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Coupled radial equations are derived for the ladder approximation Bethe-Salpeter equation describing a
system of two spin-(1/2) particles of unequal masses interacting to form a bound state of total mass zero. The
numerical behavior of the coupling parameter A as a function of the mass ratio is examined for known
analytical equal-mass solutions. In addition a perturbation method is employed to investigate the behavior of A

for small values of the exchange mass.

. INTRODUCTION

In this section we briefly recapitulate certain features
of the Bethe ~Salpeter (BS) equation for two bound spin-
3 particles, We examine equal mass systems in Sec. 1I
and perturbation of the mass of the exchange boson in
Sec. III. In several contexts we need to refer to a paper
by Brennan and Keam® and a series of papers by Keam. ?
The notations and conventions of the present paper are
the same as for these references.

In configuration space, the ladder approximation,
Wick -rotated BS equation describing the interaction of
a spin-; fermion of mass m, and a spin-; antifermion
of mass m, to form a bound state of total 4-momentum
P=(P,iE), may be written

ly-(a+ip, P)+ m,,]f(x)[‘/'(g—iubP) +m,)= -/ (R) flx), (1)

where x is the (Euclidean) relative coordinate, R (=vx?)
is the four-dimensional radius, |/ describes the inter-
action of the two particles, and p, +u,=1. Inthe par-
ticular case where the interaction is due to the exchange
of a boson of mass u,® the potential |/ takes the form
[we use the label n. s, (j) to show that j is not summed
up in the preceding expression]:

Vi==ATi(4un/R)K (uR), n.s.(j), (2)
where A/, the coupling parameter, is given by*
N =glgl/(4n)?, n.s.(j). (3)

Here j assumes the values 1,2,4, or 5 when the ex-
change boson is of scalar, vector, axial vector, or
pseudoscalar type, respectively. In the notation of K1,
TV is of form ¢,T; [n.s. (j)], where ¢, is +1 for j=1,4
and -1 for j=2,5. g (i=a,b) is the coupling constant
for the interaction of particle i with the exchange boson,

When the particle of mass m, is a fermion rather than
an antifermion, the modified BS amplitude f°(p) = f(p)C*,
where C is the charge conjugation matrix, satisfies an
equation of the same form as Eq. (1). The potential
due to boson exchange is the same, with the exception
that I'’= +T,. 5

In relative momentum space, the transform of Eq.
(1) may be written

by + ., P)=im ] fp)ly - (p -, P) —im, ]
= @) [ d*®ll/(|p - k) 15, (4)

where
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W) = [ dxet™{/(R), )
and
K =1,
For the exchange of a boson of “type” j,
W(K) = -3 1@n)? (K> + p?)*Ti,  n.s.(3). (6)

Throughout this paper we consider the BS equation for
the centre of mass system with E vanishing; viz P, =0,

Il. UNEQUAL MASS SYSTEMS
A. Introduction

Unequal mass systems have not previously been con-
sidered in any detail. Brennan and Keam?! have shown
that the coupling parameter is an even function of the
mass difference, m, - m,. Keam ** developed a per-
turbation theory and applied this to an SV sector solu-
tion, giving the approximate behavior of x for small
values of the mass difference, while in Ref. K6 the
same author examined mass symmetries of the equation
and 2,

In Sec. IIB we derive the coupled radial equations for
unequal mass systems, and in Sec. IIC and the appendix
we examine the numerical behavior of x as a function of
m,/m, for the known analytic equal mass solutions of
Keam *® and Kummer,® The latter task has been per-
formed using numerical methods and, for Kummer’s
solutions, by the use of perturbation theory.

