the speed
' of cluster formation. Line C shows the case where we do not
correct for release of binding energy. If energy is released, it
is assumed to disperse into the “internal” modes of the clus-
T ; T 7] ter completely. Since we do not know whether the energy
: ) release is kinetic or internal, we expect the physical curve to
L _ ‘ / ] lie between curve B and C. In real cases, the presence of a
1o | T °B: Split + Kin. En. ] dilutant gas and the relative effectiveness of heat transfer by
[ |~ ~-c: split + Int. En. / ] different gases would affect the overall temperature and en-

ergy distribution in the system.

Model I

10

8| | C. Model II: Supershell clusters

I / ] In the formation of clusters, we obtain “anomalous”
6 = ] stabilities for clusters of a certain size. These sizes corre-
i % > ] spond to “shell closings” in the sense of a “superatom”
4 — model. The fact that such clusters are anomalously stable
[ / ] leads to a non-homogeneity in the kernels. We study this
I ~ ] o .
2 — effect by arbitrarily making cluster number 6 anomalously
L ] stable and chemically inert. Thus the cluster with 6 mono-
L N I mers acts as a “sink” in this simulation. Of special interest
0 5 10 15 20 25 are the cluster size distributions.
Time (microseconds) We present these for a simulation at 1000 K in Figs. 6
and 7. In Fig. 6 we present the average cluster size with the
FIG. 5. Average cluster size for cluster formation with various varieties ofsmk.CIUSter(draWn curve and W'thOL_‘t th? sink clusteidot-
disintegration of the cluster when the total cluster size is smaller than thdéed line. The fact that the cluster with six monomers cannot
critical cluster size. Line A represents the average cluster size without disglisintegrate, makes the onset of the average cluster size
integration, line B shows the case where excess binding energy is put "Qteeper in this case. The fact that it is chemically inert is
translation, line C the average cluster size with disintegration and “shed- . . .
ding” of the kinetic energy. The “real” average cluster size is somewhere r?5p0ns'b|e for the considerable levelling Pff seen at' later
in between lines B and C. times. The fact that the shape of the curve is different in the

Average cluster size
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1000 —————————— — T The calculations can be easily performed on a personal
1 ' 1]] computer, and in cases where the kernels are homogeneous,
| i1l the results can be explained in terms of the exact solutions to

800 \ oon=g an approximate Smoluchowski equation. Deviations from

. \ e this behavior, such as the non-equilibrium properties, the

I A . binding energy release when the disintegration is added and
| \ ] the existence of anomalously stable clusters can be easily
| \ | added to the program. This yields valuable insight into the

! \ , e mechanisms of cluster formation and the possible conse-

J R : quences for applications of this process.

I P Considerable deviations from idealized behavior appear

| ) ~ ] in the case of an anomalously stable and chemically inert

l‘ N N \ cluster. The appearance of such anomalously stable clusters
| [T WSO ~ is very common in the chemistry of metal clusters; consid-

l

[

600

Number of clusters

400

200 o -
AP R >~ ] erations such as those of Villariea al>® which lead to one

— w value for every substance should therefore be treated with
o ‘:4' o L ‘ ‘ } ‘ i_'i‘: . ;7’_’.’?'. care.
30 40 50 The DMC method is very well suited to serve as a tool in
the study of cluster formation. There is virtually no limit to
Time (microseconds) the detail of the input for example, use of the results from
elaborate molecular dynamics and electronic structure calcu-
FIG. 7. Cluster size distributions for cluster formation wit an anomalously lations.
stable clusterat=6. It is seen that the cluster concentration for the anoma-
lous cluster steadily grows to a plateau.
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case of supershell clusters indicates that supershell behavior
can significantly distort the homogeneity of the cluster for-
mation process.

In Fig. 7 we present the cluster size distributions for
n=2 to n=6. It is immediately apparent that the different
chemical behavior of the cluster with 6 monomers com-aAppENDIX: COLLISION TYPES AND ENERGY
pletely breaks the cluster size distributions which follow pISTRIBUTIONS
from the continuity of the kernels. It is worth while to note
that the clusters which do not possess anomalous stability are In this Appendix we discuss the types of collisions and
not affected, a conclusion also drawn by Villarieaal?®  the distribution of the kinetic energies among the particles.
The shape of the curve for the stable cluster bears no resefVe discuss the types of cluster formation mentioned in the
blance to the exact Smoluchowski curve at all. introduction to this paper(i) Simple (elastig collisions, (ii)

Anomalous stability for metallic clusters is the rule Stripping or rearrangement(ii) fragmentation, and(iv)
rather than the exception. We can therefore expect a breaRticking. We neglect three particle breakups, hefiicg
down of the formulas derived assuming homogeneous ker- For the elastic collision$), we know the initial veloci-
nels in these cases. This questions the use of the single pées and masses of the colliding particles, the other param-

rameterw for the characterization of metal clustering. eters of the collision, notably the impact parameter and the
orientation of the closest approach are determined randomly.

V. CONCLUSIONS We use Mintzer's formuld4 where the new velocities are
related to the centre of mass velocfdyand the new relative
We have initiated the use of the direct Monte Carlovelocity g’ by
(DMC) method in the study ofmeta) cluster formation and
have discussed some examples.
We have found the direct Monte Carlo method easy to m,
implement and modify for a host of different physical mod- V= G—(m) g, (Ala)
els that describe cluster chemistry. The method can be easily 1
adapted to incorporate the special effects, such as supershells
and anomalous stabilities, which accompany the formation
of clusters in the gas phase. Its attractive feature is that the V=
DMC method allows us to focus immediately on the physical
aspects of cluster formation, rather than having to make as-
sumptions about the chemical reaction rate constants appedrhe new relative velocitg’ is given in the laboratory frame
ing in the Smoluchowski equation. by
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sinfcoslcosy + cosHCcosysiny Sine— singsiny cose
g =g| singsingcosy+ cosdsingsinysine + cosysinycose (A2)

cosfcosy — singsinysine
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