B. Reduction of the equation

We consider the configuration form of the BS equation
[Eq. (1)] with P,=0.7 In this case the set

{851{7, 0’:52,‘12,‘];’/_9-’51} (7)

is a commuting set of operators. Here f3, is the BS
operator of the left member of Eq. (1); «,8%,J% J, are
the O(4) operators constructed from the angular mo-
mentum operators /i, X'; 7 is the parity operator®?*:
and (, is the generalized charge parity operator, X°
Thus we may express the BS amplitude f as a simulta-
neous eigenfunction of these operators. For convenience
we shall consider eigenfunctions of 1 later and for the
moment consider eigenfunctions of the remaining oper-
ators, viz, f” 42, . Four distinct classes exist, as
follow. We use the notation of K4 for kets, that is, we
write angular kets as | T',(l, s*)j", (I, s7)i";Jm), though for
brevity we omit the quantum numbers J and m. The
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angular momentum operators S*, L* J* are defined in K1, Clgss 1:
Parity eigenvalues in the following refer to fermion—

antifermion systems. *° D355 s +2ml D} g0 + D2y pug] = = lm®~ 8%+ V s,

Class 1: o =4j(j+1), g2=0, P =(-1)7 (19a)
fi=1s|Ta03, 0, (5, 00 DD, 50, +2(5+ D)7y 0, +2(j+ )ms + 2iaw)
oy | TG+ 5,97, (G+ 5,00 =~ @i+ D)m? =A%+ Vo,
+fy | Tali =3, 2, (32, 209 (19b)
VN TG, 1), Gy OO = | Ta(G, Oy Gy 1)i). PAl=Dlayo0a + 290550, + 2jms = 200
(8) =~ (2j+1)[m?-a? +T/2]1)2, (19¢)
Class 2: a =4j(j+1), 82=0, P =(=1)7+ D o D5 + 28l =D} 0y + (+ 1)D2y y0,) = =lm? = 82+ V g,
fo=Fro UV T4, Vi, (G, 03 + | Ta(5, 0, (5, 1)) (19d)
+fA1]F4(j+%, 2, (G+2,2)0 where
+fa, |Ty(j=32,2), (j=3%, 200 s=@j+ 1, oy==0G+D3,,  v=7",
+fp| Ts(4, 0, (4,0))- ©) w=Li(+ D@+ DI (20)
Class 3: @ = =4(j+1)?, P =(-1)" Class 2:
Fs= V2 Fisa a0+ rjam)s (10) D;/ZD;’w+2m[_ﬂ)§/2al+(j+1)D:1/2’12]:"'[mz‘A2+73]wv
where Dyl =D; pay,=2(5 +1)Dy pa, = 2mw = 2i(j +1)ap] (21a)
Finam=lr TG+ 3,87, G+3,2i+1) e @+ D)2 =A 4 Vg, @1b)
TG +1,1)) (541,054 1) DDyt = 29D 3 + 2w — 2i3p)
+ 7, | Tal 3,003, (3,1 +1) @+ 1) = 874V ] o10)
ATl 5 B G5 974D D _py Do + 20810 0 + D2y paa) = = lm® =87+ V,Jp, (210)
and where
Fivijm=~fy|Tali+ 2, 2i+1, (j+4 25 w=liG+ 1)@+ DI ¥, a= _(].+1)1/efAl’ aa=1", ,
T4, 0741, (543,107 p=2j+ 1) %p. (22)
T, D1, (09 Class 3 & 4:

+ i+, 855+1, (5+3, 25, 1 =
fAlr‘}(] 507+, (5+32,270 (12) D;D;,zz)+iA{D;t1—D{)t2]=-[mz—A2+ V,lv, (23a)
Class 4: a =B =4(j+1)?, P=(-1)7" D:llz[D5t2+2ma+2iAv]:—[mz—A2+T/3]t1, (23b)
f4:(1/\/_2_)(f“- AIm ‘fj+1ij)° (13) DEIZ[D511+2ma - 2idv]= ~[m?~a%+ V3]t2’ (23¢)
DyD; 0 + mlDyy+ Dity)= =lm? = 82 + V., ]a, (239)
We counsider potentials of the type
J=TRE, (7=1,2,4,5) an e
V =. R)T, ji= »4,5
7/ ! ’ ’ v=fy, tlzﬁle, tz,:\/—Zsz, a=f,. (24)
and define For each of the above classes, eigenfunctions of (,
V].:ECH.[;{(R), (15) ntlay be extracted from f by expressing each radial func~
; tion as
where the ¢;; are defined by g(R)=g'(R, %) + ag (R, &%), (25)
f‘ir',: ¢, T; ns.(j) (16)  separating odd and even functions of A in the equation

sets (19), (21), and (23) yields six sets of equations in-~

f. K1, Eq. (16) and Table I).
lef. X1, Eq. (16) and Table 1] volving the radial functions tabulated in Table I.

We also define

_6 2(2'+01)
Do=3g*"R

For the particular case where the potential is due to
(17) the exchange of one type of particle only, certain sym-
metries in the equation sets (19), (21), and (23) are

as in K1, whilst apparent.
Some of these arise from the fact that the operator
m=x0m +m,), A=ilm, -m,). (18)
2 T 2 . batitut 71, where
The coupled radial equations obtained on substitution , o o
in Eq. (1) are then as follows: T2 fpsmg, m)=flpsm,, =my)ys=/"(p)s, (26)
2242 J. Math. Phys., Vol. 16, No. 11, November 1975 B.J. Brennan 2242
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TABLE 1. Grouping of radial functions according to modified
charge parity eigenvalues.

61 Class 1 Class 2 Classes 3 and 4
(1% s*, 0,08, " w",ai,a3,p* o', 4, 8,a0
(_ 1) 91 S-,UI,UE,W* w+,ai;a'2’,1’- v-)tlvtgsa

commutes with 4;')/. Using the relation®
(27)

where ¢} is +1 for j*=2 or 4, and -1 for j=1or 5, we
obtain the result that if f(p) is a solution of the BS equa~
tion, then 7 !f(p) is also a solution, for the same values
of x, m,, and m,. We note that in the proof of Eq. (27),
it is assumed that f and ) are analytic functions of m,,
and that certain integrals converge and are nonzero.

MN(my, =my)=eX (m,,m,),

Thus 7 1, is a class 2 solution, with w, a,, a,, and p,
respectively, replaced by —u®, iv}, v}, and s? (the
superscript ? denotes that in functions parametrically
dependent on m,, m, has been replaced by ~m,). Simi-
larly, 7%f, is a class 1 solution, with the converse re-
placement. /f,is a class 4 solution with v, f,, f,,
and a, respectively, replaced by —ia®, -} —f3, and iv?,
while 78, is a class 3 solution with the converse re-
placement.

However, the new solutions predicted by the action of
7% on known solutions in practice vanish, and this is
examined briefly in Sec, IIC3.

The equation set (23) is of interest for j=2 or 4 (V or
A type exchange), where a simplification occurs. In
these cases T/S:O, and the terms involving v and Dy,

- Dit,, are decoupled from those involving a and Djt,

+ Dgt,. Similarly, in the momentum space transforms
of Egs. (23) [cf. Egs. (33)], the terms involving v(P)
and ¢, (P)~1,(P) are decoupled from those involving q(P)
and £ (P) + (,(P).*°

This decoupling is related to the properties of the
operator §, defined in configuration space by

S§ )= 2% Y"a( dy &L_(_i—;z)?/%
I T T T )
=57 d*y (x—-y)2 (28)

or in momentum space by its transform

Sef0)=LL 1) 22, (29)
where P?=p® We note that, in both representations,

§E=1 (30)
and

[SuBo=LS ,,A.l=0, (31)

where —A, is the momentum space BS operator of the
left member of Eq. (4). In both representations, the op-
erators/M,,,P,C;, and R commute with §. §,and ¢/ (or
S, and ) do not commute, though in the case of a class
3 or class 4 solution with V or or A type exchange,

(S, /170 =5, 0/ 1fp) =0, (32)
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and hence the decoupling noted above occurs, In partic-
ular, in momentum space, the terms in the expression
for f(p) associated with q and #,+ ¢, form an eigenfunction
of § , With eigenvalue +1, while those associated with v
and ¢, -1, form an eigenfunction with eigenvalue -1.

C. Behavior of A when ma ¥ mb for known solutions

In this section we consider the unequal mass generali-
zations of the equal-mass solutions of Keam and Kum-
mer. In Sec. IIC 1 we present a perturbation treatment
of Kummer’s solutions, and in Sec. IIC 2 we present a
numerical approach to the solution of the unequal mass
equations. As in Sec. IIB we consider the BS equation
with P, =0, and also set p =0,

1. Perturbation theory for Kummer’s solutions

These are class 3 class 4 solutions for a fermion—
fermion system with V type exchange, and (, = (-1)2/*,
If we allow negative values® of A, the solutions are ap-
propriate to both fermion—fermion and fermion—anti-
fermion systems, for both V and A type exchange. The
eigenvalues of ) are described by the two parameters j
and ¢,"* where g>2j+2. The momentum space equa-
tions in this case are the transforms of Eq. (21), viz.:

dyd; o[ (1-6% = P)a +io(t,+ t,)] = - 8ra, (33a)

0%ty = (1=6%)t, = 2ioa - 2600, (33b)

o) = (1-6%)1,=2i0a + 250w, (33¢)

dyd; ,[(1-8% + 0 + 50(t, ~1,)] = 80, (33d)
where

6=a/m, o=P/m, and d%f= 5%1 2—('L:—q-), (34)

Eliminating v, #,, and ¢, yields

[o2+ (1+5)%][02 + (1-5)?]
0Z-(1-5%
We assume that the operand of the left member of Eq.

(35) and A may both be expanded as a convergent power
series in 6%, Equation (35) may then be written as

a=8xa. (35)

dgdi/z

D407+ Jlry+ 1,62 +---]=0, (36)
where
2 2 2 2
'r='r0+'r16"’+---=[o * (1+6)°]0 + (1-0)%) a (87)

0% -(1-5%

and the differential operators/),,/),,- -+ depend on the
terms Ay, 2,, ** * in the expansion

X=ng+ 258+ (38)

Using as the independent variable

Z=(1+02" (39)
we obtain for /), and /), the expressions
& d
—2(1=-22 2_ _9z2(1-7) &
Do=2(1-2) 7 2Z%(1-2) Z
=+ +3) + 2M(1-2)(1-22) (40a)
and
Dy=2Z(1=22))) 4+ 22,(1=2Z)(1-22)
-22,2(1-2)(1 -8Z +82?) (40b)
B.J. Brennan 2243
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From Eq. (37),
Doto=0
and
Domy +0,70=0 (41p)
We act on Eq. (41b) with the operator / {7, }, where
LdA,B}:[O’ dZZ-?A-B, (42)

Assuming the integrals converge, it may be shown that

{41a)

[_1{70:0071}—‘:[1{71:0 oTol =0, (43)
using (41a). Thus
Lx{ToDJo}:O: (44)

and for given values of j and ¢, the known expressions
for x, and 7, may be used to yield a value for ;. In the
simplest case (g=2j+2),

_ o _(3i+4
n=aer |, () oa)
where

ro=5{27 +3)(4j +5) (45b)

2. Numerical calculations

The analytic solutions of the relevant equations [viz.
Eq. (35) for Kummer’s solutions, and the momentum
space analogs of Egs. (19) for Keam’s solution (with j
=0)] is rather difficult, and consequently a numerical
approach has been adopted based on that used by Keam
in finding his solution.

(i) The method

We require a solution f(p) of the BS equation to satisfy
the boundary conditions'?

a>-=2, b<-=3, {46a)

where the behaviour of any radial term g(P) in the ex-
pression for f(p) is given by

g(P) ~FP as P— 0,
glpy~pP* {46b)

Consider a system of n coupled second order differen-
tial equations in # radial functions f=(f;,...,f,). This
is equivalent to a system of 2» coupled first order dif-
ferential equations in the 2x functions £ = (df},.....,
df oy fiseee.sf,). Here the operator d denotes differentia-
tion with respect to y, where

as P o,

47

With y as the independent variable, we may evaluate the
Frobenius series for which Eq. (46a) is satisfied as P
(and y)— 0. This yields #; vectors 1} {i=1,....,n).
Similarly, with the independent variable

y=0%

u={(1+86+y)", (48)

we may evaluate the n, vectors g/{j=1,...,n,) for whicl
Eq. (46a) is satisfied as P — =,

The variable u is chosen so that, for the cases con~
sidered, there is a region of the complex y plane in
which both sets of vectors are convergent series.
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Hence if h’ represents the radial functions (and their
derivatives) of a solution of the BS equation, then in this
region

b =afi=bg; (49)

where i and j are summed over their respective ranges,
and not all of g, or b, are zero,

If, as in both cases considered in this section,
(50)

the condition that a nontrivial solution of Eq. (49) exists

¥y + o= 2n,

is that o
f]
d,(y) =det|t, |0 (51)
g1
.

for each eigenvalue 2.

If n, +n,>2n, Eq. (49) may be satisfied for all
appropriate values of X, while if #; + #,=2n+ 1~m (m
> 2}, m distinct conditions must be satisfied in order
that an eigenvalue exist. The latter possibility is con-
sidered unlikely, and the former in not encountered for
the potentials considered.

The series involved in the expression for d,(y)
were numerically summed, term by term, for two dif -
ferent values of y, until the magnitude of the terms fell
below a cut off value, and the determinant dx( y) was
evaluated. Changes in the sign of d,(y) as » was varied
were used to locate eigenvalues. The use of two values
of v can distinguish cases where 4,(v) has a zero, at
one value of y, but is not identically zero, or where d,
approaches an asymptote, and also provides a check on
the effects of computer roundoff. The programmes
were run on the University of Auckland Burroughs
B6700 computer.

(ii) Keam’s solution

This is a class 1 solution with j=J= 0, A type ex-
change, and C, =+1. The momentum space radial func-
tions for this case are

(52a)
(52b)

32 dol (1=8% = 0%)s +2iov; | = - 1625,

dz‘d;/z[(l—é2 - 0%, + 2ios]= - 8av;.

The system has regular singular points at y=0, <
and -2+ vI=y, where

r=1~-05%, (53)

Here n, =n,=2, and the match may be tested on the in-
terval ye (0, (1-0)?) for 6> 0.

The eigenvalue was determined for values of 1/7 up to
40 (note that for large values of 1/» the mass ratio
m,/m,~4/v, assuming 6> 0). A relative cutoff value
| term/sum of series| of 10-'? was used for the Frobenius
series involved.

For large values of 1/#, the matching region becomes
small, and consequently a new variable y/l2(1 —5)2+y]
was used to perform the evaluation of the series that are

B.J. Brennan 2244
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FIG. 1. The coupling parameter as a function of 1/7 for
Keam’s solution.

valid as y— 0. This provides more rapidly convergent
series, with a matching region ye (0, =), When 1/7=40,
the errors due to roundoff were apparent (the B6700 has
22 significant figures in double precision). For all
other values of 1/# the agreement between the zeroes of
d,(y) for the two different values of y was excellent, and
for 1/7 <10, the two values agreed to within 1 in 108,

The results are summarized in Fig, 1, where A is
plotted against 1/7 on a log-log scale. The numerical
value of 9A/85%],z_, agress well with that obtained by
Keam.®® It appears probable that X — © a5 1/7— »
(and m,—0). This is consistent with the fact that no
acceptable solutions to Eqs. (52) have been found for §
— ‘1° 13

The graph of A vs 1/7 is very nearly linear. The
gradient of the regression line of In(A =7.,5) on In(1/7
-1) is 0,997, and the regression line of A on 1/7 yields
estimates of A that are accurate to within 0,05 for 1/7
in the range [1, 20]. Thus X is approximately given by

A=1,357+6,194 (1- A%/ m?)™?, (54)
(iii) Kummer’s solutions

Equation (35) has four regular singular points at the
same values of y as for the system of Eqs. (52) for
Keam’s solution, and may be reduced to Heun’s equa-
tion. We examine certain properties of Eq. (35), and
present an alternative method of determining the eigen-
values, in the appendix.

We again consider the differential equation with de-
pendent variable 7, rather than q. In this case n,=n,
=1, and the match may be tested for y=(0, (1-5)?), The
zeroes of d were numerically determined for all cases

2245 J. Math. Phys,, Vol. 16, No. 11, November 1975
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FIG. 2. The coupling parameter as a function of 1/7 for
Kummer’s solutions, j=0.

in which A <50 when m,=m,, and for 1/ <10, Again
the agreement between the values of ) obtained for two
different values of y is excellent.

The results are summarized in Figs. 2,3,4, and 5,

3
(o]
T
L4y

10L 1 1 1

1 2 3 4

R |
5 6 7891 20
e

FIG. 3. The coupling parameter as a function of 1/ for
Kummer’s solutions, j=1/2.
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again using a log—log scale. Qualitatively they are
similar to the results for Keam’s solution, though the
departure from a linear relationship between A and 1/#
is more marked.

In the case g=2j+2, the value of 9x/85% ;2_, agrees
well with that given by Eq. (45). In all cases, it ap-
pears probable that A —~ = as m,— 0. The author has
investigated the hypergeometric equation obtained from
Eq. (35) when 6 =1 (and m,=0), and has found no cases
in which acceptable solutions exist, with either positive
or negative eigenvalues.

The regression lines of In(A =\,) on In(1/7-1), where
Xo= Al g2, yield estimates of X accurate to within 2%
for 1/7 in the range [1,10]. These regression lines
yield expressions of type

A=A, +A(L/ 7 =1)B, (55)

The values of Ay, A and B are tabulated in Table II. B
is always slightly less than 1.0, increasing with j for
fixed ¢, and decreasing as q increases for fixed j. A
increases with ¢, but is almost constant with respect
to j, for fixed g¢.

3 Action of 79 on known solutions

As noted in Sec. IIB, we expect that 7/ 1f be a solution
of the BS equation, where f itself is a solution. We note
that the radial equations for the radial functions of 7 &f
are equivalent to those for the radial functions of f,
with m, replaced by ~m,, and A’ replaced by €/ 27,
Applying the methods of the previous section to Eqgs.
(52) and Eq. (35) with m, negative yields no eigenvalues.
Equation (A4) of the appendix has also been analyzed
by splitting the operator and the operand into odd and
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FIG. 5. The coupling parameter as a function of 1/7 for
Kummer’s solutions, j=3/2 and 2,

even functions of m,/ m, and solving the resulting pair
of coupled equations numerically, as in the previous
section. This yields the expected solutions and eigen-
values for m, positive, but the solution vanishes identi-
cally for m, negative.

Thus it appears that 7 2f=0 for the solutions consi-
dered in this section, and hence the integrals involved
in K6, Egs. (23), (25), and (26) vanish, so that Eq. (27)
of Sec. IIB is not valid.

1. PERTURBATION OF EXCHANGE MASS
A. Introduction

Previous studies of the spinor—spinor BS equation
with nonzero exchange mass have been performed by
Narayanaswamy and Pagnamenta,'* who numerically
solved the eigenvalue problem in A using a high momen-~
tum cutoff, and Guth,'® who performed the same task
without a momentum cutoff by the addition of regulating

TABLE II. Parameters A9, 4 and B in the expressions Aj,
=np+A(1/7r - 13,

j q Ao A B
o 2 7. 500 4,212 0.9172
0 3 19.187 8.456 0.8916
0 4 36, 682 14,792 0. 8766
3 3 14,000 8.308 0.9308
i 4 28. 651 13.694 0.9118
3 5 49,083 21.118 0.8976
1 4 22. 500 13, 816 0.9347
1 5 40.127 20.375 0.9122
2 5 33. 000 20.715 0.9416
2 6 45,500 29. 024 0.9431
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FIG. 6. The fractional change in the coupling parameter as
a function of the exchange mass for Keam’s solution.

terms to the one particle exchange propagator. The
author’s approach has been to apply perturbation theory,
and use numerical methods to evaluate the integrals
encountered. This analysis has been applied to Keam’s
solution and to the cases j=0, g=2, J° =1* of Kum-
mer’s solutions.

B. The method

We consider the momentum space form Eq. (4) of the
BS equation for ma=mb, P,=0. When the exchange
mass p is nonzero, the right member involves terms of
type (12/m?)In(n?/m?) and thus a perturbation expansion
in powers of u2 is not valid. Rather we assume

f(p) =folp) +f1(Hz, ),
A=xo+ 21 (1%,

(56a)
(56b)

where f,(p) and A, are appropriate to the case u2=0,
and f,(u?, p) and 2, (u?)— 0 as u?—~ 0, We assume also
that the integrals encountered are convergent,'® and set

4 rj (k) - f 4 I"J' (k) + 2
/d k(p_k)2+uz- a’k (b—Fk) Al (u?, p)

(@=0,1) (57)
where TV is appropriate to the interaction type consid-
ered. It is assumed that for small y A (u?, p) and
A (AL, p) may be neglected.

Equating the remaining terms involving u?2 yields

d4km
b-r7

(vp=—im) fi (2, p)y -p—~im) + %%

2o, 2y M [ ge, T(R)
== Al(p?, p) ,n,z/d k (p—k)z’ (58)
we multiply Eq. (58) on the left with the adjoint 7 (p)
whereX?

fT(p:Pn;):'y‘;f(p: —palay (59)

take the trace and integrate over momentum space. The
left member yields zero [cf. K4, Eq. (52)]. We there-
fore obtain, with the use of Eq. (57) for a =0,
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2 =2thl s gua0), (60)
where
4(u?)= [ dpd*eTrfo(PT (DY (0= +u?l.  (61)

For the solutions considered in Sec. IIC the evaluation
of the integrals in ¢ (u2) is most conveniently performed
by numerical integration. In particular, we consider
the integrals

A (P)= [ a* k[ - B + p2 10+ K/ m?Y )

—m f dx(’zi)”‘, (62)
where

z=x + (1=x)(u¥/m? +x(1L=x}(F*/m?), (63)
and

b4 (P)= [ d*kk {[(p—F)* + u2l1+K*/m?} }*

zpy.Br(P)’ (64)
where
i
B(P)=m® 15 fo dx(1 -x)(;i)' : (65)

The latter forms for A (P) and B (P) are obtained by
using the Feynman method. "
C. Application to known solutions

(i) Keam’s solution

This may be written,** to within a normalization
factor,

fol0)=s(P) +v,(P)y-p/ P, (66)
where

s(P)=24"(1 =14y + 56u2 - 844> + 42u*), (67a)

0y (P) = Ti(K/m)u® (1 -2u) (1 ~6u + 642), (67b)
and

u=(1+P/m?™, (67¢)

In this case
Fo®)=7o(p)- (68)

After some simplification, we obtain
J(u?) =872 fo“ PPdP{8s(P)[A,(P) +14A,(P) + 56A,(p)
- 844,,(P) +424,,(P)] + 14iv, (P)(P/m) B,(P)
~8B,(P) +18B,,(P) - 12B,,(P)]}. (69)

The double integral in the right member of Eq. (69)
was evaluated by Euler—Romberg integration on the
University of Auckland Burroughs B6700 computer,
until successive estimates agreed to within one in 10°,
For very small u?/m? the range of integration for x
was divided into two, to allow for the rapid change in
x/zas x— 0,

The results are summarized in Fig. 6, where X,/
is plotted against 2/m? on a log—log scale, The ap-
proximate expression
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FIG. 7. The fractional change in the coupling parameter as
a function of the exchange mass for Kummer’s solutions
(j=0,9=2).

2 2
AT 7,5 -4 (84,27+24.891n J‘—z) (70)
m m

which is fitted to the values of x when p?/m?=0, 10
and 10°°, gives good agreement in the range y?/m?<
0.005 (i.e., pu/m <0,07). For larger values of u?,
9(u?) is substantially smaller than ¢ (0), and thus the
perturbation assumption is no longer appropriate.

We note that expression of Eq. (70) for x varies more
rapidly with small u2 than is the case for the simplest
solution to the scalar—scalar BS equation.!® This
arises principally because the integrals A and B, vary
more rapidly with u? as v increases (for the scalar—
scalar solution, »=23),

(ii) Kummer’s solution

The solutions for j=0, g=2, J=1, J,=0, P =z1,
may be written, to within a normalization factor {the
superscript denoting the eigenvalue of 7, for a fer-
mion—fermion system), as

fo=- 2iu7[(Y1P1 +Vzpz)(}’4p3 ~Y3bs) * i +P§)’V47’3]

+[26" = ubllpoyers = Prysys) (11)
and
fo= =20l (1p,= Vb)) sbs +Yaps) = (05 + piIv1ve)
+ (207~ pgysys = Pavera)e (12)

Only the A sector terms contribute to ¢ (u?), since
I'%(=T,) yields zero when acting on a T sector matrix.
For both f§ and fg,

9 (u?) =81~ PAPP*Qu" —u®) (4, ~ 24,). (73)

Using the same methods as for Keam’s solution, we ob-
tain the results summarized in Fig. 7. In this case x
may be approximately expressed as

2
AZ 7.5 - #[15.14 +7.20 In(p?/m?] (74)

for u2/m? <1072, We note that the variations of » with
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u? is less rapid, and the expression is a more accurate
approximation, than is the case with Eq. (70).
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APPENDIX: HEUN’S EQUATION AND KUMMER’S
SOLUTIONS

We transform Eq. (35), using as independent variable
u' p=1 (1 + })2/7’}1:)"1

=1 +5)(1+8)2+ 072, (A1)
and defining F by
= (u,)(u+l)/2(1_u/)-(2j+8)/2F(u/)’ (Az)
where
p=[8x +(2j +2)?1/? (A3)
Thus we obtain Heun’s equation'®
2 -
d F2 (Z. 6, _€ \dF  _ aBuw-gq -0
dau’ w  w=-1 w-=blduw w - ->d)
(Ag)
where
2
= -2,
asboi, p=Eo(a,
y=p+l, 5=-(2j+1),
e=0, q:b[aB—2x ’-’fﬁ(1+’ﬂ)]. (A5)
m, m,

We consider a solution of form [cf. Eq. (10) of Ref.
19)].

Fl)= -1 25 a, ()™, ap=1. (A6)
m=0
If the series converges for [0, 1] then this solution

gives acceptable behaviour of g(P) for P—~ 0 and P-- =,
The recurrence relation for the series is

Amam—l + Bmam + cm*’-am*-l: 0 (A7)
where
A, =(m=1)(m=2)+2+y=-5)m~1)+af +v(1-5),

m=1,2,0++, (A8a)
B, =={(a+1)m(m=1) +{a( +y~8) +v]m + g+ av(1-0)},

m=0,1-, (A8b)
Ca=am+(m+y), m=0,1,---. (A8c)
The condition for convergence for »’c(0, 1] is'®
By=¢,Cy (A9a)
where
w=- 75T,
EA—. (A9D)

The infinite continued fraction g, may be evaluated
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approximately by numerical means, and a search made
for zeroes in B, ~ ¢,C;. This was done for several val-
ues of m,/m, and j, and in each case the eigenvalue 2
agreed with that obtained in Sec. IIB (iii) to the accuracy
expected.
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